

Configuration Manual

MSc. Research Project MSc. Data Analytics

Shubham Kathepuri Student ID: x18127398

School of Computing National College of Ireland

Supervisor: Dr. Catherine Mulwa

National College of Ireland

MSc Project Submission Sheet

School of Computing

Word Count:	1556	Page	e Count: 27		
Project Title:	Recognition and Classification of Fruits using Deep Le	arning Te	chniques		
Submission Due Date.	28 th September 2020				
Lecturer: Submission Due Date:	Dr. Catherine Mulwa				
Module:	MSc. Research Project				
Programme:	MSc. Data Analytics	Year:	2019-2020		
Student ID:	X18127398				
Student Name:	Shubham Balasaheb Kathepuri				

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Shubham Balasaheb Kathepuri

Date: 27th September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project submission, to each project	
(including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for your own	
reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on	
computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Shubham Kathepuri x18127398

1 Introduction

To reproduce the research "Recognition and Classification of Fruits using Deep Learning" this manual presents thorough information regarding the configuration of the system, hardware requirements, and software requirement to implement, execute and test the models used for the research successfully. Further, the manual presents a step-by-step guide in the following sections.

2 System Configuration

This section discusses the hardware and software requirements.

2.1 Hardware Requirements

The hardware requirements are summarised in Table 1. Figure 1 displays the system configuration.

Hardware	Configuration
System	Dell XPS 15
OS	Windows 10 x64
Hard Disk	256 GB
RAM	8 GB
Processor	Intel Core i7 8 th Generation
GPU	Nvidia GTX 1050Ti

Table 1	Hardware	Configuration
---------	----------	---------------

Figure 1 System Configuration

Detailed information about your NV	/IDIA hardware and the	system it's running on		
isplay Componente				
Components				
System information	10 Users Circle Leasure	- 64 64		
Operating system: Windows J	LU Home Single Languag	e, 64-DIC		
DirectX runtime version: 12.0				
Graphics card information				
Items	Details			
GeForce GTX 1050 Ti with Max-Q D	Driver version:	451.67	^	
	Driver Type:	Standard		
	Direct3D API version:	12		
	Direct3D feature lev	12_1		
	Direct3D feature lev CUDA Cores:	12_1 768		
	Direct3D feature lev CUDA Cores: Graphics clock:	12_1 768 1290 MHz		
	Direct3D feature lev CUDA Cores: Graphics clock: Memory data rate:	12_1 768 1290 MHz 7.01 Gbps		
	Direct3D feature lev CUDA Cores: Graphics clock: Memory data rate: Memory interface:	12_1 768 1290 MHz 7.01 Gbps 128-bit		
	Direct3D feature lev CUDA Cores: Graphics clock: Memory data rate: Memory interface: Memory bandwidth:	12_1 768 1290 MHz 7.01 Gbps 128-bit 112.13 GB/s		
	Direct3D feature lev CUDA Cores: Graphics clock: Memory data rate: Memory interface: Memory bandwidth: Total available grap	12_1 768 1290 MHz 7.01 Gbps 128-bit 112.13 GB/s 8060 MB	~	
	Direct3D feature lev CUDA Cores: Graphics clock: Memory data rate: Memory interface: Memory bandwidth: Total available grap Dedicated video me	12_1 768 1290 MHz 7.01 Gbps 128-bit 112.13 GB/s 8060 MB 4096 MB GDDB5	•	
	Direct3D feature lev CUDA Cores: Graphics clock: Memory data rate: Memory interface: Memory bandwidth: Total available grap Dedicated video me	12_1 768 1290 MHz 7.01 Gbps 128-bit 112.13 GB/s 8060 MB 4006 MB GDDP5	~ About	

Figure 2 GPU Configuration

The GPU used for carrying out the project was Nvidia GTX 1050Ti (Figure 2).

2.2 Software Requirements

The list of software used for the research implementation is summarised in Table 2.

Software	Version
Python	3.7
Anaconda Navigator	1.9.12
Jupyter Notebooks	6.0.3
Google Chrome	84.0
Microsoft Excel	2020 Edition

 Table 2 Software Requirement

2.2.1 Setting Anaconda Environment

The programming language used for the project was Python. To implement the project Anaconda Navigator environment was used as shown in Figure 3. Anaconda contains multiple applications that can be used for machine learning, development, and visualization. For this project, Jupyter Notebook was used for implementation purposes.

O Anaconda Navigator						-
						firsts to be too
ANACON	DANAVIGATOR					Sign in Co Ane
🕇 Home	Applications on tf	✓ Channels				
Environments	¢ jupyter	•	× .	° (i i	¢
🗳 Learning	Notebook 6.03 Web-based, interactive computing notebook environment. Edit and run	PyCharm 2020.2 Full-featured Python IDE by JetBrains. Supports code completion, linting,	VS Code 1.48.0 Streamlined code editor with support for development operations like debugging,	CMD.exe Prompt 0.1.1 Run a cmd.exe terminal with your current environment from Navigator activated	Glueviz 0.15.2 Multidimensional data visualization across files. Explore relationships within and	JupyterLab 1.2.6 An extensible environment for interactive and reproducible computing, based on the
Community	human-readable docs while describing the data analysis.	debugging, and domain-specific enhancements for web development and data science.	task running and version control.	Install	among related datasets.	Jupyter Notebook and Architecture.
	*	*	•	•	•	
	99	\mathbf{O}	IP[y]:	R	**	
	Orange 3 3.23.1 Component based data mining framework. Data visualization and data analysis for novice and expert. Interactive workflows with a large toolbox.	Powershell Prompt 0.0.1 Run a Powershell terminal with your current environment from Navigator activated	Qt Console 4.7.4 PyQt GUI that supports inline figures, proper multiline editing with syntax highlighting, graphical calltips, and more.	RStudio 1.1.456 A set of integrated tools designed to help you be more productive with R. Includes R essentials and notebooks.	Spyder 4.1.3 Scientific PYthon Development EnviRonment. Powerful Python IDE with advanced editing, interactive testing, debugging and introspection features	
	Install	Install	Install	Install	Install	
Documentation						

Figure 3 Anaconda Navigator Environment

O ANACONDA.	Products Pricing Solutions	Resources v Blog Company v	Get Started
	Q Individual Edition Open Source Distribution		
[Team Edition Package Manager	technoloav for	
	Enterprise Edition Full Data Science Platform	ensemaking.	
	Professional Services Data Experts Work Together	er millions of data science practitioners, and the open source community.	
		Get Started	

Figure 4 Downloading Anaconda

1. To download the Anaconda, visit the official website¹ and select the option shown in Figure 4.

¹ https://www.anaconda.com/products/individual

Anaconda Navigator File Help						-	o ×
	NAVIGATOR					Sign in t	o Anaconda Cloud
A Home	Applications on base (root)	v Channels					Refresh
Trvironments	Ô	¢	¢ jupyter	Ô	¢ IP(y):	مُ	1
Learning	CMD.exe Prompt	JupyterLab	Notebook	Powershell Prompt	Qt Console	Spyder	
Community	0.1.1 Run a cmd.exe terminal with your current environment from Navigator activated	1.2.6 An extensible environment for interactive and reproducible computing, based on the Jupyter Notebook and Architecture.	6.0.3 Web-based, interactive computing notebook environment. Edit and run human-readable docs while describing the data analysis.	0.0.1 Run a Powershell terminal with your current environmetir from Navigator activated	4.6.0 PyQt GUI that supports inline figures, proper multiline editing with syntax highlighting, graphical calitips, and more.	4.0.1 Scientific Pirthon Development Environment, Powerful Python IDE with advanced editing, interactive testing, debugging and introspection features	
	Launch	Launch	Launch	Launch	Launch	Launch	
	Clueve Glueve 1.12 Multidimentional data situation and face. Buildow and mong related datasets.	Crange 3 32.1 Conserve that and a more subject for notice and expert. Interactive workflows with a large toolbox.	Roudo 1.48 Aste of integrated tools design be more produced as it includes it userbials as functions.				
Documentation							
Developer Blog							
y 8 ¢							

Figure 5 Install Jupyter Notebook

2. Install Jupyter Notebook from the Anaconda Navigator home screen as highlighted in Figure 5.

UDA Toolkit 1).1 original Archive	
Select Target Platform 🚯		
Click on the green buttons that des	ribe your target platform. Only supported platforms will be shown.	
Operating System	Windows Linux Mac OSX	
Architecture	x86_64	
Version	10 8.1 7 Server 2019 Server 2016 Server 2012 R2	
Installer Type 🚯	exe (network) exe (local)	
Download Installer for Window	10.994.47	
The base installer is available for d	wnload below.	
> Base Installer		Download (2.4 GB) 📥
Installation Instructions:		
1. Double click cuda_10.1.105_4 2. Follow on-screen prompts	18.96_win10.exe	

Figure 6 Install Cuda 10.1 for GPU

- 3. Install CUDA v.10.1 from the Nvidia Website² and cUDNN v.7.6.5 which compatible with the CUDA version from the archive option³ (Figure 6).
- 4. To install TensorFlow for Anaconda environment, the command prompt of Anaconda was used and followed the instructions provided by the website⁴.

² https://developer.nvidia.com/cuda-10.1-download-archive

³ https://developer.nvidia.com/rdp/cudnn-archive#a-collapse765-101

 $^{4\} https://docs.anaconda.com/anaconda/user-guide/tasks/tensorow/$

3 Implementation

This section gives a step-by-step approach to reproduce the project which covers everything from data acquisition to model building, training, results, and visualizations.

3.1 Data Acquisition

The download of the data visit the GitHub⁵ repository as highlighted in Figure 7.

💭 Why GitHub? 🗸 Team Enterpri	se Explore – Marketplace Pricing –	ļ	Search		Sign in Sig	n up
Horea94 / Fruit-Images-Dataset				• Watch 33	岱 Star 41	3 🦞 Fork 254
<> Code ① Issues 11 Pull requests 1 ⊙ Ac	tions 🔟 Projects 🛈 Security 🗠	Insights				
	Joir GitHub is home to over 50 million d manage projec	GitHub today welopers working together to host and review is, and build software together.	code,		Dismiss	
L marter - Willhaush D.0.100		Sign up	ada – About			
Horea94 Update paper		Clone with HTTPS ⑦ Use Git or checkout with SVN using the web I	Fruits-3 contain	860: A dataset ing fruits and	of images vegetables	
Test	added Corn, Corn with Husk, Cucumber	https://github.com/Horea94/Fruit-Image	C Rea	dme		
Training	added Corn, Corn with Husk, Cucumber		a <u>t</u> a Mit	License		
papers	Update paper	옆 Open with GitHub Desktop				
src src	Update paper and readme	Download ZIP	Release	es		
toct-multiple fruits	added more images with multiple fruits	z yea	rs ago No releas	es published		
test-multiple_mults						

Figure 7 Data Acquisition

3.2 Data Preparation

The next step after data acquisition is data preparation. This step begins with importing the essential libraries required to implement the project (Figure 8).

	Importing the essential libraries
In [66]:	<pre>import os import time import numpy as np import matplotlib.pyplot as plt import matplotlib.image as img from os import listdir from os.path import isfile, join from glob import glob from tgdm import tgdm from IPython.display import display from PIL import Image, ImageFile from sklearn.datasets import load_files from keras.callbacks import Modelcheckpoint from keras.utils import Conv2D, MaxPooling2D, GlobalAveragePooling2D, Dropout, Flatten, Dense, Input from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D, Dropout, Flatten, Dense, Input from keras.applications import ResNet50, VGG16 from keras.applications import Adam, SGD</pre>

Figure 8 Importing Essential Library

⁵ https://github.com/Horea94/Fruit-Images-Dataset

Seting up the dicrectories for train and test dataset

In [2]: # Root Directory
train_data_dir = 'C:/Users/Shubham/Downloads/NCI/Thesis/Fruit-Images-Dataset-master/Training' #Validation Directory
test_data_dir = 'C:/Users/Shubham/Downloads/NCI/Thesis/Fruit-Images-Dataset-master/Test'

Figure 9 Directory Setup

To fetch the data, data directories are set up in Figure 9.

Figure 10 Function Definition for Displaying Categories

Functions are defined to print all the categories in dataset Figure 10.

Figure 11 Displaying Number of Images per Category

To print the number of images per category code shown in Figure 11 was used.

Displaying random image from each category for quality check and verification

Figure 12 Quality Check and Category Verification

To verify the fruits in each category and check the quality of the images code shown in Figure 12 was used.

Loading the dataset into lists

```
In [58]: def load_dataset(path):
    data = load_files(path)
    fruit_files = np.array(data['filenames'])
    fruit_targets = np_utils.to_categorical(np.array(data['target']), 131)
    target_labels = np.array(data['target_names'])
    return fruit_files, fruit_targets, target_labels
# load train and test datasets
train_files, train_targets, train_labels = load_dataset(train_data_dir)
test_files, test_targets, test_labels = load_dataset(test_data_dir)
# load list of fruits names
fruit_names = [item[9:] for item in sorted(glob(train_data_dir + '/*'))]
# print statistics about the dataset
print('There are %d total fruit categories.' % len(fruit_names))
print('There are %d training fruit images.' % len(np.hstack([train_files, test_files])))
print('There are %d training fruit images.' % len(test_files))
print('There are %d test_fruit images.' % len(test_files))
```

Figure 13 Loading Data and Displaying Statistics of Dataset

A user-defined function was used to load the dataset. The dataset statistics like the number of categories, the number of fruits in the train and test set, and the total number of images were print (Figure 13).

3.3 Data Pre-Processing

The next step after data preparation is data pre-processing.

Defining model parameters

```
In [7]: img_row = 100
img_height = 100
img_depth = 3
num_classes = 131
epochs = 5
batch_size=16
```

Figure 14 Define Model Parameters

Figure 14 shows the model parameters which were used for converting the images into an array, image augmentation, and model training.

Figure 15 Defining Function to Convert Images to Array (Tensors)

The images are converted into arrays Figure 15.

Figure 16 Image Augmentation

To answer the sub-RQ second set of training was created using ImageDataGenerator Library. The images were augmented using operations shown in Figure 16.

Printing Augmented Image

```
In [55]: print('Augmented Image')
x_batch, y_batch = next(train_generator)
i = random.randint(0,16)
image = plt.figure(figsize=(4,4))
fig= plt.imshow(x_batch[i])
fig.axes.get_xaxis().set_visible(False)
fig.axes.get_yaxis().set_visible(False)
plt.savefig('C:/Users/Shubham/Downloads/NCI/Thesis/Report Pictures/Augmented_Image.jpg')
plt.show()
```

Figure 17 Displaying Augmented Image

A sample of augmented images was printed in Figure 17.

Calculating Train and Validation Step for Augmented Models

```
In [ ]: train_step = train_generator.n//train_generator.batch_size
val_step = validation_generator.n//validation_generator.batch_size
print("Train step: ", train_step)
print("Validation step: ", val_step)
class_labels = validation_generator.class_indices
class_labels = {v: k for k, v in class_labels.items()}
classe = list(class_labels.values())
```

Figure 18 Calculating Train and Validation Step

Training and Validation steps were calculated for augmented models Figure 18.

3.4 Modeling

The next step after data pre-processing is modeling. In this step, three models were trained and tested (CNN, VGG16, ResNet50). Each of the models was trained using two sets of training data, image arrays and augmented data.

3.4.1 Base CNN

The base CNN model was developed from scratch which had the following configuration (Figure 19).

Figure 19 Base CNN Model Configuration

In []:	<pre>base_cnn_weight_path = 'C:/Users/Shubham/Downloads/NCI/Thesis/saved-models/weights.base_cnn.from_scratch.hdf5'</pre>
In []:	<pre>start = time.time() checkpointer = ModelCheckpoint(filepath=base_cnn_weight_path,</pre>
	<pre>base_cnn = model_base_cnn.fit(train_tensors, train_targets, validation_split=0.3, epochs=epochs, batch_size=batch_size, callbacks=[checkpointer], verbose=1)</pre>
	<pre>end = time.time()</pre>
	WARNING:tensorflow:From C:\Users\Shubham\anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py:422: The name tf.globa l_variables is deprecated. Please use tf.compat.v1.global_variables instead.
	Train on 47384 samples, validate on 20308 samples Enoch 1/5
	47384/47384 [=============================] - 127s 3ms/step - loss: 0.6977 - accuracy: 0.8102 - val_loss: 0.1773 - val_accurac y: 0.9455
	Epoch 00001: val_loss improved from inf to 0.17725, saving model to C:/Users/Shubham/Downloads/NCI/Thesis/saved-models/weights. base_cnn.from_scratch.hdf5
	Epoch 2/5 47384/47384 [====================================

Figure 20 Base CNN Model Training

The base CNN model was trained in Figure 20.

Figure 21 Computational Time, and Accuracy and Loss Plots

The computational time required, and accuracy and loss were printed in Figure 21.

Figure 22 Calculating Model Accuracy

The training and test accuracy were printed in Figure 22.

Figure 23 Prediction on Random 16 Images

To verify the test accuracy the random 16 images were used for predictions and the results were visualized Figure 23.

Figure 24 Base CNN Confusion Matrix

The correct and incorrect predictions made by the model were visualized using confusion matrix Figure 24 and Figure 25.

Figure 25 Base CNN Confusion Matrix

3.4.2 CNN with Augmentation

The augmented CNN model had the same configuration as the base model Figure 26. CNN with Augmentation

) []: d	<pre>def aug_cnn(): model = Sequential() model.add(Conv2D(filters=16, kernel_size=2, padding='same',activation='relu',input_shape=(img_row,img_height,img_depth))) model.add(MaxPooling2D(pool_size=2)) model.add(Conv2D(filters=32, kernel_size=2, padding='same',activation='relu')) model.add(MaxPooling2D(pool_size=2)) model.add(Conv2D(filters=128, kernel_size=2, padding='same',activation='relu')) model.add(Conv2D(filters=128, kernel_size=2, padding='same',activation='relu')) model.add(Conv2D(filters=128, kernel_size=2, padding='same',activation='relu')) model.add(Conv2D(filters=128, kernel_size=2, padding='same',activation='relu')) model.add(Convot(filters=128, kernel_size=2, padding='same',activation='relu')) model.add(Corpout(6.3)) model.add(Corpout(6.3)) model.add(Corpout(6.4)) model.add(Dense(131,activation='softmax')) model.compile(coptimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) model.summary() in the interval of the second se</pre>					
ו []: mo ai	<pre>iodel_aug_cnn = aug_cnn() uug_cnn_weight_path = 'C:/Us</pre>	ers/Shubham/Downloads/NC	I/Thesis/saved-	models/weights.aug_cnn.from_scratch.hdf5'		
M	Nodel: "sequential_2"					
M 	Nodel: "sequential_2" 	Output Shape	Param #			
M 	Nodel: "sequential_2" .ayer (type) :onv2d_5 (Conv2D)	Output Shape (None, 100, 100, 16)	Param # 208			
M 	Nodel: "sequential_2" .ayer (type) .conv2d_5 (Conv2D) nax_pooling2d_5 (MaxPooling2	Output Shape (None, 100, 100, 16) (None, 50, 50, 16)	Param # 208 0			
M 	Nodel: "sequential_2" .ayer (type) conv2d_5 (Conv2D) Nax_pooling2d_5 (MaxPooling2 conv2d_6 (Conv2D)	Output Shape (None, 100, 100, 16) (None, 50, 50, 16) (None, 50, 50, 32)	Param # 208 0 2080			
M 	Nodel: "sequential_2" .ayer (type) 	Output Shape (None, 100, 100, 16) (None, 50, 50, 16) (None, 50, 50, 32) (None, 25, 25, 32)	Param # 208 0 2080 0			

Figure 26 CNN with Augmentation Configuration

Figure 27 CNN with Augmentation Model Training

The augmented CNN model was trained in Figure 27.

Figure 28 Computational Time, and Accuracy and Loss Plots

The computational time required, and accuracy and loss were printed in Figure 28.

Figure 29 CNN with Augmentation Accuracy

The training and test accuracy were printed in Figure 29.

Figure 30 Prediction on Random 16 Images

To verify the test accuracy the random 16 images were used for predictions and the results were visualized Figure 30.

Figure 31 CNN with Augmentation Confusion Matrix

The correct and incorrect predictions made by the model were visualized using confusion matrix Figure 31 and Figure 32.

Figure 32 CNN with Augmentation Confusion Matrix

3.4.3 Base VGG16

The base VGG16 model was developed from scratch which had the following configuration (Figure 33).

	Base VGG16					
In [76]:	#VGG16					
	<pre>def vgg16(): model_vgg16_conv = VGG</pre>	16(weights='imagenet', inc	lude_top= Fals	e)		
	<pre>input_model = Input(shape=(img_row,img_height,img_depth))</pre>					
	output_vgg16_conv = mod	output_vgg16_conv = model_vgg16_conv(input_model)				
	<pre>x = Flatten()(output_v(x = Dropout(0.3)(x) x = Dense(131, activat: model = Model(input_model) for layer in model_vgg layer.trainable = Fai model.compile(Adam(lr=: model.summary() return model</pre>	gg16_conv) ion='softmax', name='predi del, x) 16_conv.layers[:]: 1se 1e-3), loss='categorical_c	ctions')(x) rossentropy',	metrics=['accuracy'])		
In [77]:	<pre>model_vgg = vgg16()</pre>					
	Model: "model_3"					
	Layer (type)	Output Shape	Param #			
	input_6 (InputLayer)	(None, 100, 100, 3)	0			
	vgg16 (Model)	multiple	14714688			
	flatten_3 (Flatten)	(None, 4608)	0			
	dropout_3 (Dropout)	(None, 4608)	0			

Figure 33 Base VGG16 Configuration

In [79]:	<pre>base_vgg_weight_path = 'C:/Users/Shubham/Downloads/NCI/Thesis/saved-models/weights.base_vgg.from_scratch.hdf5'</pre>
In []:	from keras.callbacks import ModelCheckpoint
	<pre>start= time.time()</pre>
	<pre>checkpointer = ModelCheckpoint(filepath=base_vgg_weight_path,</pre>
	<pre>base_vgg = model_vgg.fit(train_tensors, train_targets, validation_split=0.3, epochs=epochs, batch_size=batch_size, callbacks=[checkpointer], verbose=1)</pre>
	<pre>end = time.time()</pre>
	Train on 47384 samples, validate on 20308 samples Epoch 1/5 47384/47384 [=========================] - 373s 8ms/step - loss: 0.3916 - accuracy: 0.9272 - val_loss: 0.0292 - val_accurac y: 0.9973
	Epoch 00001: val_loss improved from inf to 0.02918, saving model to C:/Users/Shubham/Downloads/NCI/Thesis/saved-models/weights. base_vgg.from_scratch.hdf5 Epoch 2/5
	47384/47384 [========] - 335s 7ms/step - loss: 0.0260 - accuracy: 0.9967 - val_loss: 0.0086 - val_accurac y: 0.9995
	Epoch 00002: val_loss improved from 0.02918 to 0.00857, saving model to C:/Users/Shubham/Downloads/NCI/Thesis/saved-models/weig hts.base_vgg.from_scratch.hdf5 Epoch 3/5
	47384/47384 [====================================

Figure 34 VGG16 Model Training

The base VGG16 model was trained in Figure 34.

In [<pre>base_vgg_tt= end-start print('Time taken by the model to run: {}'.format(base_vgg_tt))</pre>				
	Time taken by the model to run: 1576.9526495933533				
In [<pre>print(base_vgg.history.keys())</pre>				
	<pre># summarize history for accuracy plt.plot(base_vgg.history['accuracy']) plt.plot(base_vgg.history['val_accuracy']) plt.title('VGG - Model Accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend[['Train', 'Validation'], loc='upper left') plt.savefig('C:/Users/Shubham/Downloads/NCI/Thesis/Report Pictures/VGG_Graph-1.jpg') plt.show()</pre>				
	<pre># summarize history for Loss plt.plot(base_vgg.history['loss']) plt.plot(base_vgg.history['val_loss']) plt.title('VGG - Model Loss') plt.ylabel('loss') plt.ylabel('loss') plt.kabel('epoch') plt.legend[['Train', 'Validation'], loc='upper left') plt.savefig('C:/Users/Shubham/Downloads/NCI/Thesis/Report Pictures/VGG_Graph-2.jpg') plt.show()</pre>				

Figure 35 Computational Time, and Accuracy and Loss Plots

The computational time required, and accuracy and loss were printed Figure 35

Figure 36 VGG16 Accuracy

The training and test accuracy were printed in Figure 36.

Figure 37 VGG16 Prediction on Random 16 Images

To verify the test accuracy the random 16 images were used for predictions and the results were visualized Figure 37.

Figure 38 VGG16 Confusion Matrix

The correct and incorrect predictions made by the model were visualized using confusion matrix Figure 38 and Figure 39.

Figure 39 VGG16 Confusion Matrix

3.4.4 VGG16 with Augmentation

The augmented VGG16 model had the same configuration as the base model Figure 40.

	6 with aug	mentation					
In []: def aug_vg model_	<pre>def aug_vgg16(): model_vgg16_conv = VGG16(weights='imagenet', include_top=False)</pre>						
input_	<pre>input_model = Input(shape=(img_row,img_height,img_depth))</pre>						
output	t_vgg16_conv = mc	del_vgg16_conv(input_mode	1)				
<pre>x = F] x = Dr model for la laye model.</pre>	<pre>latten()(output_v ropout(0.3)(x) ense(131, activat = Model(input_mo ayer in model_vgg er.trainable = Fa .compile(Adam(lr= .summary()</pre>	gg16_conv) :ion='softmax', name='pred: ude1, x) (16_conv.layers[:]: ulse :1e-3), loss='categorical_	<pre>ictions')(x) crossentropy',</pre>	etrics=['accura	cy'])		
return	n model						
return In []: model_aug_	n model _vgg = aug_vgg16()					
return In []: model_aug_ Model: "mo	n model _vgg = aug_vgg16(odel_2"						
In []: model_aug_ Model: "mo Layer (typ	<pre>n model _vgg = aug_vgg16(odel_2" >>>)</pre>) Output Shape	Param #				
In []: model_aug_ Model: "mc Layer (typ input_4 (1	n model _vgg = aug_vgg16(odel_2" pe) [nputLayer)) Output Shape (None, 100, 100, 3)	Param # 0				
In []: model_aug_ Model: "mo Layer (typ input_4 (1 vgg16 (Moo	n model _vgg = aug_vgg16(odel_2" pe) InputLayer) del)	Output Shape (None, 100, 100, 3) multiple	Param # 0 14714688				
In []: model_aug_ Model: "mo Layer (typ input_4 (1) vgg16 (Moo flatten_4	n model _vgg = aug_vgg16(odel_2" pe) 	() Output Shape (None, 100, 100, 3) multiple (None, 4608)	Param # 0 14714688 0				
In []: model_aug Model: "mo Layer (typ input_4 (1 vgg16 (Moo flatten_4 dropout_6	n model _vgg = aug_vgg16(odel_2" pe) InputLayer) del) (Flatten) (Dropout)	() Output Shape (None, 100, 100, 3) multiple (None, 4608) (None, 4608)	Param # 0 14714688 0 0				

Figure 40 VGG16 with Augmentation Configuration

In []:	<pre>aug_vgg_weight_path = 'C:/Users/Shubham/Downloads/NCI/Thesis/saved-models/weights.aug_vgg.from_scratch.hdf5'</pre>
In []:	<pre>from keras.callbacks import ModelCheckpoint</pre>
	<pre>start = time.time()</pre>
	<pre>checkpoint = ModelCheckpoint(aug_vgg_weight_path,</pre>
	callbacks = [checkpoint]
	<pre>vgg_aug = model_aug_vgg.fit(train_generator, steps_per_epoch = train_step, epochs = epochs, callbacks = callbacks, validation_data = validation_generator, validation_steps = val_step) end = time()</pre>
	Epoch 1/5
	2964/2964 [====================================
	Epoch 00001: val_loss improved from inf to 0.02934, saving model to C:/Users/Shubham/Downloads/NCI/Thesis/saved-models/weights. aug_vgg.from_scratch.hdf5 Epoch 2/5 2966/2964 [====================================
	racy: 0.7272
	Epoch 00002: val_loss improved from 0.02934 to 0.00081, saving model to C:/Users/Shubham/Downloads/NCI/Thesis/saved-models/weig

Figure 41 VGG16 with Augmentation Model Training

The augmented VGG16 model was trained in Figure 41.

Figure 42 Computational Time, and Accuracy and Loss Plots

The computational time required, and accuracy and loss were printed in Figure 42.

Figure 43 VGG16 with Augmentation Accuracy

The training and test accuracy were printed in Figure 43.

Figure 44 VGG16 with Augmentation Prediction on Random 16 Images

To verify the test accuracy the random 16 images were used for predictions and the results were visualized Figure 44.

In []:	<pre>model = load_model(aug_vgg_weight_path)</pre>
	<pre>#Confution Matrix and Classification Report Y_pred = model.predict_generator(test_generator, test_generator.n//test_generator.batch_size) y_pred = np.argmax(Y_pred, axis=1)</pre>
	<pre>target_names = list(class_labels.values())</pre>
	<pre>plt.figure(figsize=(30,30)) cnf_matrix = confusion_matrix(test_generator.classes, y_pred)</pre>
	<pre>plt.imshow(cnf_matrix, interpolation='nearest') plt.colorbar()</pre>
	tick_marks = np.arange(len(classes))
	= plt.xticks(tick marks, classes, rotation=90) = plt.vticks(tick marks, classes)
	<pre>plt.savefig('C:/Users/Shubham/Downloads/NCI/Thesis/Report Pictures/VGG_AUG_CM.jpg')</pre>

Figure 45 VGG16 with Augmentation Confusion Matrix

The correct and incorrect predictions made by the model were visualized using confusion matrix Figure 45 and Figure 46.

Figure 46 VGG16 with Augmentation Confusion Matrix

3.4.5 Base ResNet50

The base ResNet50 model was developed from scratch which had the following configuration (Figure 47).

	Base ResNet50						
In [64]:	# Resnet50						
	<pre>def resnet50(): model_resnet50_conv = R</pre>	esNet50(weights='imagenet	', include_top	=False)			
	<pre>input_model = Input(sha</pre>	<pre>input_model = Input(shape=(img_row,img_height,img_depth))</pre>					
	output_resnet50_conv =	output_resnet50_conv = model_resnet50_conv(input_model)					
	<pre>x = Flatten()(output_re x = Dropout(0.3)(x) x = Dense(131, activati model = Model(input_mod for layer in model_resn layer.trainable = Fal model commite(SCD(1m=10))</pre>	<pre>snet50_conv) on='softmax', name='predi el, x) et50_conv.layers[:]: se el></pre>	ctions')(x)	atoise ['asumo			
	model.compile(SGD(1r=1e model.summary() return model	-3), loss='categorical_cr	ossentropy', m	etrics=['accurac	(y,])		
In [67]:	<pre>model_resnet = resnet50()</pre>						
	Model: "model_2"						
	Layer (type)	Output Shape	Param #				
	input_4 (InputLayer)	(None, 100, 100, 3)	0				
	resnet50 (Model)	multiple	23587712				

In [68]:	<pre>resnet_weight_path = 'C:/Users/Shubham/Downloads/NCI/Thesis/saved-models/weights.resnet_SGD.hdf5'</pre>
In []:	<pre>from keras.callbacks import ModelCheckpoint</pre>
	<pre>start = time.time()</pre>
	<pre>checkpointer = ModelCheckpoint(filepath=resnet_weight_path,</pre>
	<pre>base_resnet = model_resnet.fit(train_tensors, train_targets,</pre>
	<pre>end = time.time()</pre>
	Train on 47384 samples, validate on 20308 samples Epoch 1/5 47384/47384 [====================================
	Epoch 00001: val_loss improved from inf to 0.09103, saving model to C:/Users/Shubham/Downloads/NCI/Thesis/saved-models/weights. resnet_SGD.hdf5 Fooch 2/5
	y: 0.9959
	Epoch 00002: val_loss did not improve from 0.09103 Epoch 3/5 47384/47384 [============================] - 277s 6ms/step - loss: 0.0166 - accuracy: 0.9969 - val_loss: 0.0859 - val_accurac y: 0.9959
	Epoch 00003: val_loss improved from 0.09103 to 0.08587, saving model to C:/Users/Shubham/Downloads/NCI/Thesis/saved-models/weig hts.resnet_SGD.hdf5 Epoch 4/5 47384/47384 [====================================
	y: 0.9959

Figure 48 Base ResNet Model Training

The base ResNet50 model was trained in Figure 48.

Figure 49 Computational Time, and Accuracy and Loss Plots

The computational time required, and accuracy and loss were printed in Figure 49.

Figure 50 Base ResNet50 Accuracy

The training and test accuracy were printed in Figure 50.

Figure 51 Base ResNet50 Prediction on Random 16 Images

To verify the test accuracy the random 16 images were used for predictions and the results were visualized Figure 51.

Figure 52 Base ResNet50 Confusion Matrix

The correct and incorrect predictions made by the model were visualized using confusion matrix Figure 52 and Figure 53.

Figure 53 Base ResNet50 Confusion Matrix

3.4.6 **ResNet50** with Augmentation

The augmented ResNet50 model was trained in Figure 54.

]: def aug_resnet50(): model_resnet50_0	conv = ResNet50(weights='imag	<pre>genet', include_top=Fals</pre>	e)		
input_model = Ir	nput(shape=(img_row,img_heig	ht,img_depth))			
output_resnet50	_conv = model_resnet50_conv(input_model)			
<pre>x = Flatten()(ou x = Dropout(0.3) x = Dense(131, a)</pre>	utput_resnet50_conv))(x) activation='softmax', name='	predictions')(x)			
model = Model(in	nput_model, x)				
for layer in moo layer.trainab	<pre>for layer in model_resnet50_conv.layers[:]: layer.trainable = False</pre>				
model.compile(op model.summary() return model	otimizer= SGD(lr=1e-3), loss	='categorical_crossentro	py', metrics=['accuracy'])		
]: model_aug_resnet = a aug_resnet_weight_pa	aug_resnet50() ath = 'C:/Users/Shubham/Down	loads/NCI/Thesis/saved-m	odels/weights.aug_resnet_SD	.hdf5'	
C:\Users\Shubham\ana lude_top=False)` ha: warnings.warn('The	aconda3\lib\site-packages\ke s been changed since Keras 2 e output shape of `ResNet50(:	ras_applications\resnet5 .2.0. include_top=False)` '	0.py:265: UserWarning: The o	output shape of `ResNet50(ind	
Model: "model_7"					

Figure 54 ResNet50 with Augmentation Configuration

:[]:	from keras.callbacks import ModelCheckpoint
	<pre>start = time.time()</pre>
	<pre>checkpoint = ModelCheckpoint(aug_resnet_weight_path,</pre>
	callbacks = [checkpoint]
	<pre>resnet_aug = model_aug_resnet.fit(train_generator, steps_per_epoch =train_step, epochs = epochs, callbacks = callbacks, validation_data = validation_generator, validation_steps = val_step) end = time_time()</pre>
	Epoch 1/5 2964/2964 [====================================
	Epoch 00001: val_loss improved from inf to 0.02706, saving model to C:/Users/Shubham/Downloads/NCI/Thesis/saved-models/weights. aug_resnet_SDG.hdf5 Epoch 2/5
	2964/2964 [====================================
	Epoch 00002: val_loss improved from 0.02706 to 0.00144, saving model to C:/Users/Shubham/Downloads/NCI/Thesis/saved-models/weig hts.aug_resnet_SDG.hdf5
	2964/2964 [========] - 300s 101ms/step - loss: 0.2457 - accuracy: 0.9248 - val_loss: 3.4270e-05 - val_acc uracy: 0.9069
	Epoch 00003: val_loss improved from 0.00144 to 0.00003, saving model to C:/Users/Shubham/Downloads/NCI/Thesis/saved-models/weig

Figure 55 ResNet50 with Augmentation Model Training

The augmented ResNet50 model was trained in Figure 55.

Figure 56 Computational Time, and Accuracy and Loss Plots

The computational time required, and accuracy and loss were printed in Figure 56.

Figure 57 ResNet50 with Augmentation Accuracy

The training and test accuracy were printed in Figure 57.

Figure 58 ResNet50 with Augmentation Prediction on Random 16 Images

To verify the test accuracy the random 16 images were used for predictions and the results were visualized Figure 58.

Figure 59 ResNet50 with Augmentation Confusion Matrix

The correct and incorrect predictions made by the model were visualized using confusion matrix Figure 59 and Figure 60.

Figure 60 ResNet50 with Augmentation Confusion Matrix

	А	В	С	D	E
1		Computational Time			
2	Models	Base	Augmente	d	
3	CNN	11.8	20.05		
4	VGG16	26.28	21.83		
5	ResNet50	29	24.87		
6					
7					
8					

Figure 61 Visualising Computation Time

Microsoft Excel was used to visualize and compare the computation time taken by each model Figure 61.

References

Kang, H. and Chen, C. (2020) 'Fast implementation of real-time fruit detection in apple orchards using deep learning', Computers and Electronics in Agriculture, 168, p.105108, ScienceDirect. doi: 10.1016/j.compag.2019.105108

Rojas-Aranda J.L., Nunez-Varela J.I., Cuevas-Tello J.C., Rangel-Ramirez G. (2020) 'Fruit Classification for Retail Stores Using Deep Learning', in *2020 Pattern Recognition*, MCPR 2020. Lecture Notes in Computer Science, vol 12088. Springer, Cham. https://doi.org/10.1007/978-3-030-49076-8_1.