ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc Data Analytics

Pushkar Dashpute
x18180124

School of Computing
National College of Ireland

Supervisor: Dr. Manaz Kaleel

Student
Name:

Student ID:
Programme:
Module:
Lecturer:
Submission
Due Date:
Project Title:
Word Count:
I hereby certify

pertaining to res
contribution will

‘-—
National College of Ireland \ National

Collegeof
Ireland

MSc Project Submission Sheet
School of Computing

Pushkar Anil Dashpute

x18180124

MSc Data Analytics Year: 2019-2020

MSc Research Project

Dr. Manaz Kaleel

28t September, 2020

Identifying Driver Distraction Using Deep Neural Networks

919 Page Count: 13
that the information contained in this (my submission) is information

earch I conducted for this project. All information other than my own
be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet ma
required to use t
author's written
action.

Signature:

Date:

terial must be referenced in the bibliography section. Students are
he Referencing Standard specified in the report template. To use other
or electronic work is illegal (plagiarism) and may result in disciplinary

Pushkar Anil Dashpute

27™ September, 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Pushkar Dashpute
x18180124

1 Introduction
The following configuration manual illustrates the requirements for implementing the system
which was designed for detecting the distraction of drivers by using the Deep Learning

models. Further, the manual will thoroughly explain the software and hardware requirements
that were used for the successful implementation of the project.

2 System Configuration

Following are the hardware and software configuration which were used for the
implementation of this Project.

The hardware configurations used for implementation are as follows:

2.1 Hardware Requirements:

Table 1 Hardware Requirements

Hardware Configurations

System Lenovo Legion Y740
Operating System Windows 10 (64bit)
RAM 16 GB

Hard Disk 1 TB (Solid State Drive)
Graphics Card NVIDIA RTX 2060 (6 GB)
Processor Intel Core 17-9750

View basic information about your computer

SSEQ

a8 Windows10

Figure 1 Operating System Configurations

The operating system used for this project was Windows 10 which was 64bit based.

:\Users\Pushkar>nvidi

|

|

N/A |
Default |

Figure 2 CUDA Version

The CUDA version used was 10.1.

NVIDIA

Figure 3 NVIDIA Driver Information

The GPU used for implementing the high-end deep learning models was Nvidia RTX 2060
with a size of 6GB.

2.2 Software Requirements
The software’s used were as follows:

Table 2 Software Requirements

Python 3.7 (64 bit)
PyCharm Community 2020.2 (64 bit)
Microsoft Excel 2020 Edition

PyCharm What's New Features

Download PyCharm

F C Windows Mac Linux

—
Professional Community
For both Scientific and Web Python For pure Python development
Version: 2020.2 development. With HTML, JS, and SQL
Build: 202.6397.98 support.

29 July 2020

System req uirements

) . Free trial Free, open-source
Installation Instructions

Figure 4 Downloading PyCharm

PyCharm can be downloaded from https://www.jetbrains.com/. There are two versions
available namely Professional and Community. We will be using the Community. The IDE
used for implementing the whole project was PyCharm. The Community version was used
which is pure python-based development. The latest version 2020.2 was used. The steps
involved in installing the software will be discussed further.

WY PyCharm Setup — X

Choose Install Location
E' Choose the folder in which to install PyCharm.

Setup will install PyCharm in the following folder. To install in a different folder, click
Browse and select another folder. Click Mext to continue.

Destination Folder

| C:\Program Files\JetBrains\PyCharm 2020. Browise...

Space required: 1.0 GB
Space available: 129.8 GB

< Back Cancel

Figure 5 Installation folder for PyCharm

Choose the destination folder where you want to install the software and make sure you have
enough space i.e. 1.0 GB required by the software.

B, PyCharm Setup — >

Installation Options
E' Configure your PyCharm installation
Create Desktop Shortcut Update PATH variable (restart needed)
&4-bit launcher [] Add launchers dir to the PATH

Update context menu

[]Add "Open Folder as Project”

Create Associations

[.py

< Back Cancel

Figure 6 Installing Options

Choose the 64-bit launcher and also create associations with .py files. In addition to this, tick
the Update PATH variable which will further add the launcher directory to the PATH.

B PyCharm Setup — X

Choose Start Menu Folder
E' Choose a Start Menu folder for the PyCharm shortcuts.

Select the Start Menu folder in which you would like to create the program's shortcuts. You
can also enter a name to create a new folder.

[peterand

Accessibility s
Accessories

Administrative Tools

Anaconda3 (64-bit)

AnyDesk

JetBrains

Lumion 9.5

Maintenance

McAfee

Microsoft Office Tools

NVIDIA Corporation

StartUp W

< Back Install Cancel

Figure 7 Choosing Start Menu Folder

Choose the folder for Start Menu

B Create Project X

Location: ‘C:\Users\Pushkar\Py(harmProjetts\thesisi

¥ Python Interpreter: New Virtualenv environment
o New environment using = %, Virtualenv A

Location: C:\Users\Pushkar\PycharmProjects\thesis\venv

Base interpreter: C\Users\Pushkar\AppData\Local\Microsoft\WindowsApps\python.exe hd

Inherit global site-packages

Make available to all projects
Existing interpreter
Interpreter: |) Python 3.7 C:\Users\Pushkar\anaconda3\python.exe v

Create a main.py welcome script

Creste 3 Python script that provides an entry point to coding in PyCharm.

Figure 8 Project creation

The project will be created in this step where the environment will be created for the further
implementation of the project. All the required libraries by the project will be stored in this
environment.

CUDA Toolkit 10.1 original Archive

3

D Bave inatatia:

I=

Figure 9 CUDA 10.1

The GPU needs to have a CUDA installed on the system, thus the CUDA with version 10.1
was installed from the official website of NVIDIA developers®. Further, the cuDNN version
7.6.5 was all installed which is compatible with the CUDA 10.12. Later the CUDA, cuDNN
was configured with the windows along with TensorFlow?.

L https://developer.nvidia.com/cuda-downloads
2 https://developer.nvidia.com/rdp/cudnn-archive#a-collapse765-101

3 https://towardsdatascience.com/installing-tensorflow-with-cuda-cudnn-and-gpu-support-on-windows-10-
60693e46e78

3 Project Implementation

3.1 Data Collection

= Q 3
. —— -‘w, =1
P Compete \
fm
<>
=
kaggle competitions download -c state-farm-distracted-driver-detection ¥
=&
@ Data Explorer
402068 < driver_imgs_list.csv (479.84 KB) & 2
v
» Oim
m 4 Compact Column 3 of 3 columns v
Recent d
M sample_su ' — — —
B o = A classnam = A img =
N p021
P02

Figure 10 Website for data collection

The data which was used for the implementation was picked from Kaggle. The dataset was
named as State Farm Distracted Driver Detection which was available under Kaggle
competition.

3.2 Data Preparation

= dataset.py
from keras.applications.resnet5@0 import preprocess_input
from keras.preprocessing.image import ImageDataGenerator

data_generator ImageDataGenerator(preprocessing_function=preprocess_input)

flow_From_directory generates batches of augmented data (where augmentation can be color conversion, etc)

ining fui

ng ction for data gene train folder
def train_generator(train_dir, image_size, batch_size_training):
train_generator = data_generator.flow_from_directory(train_dir, target_size=(image_size, image_size),
batch_size=batch_size_training, class_mode='categorical')
return train_generator

ing funct ion folder

g or data

def validation_generator(val_dir, image_size, batch_size_validation):
validation_generator = data_generator.flow_from_directory(val_dir, target_size=(image_size, image_size),
batch_size=batch_size_validation, class_mode='categorical')
return validation_generator

or data genera €
def test_generator(test_dir, image_size, batch_size_test):
test_generator = data_generator.flow_from_directory(test_dir, target_size=(image_size, image_size),

batch_size=batch_size_test, class_mode='categorical')
return test_generator

Figure 11 Data Preparation

The data preparation process where the data generators were created in the dataset.py file.
The train, test, and validation generators for respective folders were called.

3.3 Data Pre-Processing

= folder_automation.py
1 import os
2 import glob, shutil

#creating directories for binary classification
4 safe_path = "C:/Users/Pushkar/Desktop/imgs/train/safe-driving”
5 distracted_path = "C:/Users/Pushkar/Desktop/imgs/train/distracted-driving"”
os.mkdir(safe_path)
print("safe Driving Directory Created Successfully")
os.mkdir(distracted_path)
print("Distracted Driving Directory Created Successfully")
10 preprocessing_path = "C:/Users/Pushkar/Desktop/imgs/after-preprocessing”
11 os.mkdir(preprocessing_path)
12 logfile_path = "C:/Users/Pushkar/Desktop/imgs/logs"
13 os.mkdir(logfile_path)
14 aug_path = "C:/Users/Pushkar/Desktop/imgs/aug_safe_driving"
15 os.mkdir(aug_path)
16 print("aug_safe_driving Folder Created Successfully")
1 aug_path = "C:/Users/Pushkar/Desktop/imgs/saved_weights"
18 os.mkdir(aug_path)
19 print("saved_weights Folder Created Successfully")
20 print(" ")
21 #moving the images from the different class folder c@-c9 to safe-driving and distracted-driving folder.
22 for file in glob.glob('cC:/Users/Pushkar/Desktop/imgs/train/co/img*'):
23 shutil.move(file, safe_path)
24 print("c@ Files moved successfully")
25 for file in glob.glob('c:/users/Pushkar/Desktop/imgs/train/c1/img*'):
26 shutil.move(file, distracted path)
27 print("c1 Files moved successfully")
28 for file in glob.glob('cC:/Users/Pushkar/Desktop/imgs/train/c2/img*'):
29 shutil.move(file, distracted path)

print(“"c2 Files moved successfully")

Figure 12 Folder Structuring

The folders structuring was done in this file named folder_automation.py where the 10 data
folders ranging from c0 to c9 were transformed into two folders namely safe-driving and
distracted-driving.

= folder_automation.py = img_aug.py

1 import cv2 as cv

2 import glob

3 import imageio

4 import os

5 from imgaug import augmenters as iaa

get images

images = []

files = glob.glob("C:/Users/Pushkar/Desktop/imgs/train/safe-driving/*.jpg")

10 # stacking images

11 for myFile in files:

12 image = cv.imread(myFile)

13 image_rgb = cv.cvtColor(image, cv.COLOR_BGR2RGB) # change from BRG to RGB
14 images.append(image_rgb)

16 sometimes = lambda aug: iaa.Sometimes(0.5, aug)

18 # defining sequence of augmentation steps that will be applied to every image.
19 seq = iaa.Sequential(
20 [

22 # Apply the following augm

H

enters to images.

23 iaa.Fliplr(@.4), # horizontally flip 40% of all images
24 iaa.Flipud(@.1), # vertically flip 10% of all images
25 # Apply affine transform
26 sometimes(iaa.Affine(

27 rotate=(-10, 10),

28 1),

ions to some of the images

Figure 13 Image Augmentation (a)

In this step, the img_aug.py file was created where the image augmentation was done
particularly on a safe driving folder in order to balance the data.

? and 7x7)

median

iaa.0ne0f ([
iaa.GaussianBlur((0, 3.0)),
iaa.AverageBlur(k=(2, 7)),
iaa.MedianBlur(k=(3, 11)),

between 3x3 and 1

ni,
random_order=True
specify directory to save your images

write_to_dir = "C:/Users/Pushkar/Desktop/imgs/aug_safe_driving"

er of augmented images per

numb mage
numeb age

n_augs_per_image = 10
for i, image in enumerate(images)
image_augs = seq.augment_images([image] * n_augs_per_image)
for j, image_aug in enumerate(image_augs)
imageio.imwrite(os.path.join(write_to_dir, "%@e3d_%e2d.jpg" % (i, j)), image_aug)

Figure 14 Image Augmentation (b)

The various techniques are used in the code above namely horizontal flip, vertical flip, colour
augmentation, and affine transformation.

.l pre_processing.py

1 import glob

2 import os
from random import choice
import shutil

5 #Moving images from aug _safe_driving to safe-dri

safe_path = "C:/Users/Pushkar/Desktop/imgs/train/safe-driving"
for file in glob.glob('cC:/Users/Pushkar/Desktop/imgs/aug_safe_driving/+'):
shutil.move(file, safe_path)

setting up directory names
11 trainPath = 'C:/Users/Pushkar/Desktop/imgs/after-preprocessing/train’
12 valPath = 'C:/Users/Pushkar/Desktop/imgs/after-preprocessing/val’

1 testPath = 'C:/Users/Pushkar/Desktop/imgs/after-preprocessing/test’

rere the images are stored

1 crsPath = 'C:/Users/Pushkar/Desktop/imgs/train’

- 4 enl 0 ratio
splitup ratl

1 train_ratio = 0.7
1 val_ratio = 0.15
2 test_ratio = 0.15

get
2 num_classes = len(list(os.walk(crsPath))[0][1])

To t number of classes

2 files_count = {}

2 # To keep track of classes, count and dir

2 for i in range(num_classes)

2 fc =10

2 files = list(os.walk(crsPath))[0@][@] + "/" + list(os.walk(crsPath))[@1[1][i]
dataset_name = os.path.split(files)[-1]

Figure 15 Pre-processing (a)

cycle for Test directory
for k, v in files_count.items()
imgs = []
for img in glob.glob(v[1] + "/" + "x.jpg"):
img = os.path.split(img)[-1]
imgs.append(img)

for x in range(countForTest):
filelpg = choice(imgs) # get name of random image from origin directory
z = os.path.join(crsPath, k, filelpg)
if not os.path.exists(os.path.join(testPath, k)):
os.makedirs(os.path.join(testPath, k))
try:

les into test directory

move both fi

shutil.move(os.path.join(crsPath, k, fileldpg), os.path.join(testPath, k, filelpg))

except Exception as e:
print(e)

remove files from arrays

imgs.remove(filelpg)

for dir in glob.glob("cC:/Users/Pushkar/Desktop/imgs/aug_safe_driving"):
os.rmdir(dir)

for dir in glob.glob("C:/uUsers/Pushkar/Desktop/imgs/train"):
shutil.rmtree(dir)

Figure 16 Pre-processing (b)

The data was split into the ratio of 70:15:15 for the created for the train, validation, and test

folder. The data balancing was done in this file named pre_processing.py.

3.4 Model Building

The snippets in this section will be all about the different models that were used for

implementing the driver distraction detection system

import argparse

def parse_arguments(*args):
parser = argparse.ArgumentParser()

help="vgg19|mycnn|thinmobilenet|xception')

parser.add_argument('-tr_dir', '--train_dir', default='C:/Users/Pushkar/Desktop/imgs/after-preprocessing/train’', type=str,
help='Path to the train directory')

parser.add_argument('-vl_dir', '--val_dir', default='C:/Users/Pushkar/Desktop/imgs/after-preprocessing/val', type=str,
help='Path to the val directory')

parser.add_argument('-tst_dir', '--test_dir', default='c:/users/Pushkar/pDesktop/imgs/after-preprocessing/test', type=str,
help='Path to the test directory')

parser.add_argument('-cls', '--num_classes', default=2, type=int,
help="'Number of dataset classes')

parser.add_argument('-res', '--image_resize', default=224, type=int,
help="'Image Resize value')

pupapppparanant Model options HHHGBEaHHTHTRRBUBHTHIHRBRBRAHTERBR ORI

parser.add_argument('-lr', '--learning_rate', default=le-5, type=float,
help='Learning rate for the generator')

parser.add_argument('-of', '--objective_function', default='binary_crossentropy', type=str,

parser.add_argument('-model_type','--model_type', default="mycnn', type=str, choices=['vgg19', 'mycnn', 'thinmobilenet', 'xception']

Figure 17 Calling Hyperparameters

The options.py file obtains the values for different hyper-parameters which are essential for
the model building phase.

= model.py

from keras.models import Sequential

from keras.layers.convolutional import Convolution2D, W
import warnings

warnings.filterwarnings("ignore™)

from keras.layers.core import Dense, Dropout, Flatten, Activation
from keras.layers.normalization import BatchNormalization

from keras.layers import Cc)

MaxPooling2D

r.all the pretra

class MyModel():
def __init__(self, baseModel, classes, D):
self.baseModel = baseModel
self.classes = classes
self.D = D

def build(self)

units as a 1nput.

headModel = self.baseModel.output

headModel = Flatten(name="Flatten")(headModel)

headModel = Dense(self.D, activation='relu')(headModel)
headModel = Dropout(®.5)(headModel)

headModel = Dense(self.classes, activation='softmax')(headModel)
return headModel

Figure 18 Model Building MyModel

#de g MyCNN

class MyCNN():

def init (self, classes):
self.classes = classes

g

def build(self):
model = Sequential()
model.add(Convolution2D(32, (3, 3), input_shape=(224, 224, 3)))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(Convolution2D(64, (3, 3)))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(Convolution2D(128, (3, 3)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(2))
model.add(Activation('softmax'))
return model

Figure 19 Model Building MyCNN

The model.py file consists of the MyModel and the CNN model. Both of these models were
defined in this file.

10

def main(args):

NUM_CLASSES = args.num_classes
IMAGE_RESIZE = args.image_resize
OBJECTIVE_FUNCTION = args.objective_function

train_dir = args.train_dir
val_dir = args.val_dir
test_dir = args.test_dir

mmon accuracy metric for all outputs, but can use different metrics for different output
LOSS_METRICS = ['accuracy']
NUM_EPOCHS = args.num_epochs

These steps value should be proper FACTOR of no.-of-images in train & valid folders respectively
Training images processed in each step would be no.-of-train-images / STEPS_PER_EPOCH_TRAINING
STEPS_PER_EPOCH_TRAINING = args.steps_per_epoch_train

STEPS_PER_EPOCH_VALIDATION = args.steps_per_epoch_val

These steps value should be proper FACTOR of no.-of-images in train & valid folders respectively
NOTE that these BATCH* are for Keras ImageDataGenerator batching to fill epoch step input
BATCH_SIZE_TRAINING = args.train_batch

BATCH_SIZE_VALIDATION = args.val_batch

BATCH_SIZE_TESTING = args.test_batch

Figure 20 Main function ()

The first part of train.py file includes the configuration of the model for the training phase.

#VG6G19 Model
if args.model_type == 'vggl9'
load pretrained model:
baseModel = VGG19(weights='imagenet', include_top=False, input_tensor=Input(shape=(224, 224, 3)))
initialize head of network
my_model = MyModel(baseModel, classes=NUM_CLASSES, D=256)
headModel = my_model.build()

with headModel :

replace the
my_model = Model(inputs=baseModel.input, outputs=headModel)
unfreezing some of conv layers:
for layer in baseModel.layers[15:]:

layer.trainable = True

Xception Model
elif args.model_type == 'xception':
load pretrained model:
baseModel = Xception(weights='imagenet', include_top=False, input_tensor=Input(shape=(224, 224, 3)))
initialize head of network
my_model = MyModel(baseModel, classes=NUM_CLASSES, D=256)
headModel = my_model.build()

with headModel:

replace the
my_model = Model(inputs=baseModel.input, outputs=headModel)
unfreezing some of conv layers:
for layer in baseModel.layers[15:]:

layer.trainable = True

Figure 21 VGG19 and Xception

11

elif args.model_type

'thinmobilenet':
load pretrained model:
baseModel = MobileNetV2(weights='imagenet', include_top=False, input_tensor=Input(shape=(224, 224, 3)))
initi ze head of network
my_model = MyModel(baseModel, classes=NUM_CLASSES, D=256)
headModel = my_model.build()
replace the FC with he l:
my_model = Model(inputs=baseModel.input, outputs=headModel)
unfreezing some of conv layers:
for layer in baseModel.layers[15:]:
layer.trainable = True
#CNN Model
elif args.model_type == 'mycnn':

1 ze _head of network

my_model = MyCNN(classes=NUM_CLASSES)
my_model = my_model.build()

print(my_model.summary())

#S6D Optimizer used for all the models

sgd = optimizers.SGD(lr=args.learning_rate)

my_model.compile(optimizer = sgd, loss=0BJECTIVE_FUNCTION, metrics=L0SS_METRICS)
image_size = IMAGE_RESIZE

Figure 22 Thin MobileNet and CNN

Figure 20 and 21 show the code for different models used in the implementation namely,
VGG19, Xception, Thin MobileNet, and CNN.

@ train.py = plotpy
import matplotlib.pyplot as plt

def accuracy_plot(fit_history):
plt.figure(1l, figsize=(15, 8))
plt.subplot(221)
plt.plot(fit_history.history['acc'])
plt.plot(fit_history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel(epoch')
plt.legend(['train', ‘'valid'])

def loss_plot(fit_history):
plt.figure(1, figsize=(15, 8))
plt.subplot(222)
plt.plot(fit history.history['loss'])
plt.plot(fit history.history['val_less'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', ‘valid'])

Figure 23 Plotting the graphs

The plot.py file plots the graphs to showcase the different model’s performance in terms of
accuracy and loss against the training done with the total number of epochs.

12

train.py testpy
import cv2
import numpy as np
import glob
from keras.preprocessing import image
from tensorflow.keras.models import load_model
import os
import matplotlib.pyplot as plt
import time
import logging
import os
import warnings
logging.disable(logging.WARNING)
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
warnings.filterwarnings("ignore™, category=FutureWarning)

model = load_model("cC:/Users/Pushkar/Desktop/imgs/saved_weights/thinmobilenet_best_weights.h5")

f, ax = plt.subplo 3 3 igsize

TEST_DIR = 'C:/Users/Pushkar/Desktop/imgs/test/’
images = []

titles = []

count = 1

for img in glob.glob(TEST_DIR + "*.jpg"):

Figure 24 Testing

The test.py file performs the predictions for each of the model whether a driver is driving the
car safe or if he is getting distracted while driving.

References

A. K. Vani, R. N. Raajan, D. Haretha Winmalar. and R. Sudharsan. (2020) ‘Using the Keras
Model for Accurate and Rapid Gender Identification through Detection of Facial Features’ in
2020 Fourth International Conference on Computing Methodologies and Communication
(ICCMC), Erode, India, 2020, pp. 572-574, doi: 10.1109/ICCMC
48092.2020.1CCMC000106.

H. Shin, K. Lee, and C. Lee. (2020) ‘Data Augmentation Method of Object Detection for
Deep Learning in Maritime Image’ in 2020 IEEE International Conference on Big Data and
Smart Computing (BigComp), Busan, Korea (South), 2020, pp. 463-466, doi:
10.1109/BigComp48618.2020.00-25.

13

