
Configuration Manual

MSc Research Project

Data Analytics

Diksha Arvind Chaudhary
Student ID: X18184898

School of Computing

National College of Ireland

Supervisor: Dr. Rashmi Gupta

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Diksha Arvind Chaudhary

Student ID: X18184898

Programme: Data Analytics

Year: 2020

Module: MSc Research Project

Supervisor: Dr. Rashmi Gupta

Submission Due Date: 28/09/2020

Project Title: Configuration Manual

Word Count: 2747

Page Count: 14

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Diksha Arvind Chaudhary

Date: 27th September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Diksha Arvind Chaudhary
X18184898

1 Introduction

The purpose of this document is to provide details of the process followed during the
project coding phase. Hardware and software configurations are specified to reproduce
the research in the future. This contains the programming and deployment phases for
smooth code execution and the steps to be taken to execute the code.

2 System Configuration

2.1 Hardware Configuration

The hardware specification details are given below in the Figure 1 on which the code is
executed:

Figure 1: Hardware configuration of the system

2.2 Software Configuration

This section provides the details of the software and its specifications.

2.2.1 Google Colab:

The research is carried out using Google’s cloud infrastructure, also known as Google
Colab. All the libraries are imported and coding of the model is done in google colab.
The dataset is stored on google drive and in google colab using below code the drive is
mounted. The link to authorization is provided after execution of following command, if

1

we click on the link the authorization code is generated. The drive is mounted successfully
after entering the authorisation code as shown in Figure 2.

from google.colab import drive
drive.mount(’/content/drive’)

Figure 2: Mount drive on google colab

Colab notebook runtime is set to GPU for faster code execution in cloud environment.
It’s a setting given by Google Colab to allow us to run the machine learning code close
to the Jupyter environment. There is another TPU option that can also be used but we
use GPU setting for this project which is shown in Figure 3.

Figure 3: Colab Notebook setting

2.2.2 Anaconda - Jupyter Notebook:

Anaconda is an open source, easy to use platform for coding Python and R 1. Jupyter
is a user-friendly Integrated Development Environment (IDE) that Anaconda provides
for code development and results assessment. Anaconda can be downloaded from official
website of anaconda 2. The download options for different Operating systems is provided
in Figure 4.

1https://www.anaconda.com/
2https://www.anaconda.com/products/individual

2

Figure 4: Anaconda Installer Download Page

Once the Anaconda is install, the prompt will be shown displaying different IDE
Figure 5. Jupyter IDE is launched for code development of different models using Python
version 3.

Figure 5: Anaconda Prompt Page

2.2.3 Other Softwares:

Google chrome is a good web browser that supports Jupyter and helps in code execution.
Overleaf is used for research project documentation, Figure 6 shows the use of overleaf
for the research project documentation.

3

Figure 6: Overleaf Project

The data visualization is done using Tableau Desktop software as shown in Figure 7.
The bar chart displaying sensitivity and specificity comparison created in tableau is shown
in Figure 8

Figure 7: Tableau Desktop for visualization

4

Figure 8: Data Visualization for Sensitivity and Specificity in Tableau

3 Data Preparation

The research dataset is taken from the challenge of Brain Tumor segmentation 3 shown in
Figure 9. The .nii.gz files from BRATS are converted into jpg format using mathematical
operation and provided on Kaggle which are further used in the project 4.

Figure 9: BRATS Dataset for research Project

The dataset contained one folder, Brain tumor and a csv file is provided containing
image name and category (0-healthy and 1-tumor). The code for loading data into data-
frame and checking the imbalance and code for separating the brain images to different
category folder is shown below.

Loading Csv data into Pandas DataFrame
data df = pd.read csv(’D:/Brain New/Brain Tumor.csv’)
Bias Check in Data
data df grp.plot(x = ’Class’, y= ’Image’, kind = ’bar’, legend=True)

3http://braintumorsegmentation.org/
4https://www.kaggle.com/jakeshbohaju/brain-tumor

5

Code for Comparing the Class Category and Copying to Relevant Folder
src = ’D:/Brain New/Brain Tumor/Brain Tumor/’
dest = ’D:/Brain New/Brain tumor class/’

img list = data df[”Class”]
for names in os.listdir(src):

i = 0
for i in range(len(img list)):

if names[:-4] == data df.at[i,”Image”]:
cat = data df.at[i,”Class”]
cate = str(cat)
shutil.copy2(src + names, dest + cate)

4 Data Transformation

After the data is pre-processed and folders are created, the folders are split into train,
test and validation sets. The code for data transformation is shown below.

for cls in classes dir:
os.makedirs(root dir +’train’ + cls)
os.makedirs(root dir +’val’ + cls)
os.makedirs(root dir +’test’ + cls)

src = root dir + cls

allFileNames = os.listdir(src)
np.random.shuffle(allFileNames)
train FileNames,val FileNames,test FileNames= np.split(np.array(allFileNames),

[int(len(allFileNames)* (1 - val ratio + test ratio)),
int(len(allFileNames)* (1 - test ratio))])

train FileNames = [src+’\\’+ name for name in train FileNames.tolist()]
val FileNames = [src+’\\’ + name for name in val FileNames.tolist()]
test FileNames = [src+’\\’ + name for name in test FileNames.tolist()]

for name in train FileNames:
shutil.copy(name, root dir +’\\train’ + cls)

for name in val FileNames:
shutil.copy(name, root dir +’\\val’ + cls)

for name in test FileNames:
shutil.copy(name, root dir +’\\test’ + cls)

The dataset was then uploaded to Google Drive by using the upload folder option as
shown in Figure 10.

Figure 10: BRATS Dataset upload on Google Drive

5 Implementation of Baseline Models

The data can be used for model implementation after data preparation, using Transfer
Learning based on pre-trained models. These datasets are used to implement DenseNet121

6

and InceptionV3.

5.1 DenseNet121

5.1.1 Model Building

The data is fed to ImageDataGenerator class of Keras, which consists of several functions
for loading and performing real time augmentation 5. The code in below shows the real
time data augmentation performed during the model building phase of DenseNet121.

Model Building
#image size reduced to 64*64 and upsampled train data
train gen=ImageDataGenerator(rotation range=90,

width shift range=0.1,
height shift range=0.1,
rescale = 1./255,
shear range = 0.2,
zoom range = 0.5,
horizontal flip = True,
fill mode=”nearest”)

train = train gen.flow from directory(”D:\\Brain New\\Brain Tumor\\Brain Tumor Class\\train\\”,
class mode=”categorical”,
target size=(64, 64),
color mode=”rgb”,
shuffle=True,
batch size=32)

valid gen=ImageDataGenerator(rotation range=90,
width shift range=0.1,
height shift range=0.1,
rescale = 1./255,
shear range = 0.2,
zoom range = 0.5,
horizontal flip = True,
fill mode=”nearest”)

valid = valid gen.flow from directory(”D:\\Brain New\\Brain Tumor\\Brain Tumor Class\\val\\”,
class mode=”categorical”,
target size=(64, 64),
color mode=”rgb”,
shuffle=True,
batch size=32)

The model is trained using pretrained DenseNet121 model6. The weights are trained
on ImageNet, the code is shown in below.

base model = densenet.DenseNet121(input shape=(64, 64, 3),
weights=’imagenet’,
include top=False,
pooling=’avg’)

for layer in base model.layers:
layer.trainable = True

x = base model.output

predictions = Dense(2, activation=’softmax’)(x)

The hyper parameters used for the model are given here.

optimizer = Adam(lr=0.0001,beta 1=0.9,beta 2=0.999, epsilon=1e-08)
model.compile(loss=’binary crossentropy’,optimizer=’adam’, metrics=[’acc’,’mae’])

The model is executed using model.fit generator for 100 epochs and the accuracy and
mean absolute error can be seen for every epoch as shown in Figure 11.

5https://keras.io/api/preprocessing/image/
6https://keras.io/api/applications/densenet/

7

model history = model.fit generator(
train,
epochs=100,
steps per epoch=95,
validation data=valid,
validation steps=18)

Figure 11: Code Execution

5.1.2 Model Evaluation

Similar to train and valid, ImageDataGenerator is used for loading the test data and
perform the same real time augmentation on the test data. The code is show in below.
Further model.evaluate generator is used for evaluation of test data and accuracy and
loss is obtained and code can be seen below.

test gen=ImageDataGenerator(rotation range=90,
width shift range=0.1,
height shift range=0.1,
rescale = 1./255,
shear range = 0.2,
zoom range = 0.5,
horizontal flip = True,
fill mode="nearest")

test = test gen.flow from directory("D:\Brain New\Brain Tumor\Brain Tumor Class\Test\",
class mode="categorical",
target size=(64, 64),
color mode="rgb",
shuffle=True,
batch size=32)

test acc = model.evaluate generator(
test,
steps=len(test),
verbose=1

)

The confusion matrix is generated for the model and further the most important
metrics for medical imaging i.e., Sensitivity and Specificity is calculated. The calculation
for these metrics is shown in the code in Figure 12

print(’sensitivity’, cm[0, 0] \(cm[0, 1] + cm[0, 0])) print(’specificity’, cm[1, 1] \(cm[1, 1] + cm[1, 0]))

Figure 12: Evaluation Metrics - Sensitivity and Specificity

Further, confusion matrix and classification report is generated using sklearn.metrics
7. The classification report shows the evaluation metrics like Precision, Recall and F1-
score. The code is given below and Figure 12 shows the output of classification model.

7https://scikit-learn.org/stable/modules/model evaluation.html

8

Y pred = model.predict generator(test, steps = 6)
y pred = np.argmax(Y pred, axis=1)
print(’Confusion Matrix’)
print(confusion matrix(test.classes, y pred))
print(’Classification Report’)
target names = [’0’, ’1’]
print(classification report(test.classes, y pred, target names=target names))

Figure 13: Classification Report - Precision, Recall and F1-score

5.2 InceptionV3

5.2.1 Model Building

InceptionV3 follows the same steps that are provided for DenseNet121 of loading the
data using ImageDataGenerator with real time augmentation. The model is pre-trained
on InceptionV3 8 and the code is shown below.

pre trained model = InceptionV3(input shape=(200, 200, 3),
include top=False,
weights=’imagenet’)

The code for compiling the model is provided in here. The model uses learning rate
0.0001 and adam optimizer. The loss function used is binary crossentropy and the metrics
for evaluation are provided in model.compile.

adam = Adam(lr=0.0001)
model.compile(loss=’binary crossentropy’,optimizer=adam, metrics=[’accuracy’,’mae’])

The model is execute using model.fit generator class of Keras function and the code
is provided below. Every epoch runs for 94 steps and accuracy, loss and mean average
error can be seen for every epoch in Figure 14.

train step = trainGenerator.n\\trainGenerator.batch size
val step = validGenerator.n\\validGenerator.batch size

history = model.fit generator(trainGenerator,
steps per epoch=train step,
validation data=validGenerator,
validation steps=val step,
epochs=100,callbacks=[log, mc])

8https://keras.io/api/applications/inceptionv3/

9

Figure 14: Model Execution

5.2.2 Model Evaluation

Once the model is executed successfully for 100 epochs then test accuracy for InceptionV3
is evaluated using model.evaluate generator function. The code for evaluation of test
accuracy is shown below and the output can be seen in Figure 15.

test pred = model.evaluate generator(test gen,verbose=1)
print("Testing Categorical Accuracy :"+str(test pred[1])+ "Testing loss : "+str(test pred[0]))

Figure 15: Evaluating the Test Accuracy

The classification report is generated in the similar way as explained for DenseNet121.
The code for classification report is provided and output can be seen in Figure 16

from sklearn.metrics import classification report

target names = [’0’, ’1’]
print(classification report(test gen.classes, pred, target names=target names))

Figure 16: Classification Report - Precision, Recall and F1-score

The two main metrics Sensitivity and Specificity are calculated in following manner
and result is shown in Figure 17.

print(’sensitivity’, cm[0, 0] \(cm[0, 1] + cm[0, 0])) print(’specificity’, cm[1, 1] \(cm[1, 1] + cm[1, 0]))

Figure 17: Evaluation Metrics - Sensitivity and Specificity

10

6 Implementation of Newly Proposed Model - Mul-

tiple Instance Learning

Multiple instance learning (MIL) is novelty of the research project. The MIL is never
used for the detection of Brain tumors. The approach is capable of handling data weakly
supervised by using the multiple instances concept. Different functions are created in the
implementation of MIL. The code of MIL is based on Attention based mechanism and
the code is referred from Ilse et al. (2018); Wang et al. (2018) 9.

The data is loaded as positive and negative paths and then the data is split using
k-fold split as shown below.

import numpy as np
import glob
import KFold

def load dataset(dataset path, n folds, rand state):
pos path = glob.glob(dataset path+’\0\Ima*’)
neg path = glob.glob(dataset path+’\1\Ima*’)

pos num = len(pos path)
neg num = len(neg path)

all path = pos path + neg path

kf = KFold(n splits=n folds, shuffle=True, random state=rand state)
datasets = []
for train idx, test idx in kf.split(all path):

dataset =
dataset[’train’] = [all path[ibag] for ibag in train idx]
dataset[’test’] = [all path[ibag] for ibag in test idx]
datasets.append(dataset)

return datasets

The evaluation metrics used are bag accuracy and bag loss. The calculation for bag
accuracy and bag loss written in function bag accuracy and bag loss as shown below.

def bag accuracy(y true, y pred):
y true = K.mean(y true, axis=0, keepdims=False)
y pred = K.mean(y pred, axis=0, keepdims=False)
acc = K.mean(K.equal(y true, K.round(y pred)))

return acc
def bag loss(y true, y pred):

y true = K.mean(y true, axis=0, keepdims=False)
y pred = K.mean(y pred, axis=0, keepdims=False)
loss = K.mean(K.binary crossentropy(y true, y pred), axis=-1)
return loss

def cmat(y true, y pred):
y true = K.mean(y true, axis=0, keepdims=False)
y pred = K.mean(y pred, axis=0, keepdims=False)
cm = keras.metrics.confusion matrix(y test, y pred)
return cm

The augmentation techniques used are provided in this section. The section shows the
function used for random flip operation on images and random rotate using cv2 library
functions as shown below.

9https://github.com/utayao/Atten Deep MIL

11

def random flip img(img, horizontal chance=0, vertical chance=0):
flip horizontal = False
if random.random() < horizontal chance:

flip horizontal = True

flip vertical = False
if random.random() < vertical chance:

flip vertical = True

if not flip horizontal and not flip vertical:
return img

flip val = 1
if flip vertical:

flip val = -1 if flip horizontal else 0

if not isinstance(img, list):
res = cv2.flip(img, flip val) 0 = X axis, 1 = Y axis, -1 = both

else:
res = []
for img item in img:

img flip = cv2.flip(img item, flip val)
res.append(img flip)

return res

def random rotate img(images):
rand roat = np.random.randint(4, size=1)
angle = 90*rand roat
center = (images.shape[0] / 2, images.shape[1] / 2)
rot matrix = cv2.getRotationMatrix2D(center, angle[0], scale=1.0)

img inst = cv2.warpAffine(images, rot matrix, dsize=images.shape[:2], borderMode=cv2.BORDER CONSTANT)

return img inst

The custom layers have been implemented by combination of convolutional layers
and fully connected layers as shown in below code. The layers contains hyper parameters
passed to the model and metrics that are needed to be calculated during every epochs.

def cell net(input dim, useMulGpu=False):

lr = 1e-2
weight decay = 0.005
momentum = 0.9

data input = Input(shape=input dim, dtype=’float32’, name=’input’)
conv1 = Conv2D(36, kernel size=(4,4), kernel regularizer=l2(weight decay), activation=’relu’)(data input)
conv1 = MaxPooling2D((2,2))(conv1)

conv2 = Conv2D(48, kernel size=(3,3), kernel regularizer=l2(weight decay), activation=’relu’)(conv1)
conv2 = MaxPooling2D((2,2))(conv2)
x = Flatten()(conv2)

fc1 = Dense(512, activation=’relu’,kernel regularizer=l2(weight decay), name=’fc1’)(x)
fc1 = Dropout(0.5)(fc1)
fc2 = Dense(512, activation=’relu’, kernel regularizer=l2(weight decay), name=’fc2’)(fc1)
fc2 = Dropout(0.5)(fc2)

alpha = Mil Attention(L dim=128, output dim=1, kernel regularizer=l2(weight decay), name=’alpha’,
use gated=False)(fc2)

x mul = multiply([alpha, fc2])

out = Last Sigmoid(output dim=1, name=’FC1 sigmoid’)(x mul)

model = Model(inputs=[data input], outputs=[out])

if useMulGpu == True:
parallel model = multi gpu model(model, gpus=2)
parallel model.compile(optimizer=Adam(lr=lr, beta 1=0.9, beta 2=0.999), loss=bag loss,
metrics=[bag accuracy,
tf.keras.metrics.TruePositives(),tf.keras.metrics.FalsePositives(), tf.keras.metrics.FalseNegatives()])

else:
model.compile(optimizer=Adam(lr=lr, beta 1=0.9, beta 2=0.999), loss=bag loss, metrics=[bag accuracy,
bag loss], tf.keras.metrics.TruePositives(), tf.keras.metrics.FalsePositives(),
tf.keras.metrics.FalseNegatives()])
parallel model = model

return parallel model

The generate batch function is used to take the input path from load dataset and
create batches for train and test bags using respective data path. The images in the bag
are appended with the label.

The following function is a function for evaluation of train data. Keras fit generators
functions are used for training the model on train data. Further, Train loss, train acc,

12

val loss and val accuracy is calculated as shown below.
The test eval function takes the test set and model as input and calculates the test

loss and test accuracy of the model as shown in the code below.

def test eval(model, test set, Train set):
num test batch = len(test set)
test loss = np.zeros((num test batch, 1), dtype=float)
test acc = np.zeros((num test batch, 1), dtype=float)
for ibatch, batch in enumerate(test set):

result = model.test on batch(x=batch[0], y=batch[1])
test loss[ibatch] = result[0]
test acc[ibatch] = result[1]
return np.mean(test loss), np.mean(test acc)

The training of the model is carried out by the following function shown below. All
the functions mentioned above are called in this function. The final test accuracy is
returned by the model training function.

def model training(input dim, dataset, irun, ifold):

train bags = dataset[’train’]
test bags = dataset[’test’]

train set = generate batch(train bags)
test set = generate batch(test bags)

model = cell net(input dim, useMulGpu=False)
print(model.history)

t1 = time.time()
num batch = len(train set)
model name = train eval(model, train set, irun, ifold, test set)

print("load saved model weights")
model.load weights(model name)

test loss, test acc = test eval(model, test set,train set)

t2 = time.time()

print (’run time:’, (t2 - t1) / 60.0, ’min’)
print (’test acc=:.3f’.format(test acc))

return test acc

The main function is shown in the below. The model is executed and the evaluation
plots are generated after successful execution of the main function.

if name == " main ":

print (’Called with args:’)
input dim = (120,120,3)

run = 1
n folds = 2
acc = np.zeros((run, n folds), dtype=float)
data path = ’\content\Brain Tumor Class’

for irun in range(run):
dataset = load dataset(dataset path=data path, n folds=n folds, rand state=irun)
for ifold in range(n folds):
print (’run=’, irun, ’ fold=’, ifold)
acc[irun][ifold] = model training(input dim, dataset[ifold], irun, ifold)

print (’mi-net mean accuracy = ’, np.mean(acc))
print (’std = ’, np.std(acc))

The scripts and functions mentioned above are all provided in the ICT solution along
with this project.

References

Ilse, M., Tomczak, J. M. and Welling, M. (2018). Attention-based deep multiple instance
learning, Conference Proceeding .

13

Wang, X., Yan, Y., Tang, P., Bai, X. and Liu, W. (2018). Revisiting multiple instance
neural networks, Pattern Recognition 74: 15–24.

14

	Introduction
	System Configuration
	Hardware Configuration
	Software Configuration
	Google Colab:
	Anaconda - Jupyter Notebook:
	Other Softwares:

	Data Preparation
	Data Transformation
	Implementation of Baseline Models
	DenseNet121
	Model Building
	Model Evaluation

	InceptionV3
	Model Building
	Model Evaluation

	Implementation of Newly Proposed Model - Multiple Instance Learning

