National
Collegef
[reland

Configuration Manual: Fall risk monitoring
scheme based on human posture estimation
using Transfer learning

MSc Research Project
Data Analytics

Chitra Raghavi

Balasubramanian
Student ID: 18183409

School of Computing
National College of Ireland

Supervisor: Christian Horn

National College of Ireland National

Project Submission Sheet Collegef
School of Computing h«eland
Student Name: Chitra Raghavi Balasubramanian
Student ID: x18183409
Programme: Data Analytics
Year: 2019-2020
Module: M.Sc. Research Project
Supervisor: Christian Horn
Submission Due Date: 17/08/2020
Project Title: Configuration manual: Fall risk monitoring scheme based on
human posture estimation using Transfer learning
Word Count: 1096
Page Count: 12

| hereby certify that the information contained in this (my submission) is information
pertaining to research | conducted for this project. All information other thanmy own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Chitra Raghavi Balasubramanian

Date: 17th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). Q
Attach a Moodle submission receipt of the online project submission, to Q
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for your own Q
reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual: Fall risk monitoring scheme
based on human posture estimation using Transfer
learning

Chitra Raghavi Balasubramanian
18183409

1 Introduction

This configuration manual provides information which are related to the research “Fall risk
monitoring scheme based on human posture estimation using Transfer learning” from
beginning. This document delivers detailed review of the environmental setup, tools and
libraries used for building, executing, and testing this research.

2 Hardware Specification

Operating System Windows 10, Ubuntu 14.04.6
Processor Intel(R) Core (TM) 17-6500U
Installed Memory (RAM) 8.00GB

System type 64-bit Operating System

3 Software Specification

VMware Workstation (15.5) Pro for running multiple OS
Google Colaboratory

Python 2.7.14 for Image Processing

Email — For accessing to a Gmail Account

Python 3 for running deep learning algorithm

3.1 Setting up VMware Workstation

The project used Ubuntu 14.04.6 through VMware Workstation for performing the pre-
processing step using Python 2.7.14.

3.2 Environmental Setup of Google Colaboratory

This section shows the Google Colaboratory setup for performing this experiment. A Gmail
Id was used to access the Colab notebook: figure 1: shows the sign in step for Google Colab.

coO Welcome To Colaboratory e Share £X @

File Edit View Insert Runtime Tools Help
Google Account
+ Code + Text # Copy to Drive [SLUTICNE anju balasubramanian

anjusaisirish@gmail.com

‘= Table of contents X

<y Getting started

Data science L What is Colaboratory?

Machine les . , ‘))
achine learning Colaboratory, or "Colab” for short, allows you to write and execute Python in your browser, with

More Resources ‘ .
e Zero conﬁguratlon required

« Free access to GPUs
Section « Easy sharing

Machine Learning Examples

Whether you're a student, a data scientist or an Al researcher, Colab can make your work easier. Watch
Introduction to Colab to learn more, or just get started below!

~ Getting started

The document you are reading is not a static web page, but an interactive environment called a Colab
notebook that lets you write and execute code.

For example, here is a code cell with a short Python script that computes a value, stores it in a variable, and

Figure 1: Gmail Id to access Google Colab

4 Dataset Used for Experiment

Figure 2 shows the dataset used for fall detection experiment. The following link will provide
access to the dataset http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html. This dataset was
provided by the University of Rzeszow and was created by Michal Kepski. The dataset
contains 30 falls and 40 activities of daily life events. They have provided access to both video
files and image frames as png files for conducting academic tasks. The image frames extracted
from the video files are acquired for this experiment. Also, the dataset contains image frames
of Depth data and RGB data from camera 0 and camera 1. The RGB data from Camera 0 was
downloaded for performing the classification task. Figure 3: shows the dataset for Fall
sequences and Activities of daily life.

« [N] © & fenixuniv.rzeszow.pl/~mkepski/ds/uf html B -©% mmeE@Eee@® =

UR Fall Detection Dataset

A

Michal Kepski
Interdisciplinary Centre for Computational Modelling
University of Rzeszow

This dataset contains 70 (30 falls + 40 activities of daily living) sequences. Fall events are recorded with 2 Microsoft Kinect cameras and
corresponding accelerometric data. ADL events are recorded with only one device (camera 0) and accelerometer. Sensor data was collected
using PS Move (60Hz) and x-IMU (256Hz) devices.

The dataset is organized as follows. Each row contains sequence of depth and RGB images for camera 0 and camera 1 (parallel to the floor
and ceiling mounted, respectively), synchronization data, and raw accelerometer data. Each video stream is stored in separate zip archive in
form of png image sequence. Depth data is stored in PNG16 format and should be rescaled:

_ GiP(xy)

65535

¢

where d is depth in millimeters, C; is scale ratio for i-th camera and P(x, y) is pixel value at position (X,y) of PNG16 image. Fall sequences:
Cy = 6000 and C; = 3640. ADLs: €; = 7000

Synchronization data contains: frame number, time in milliseconds since sequence start and interpolated accelerometric data (SV,,,4) -

i corresponding to image frame. Note that the cameras are recorded independently, so they are not strictly synchronized (synchronization
V| fr—te et based on nearest timestamp value).

Raw accelerometric data contains time in milliseconds since sequence start and accelerometer data: SV, 4y, A, Az, A, All accelerometer
data are in gravity units (g). Total sum vector is calculated as follows:

Figure 2: UR fall detection dataset

http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html

B POTRE=@ ¢ ce & p—— . n o
Fall sequences: Activities of Daily Living (ADL) sequences:
[] Depit data RGB duia = 3 e
e e Syachrvatats dots \ebremeter o Video) ot oveiibie) [[Comera®) (mot svashebie) - -
Gumt | Cawmi | Gmawd || Gowi S s —rie— : S A i
i J

Figure 3: Fall sequence and Activities of daily life

5 Required libraries

Ubuntu 14.04 was used for creating the optical flow images and Windows 10 was used to
perform further steps.

5.1 Libraries used for image processing using optical flow algorithm
Some libraries mentioned below are downloaded before using it

e import 0s

e import cv2

e import glob

e import sys

5.2 Libraries used in Google Colab for building the model
All the libraries used to perform the experiment was shown in figure. These libraries were
used for pre-process, build and run the models.

+ Code + Text Connect ~

mport json
mport math
mport os
mport cv2
from PIL import Image
import numpy as np
£ as import layers
nport ResNet50,MobileNet, DenseNet201, InceptionV3, NASNetLarge, InceptionResNetV2, NASNetMobile
allback, ModelCheckpoint, ReduceLROnPlateau, TensorBoard
nport ImageDataGenerator

o_categorical

rt matplotlib.pyplot as p
in rt pandas as pd
learn.model_selection import train_test_split
learn.metrics import cohen_kappa_score, accuracy_score
py
from tgdm import tgdm
rt tensorflow as tf
rt backend as K

from fu

ools import partial
from sklearn import metrics
rom collections import Counter
import json

rt itertools

m keras.applications import vgglé, resnet50

6. Optical flow images generator in Ubuntu:

Initially, under Ubuntu 14.04 Operating System, Python 2.7.14 was used for pre-processing
the image. The software tool provided in the following link were used to compute the optical
flow images https://github.com/yjxiong/dense_flow/tree/opencv-3.1.This tool was offered to
extract dense optical flow from videos with the help of OpenCV. The steps and command
provided in the above-mentioned link were used to compute the optical flow images.

Two folders were created one folder named “URFD” (i.e., original UR-fall detection data
downloaded from the website that consists of RGB images). Another folder named
“UR_Fall opticalflow” (i.e., empty folder that saves the optical flow images after generating
the code). Also, the “URDF” has two separate folder called “Fall” and “Not-fall”. Where “Fall”
folder contains image frames of fall and “Not-fall” folder contains Activities of daily life.

preprocess.py (~/Desktop/Fall_Detection) - gedit

!‘, P-Open - Bl Save |;,

preprocess.py X

import cw2
import glob
import syﬂ

e

f_'_) data_folder = 'URFD/'
output_path = "UR_Fall_opticalflow/’
use_wvideo = True

i

if not os.path.exists(output_path):
os.mkdir(output_path)

folders = [f for f in os.listdir(data_folder) if os.path.isdir(os.path.join
(data_folder, f))]
folders.sort()
for folder im folders:
video_folders = [f for f in os.listdir(data_folder + folder) if
os.path.isdir(os.path.join(data_folder + folder + "J/', f))]
video_folders.sort()
for video_folder in video_folders:
path = data_folder + folder + 'f' + wvideo_folder
flow = output_path + folder + '/' + wvideo_folder
if not os.path.exists(flow):
os.makedirs(flow)

D DE

os.system("' /home/chitra/dense_flow/build/extract_cpu -f={} -¥=
{} -v={} -i=tmp/image -b=20 -t=1 -d=0 -s=1 -o=dir'.format(path, flow + '/

flow ' flow + 'J/flow wv'3})
4 Python = Tab width: 8 ~ Ln 4, Col11 INS

ouse pointer inside or press Ctrl+G. [=YOR=] < |

N B

7. Google Colaboratory for building the classification model:

1. Upload the data folder on Google Drive:
Once, the optical flow images of fall detection dataset were generated. It was
uploaded on Google Drive.

https://github.com/yjxiong/dense_flow/tree/opencv-3.1

e

F
Y@

1)
=

®
T
U}

(<) G} © & httpsy/ drive.google.com/drive/u/0/folders/1WSEikMdrERnERIFIN-TePZgjvrJRzNDH

a

My Drive > FALL_Detection > URFD_opticalflow -

New
Folders
My Drive
Shared with me | ras Il nNotFalls
Recent
Starred

Trash

Storage

2.4 GB of 15GB used

Buy storage

S 4

YD T E e e

@ &
B2 0

Name

P

2. The dataset uploaded to Google Drive. Then, the folders in drive were accessed through
Mounting Google Drive locally. Then the drive can be accessed through the

authorization code.

<>

c @ © & https//colab.research google.com/drive/1sH 90%
& urfd_vgg(2).ipynb
File Edit View Insert Runtime Tools Help Lastedited on August 12

+ Code + Text

° from google.galabimpa drive
drive.mount (|/content/drive')

LN

2

N O B B ® @

®

B comment &% Share £ @

Connect »" Editing

veoB B A~

~

Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client i1d=947318989803-6bnégk8gdgfdndg3pfee

[

Enter your authorization code:

Mounted at /content/drive

<

Google
Signin

4a0gZ2WvBgM4

Please copy this code, switch to your application and paste it there:

4/3AGgK7LjsanFKRU7002%D0e5%_g6B1BVgmIQeltorDigo rD

3. The images in the URFD_optical flow folder can be accessed through the following
code.

def Dataset ader (DIR, RESIZE, sigmaX=10):
data_folder = DIR
folder [f for £ in os.listdir(data_folder)]
folders.sort ()

for folder in folders:

read = lambda imname: np.asarray(Image. (imname) .convert ("RGB"))
for IMAGE_NAME in (os.listdir (DIR+folder)):
PATH = os.path.join(DIR+folder, IMAGE_NAME)
_s+ ftype = os.path.splitext (PATH)
f ftype == ".jpg":
img = read(PATH)

img = cv2.resize(img, (RESIZE,RESIZE))

IMG.append (np.array (img))
IMG

fall_train = np.array(Dataset_loader('/content/drive/My Drive/FALL_Detection/URFD opticalflow/Falls/',224))
not_fall_train = np.array(Dataset_loader('/content/drive/My Drive/FALL_Detection/URFD_opticalflow/NotFalls/",224))

4. Image augmentation performed using ImageDataGenerator

¢ urfd_vgg(2).ipynb B Comment 4 Share £} 3

File Edit View Insert Runtime Tools Help Lastedited on August 12

+Code + Text Comnect = ' Edting | A

['1 from keras.applications import vggle, resnetS0

] BATCH SIZE = 16

5. Assigning labels to folder contains optical flow images. Optical folder that was loaded
into the drive contains two folders namely “Falls” and “Not-falls”. A balanced
distribution of labels was created (NumPy array of 0’s and 1’s). An array of zeroes is
used for labelling the fall optical flow images. Whereas, an array of ones is used for
labelling the not-fall optical flow images. X contains attributes of falls and not-falls
images and Y contains corresponding labels of falls and not-falls. Then, the data were
shuffled, each time during training process, the data changes randomly.

& urfd_vgg(2).ipynb
co |_vgg(2).ipy B Comment 3% Share €% \9
File Edit View Insert Runtime Tools Help Lastedited onAugust 12
_ + Code + Text Connect ~ /# Editing A
O | create 1aven
< fall_train_label np.zeros(len(fall_train))
not_falltrain_label = np.ones(len(not_fall_train))
(]
'
X = ate((fall_train, not_fall train), axis = 0)

ate ((fall_train_label, not_falltrain_label), axis)

m sklearn.model selection import train_test split
est, Y_train, Y_test = train_test_split(X, Y, test_size=0.4,random_state=0)

Y_train = to_categorical (Y_train, num_classes= 2)
Y_test = to_categorical (Y_test, num classes= 2)

6. The dataset was split into training set and testing set with a 60:40 ratio. Where 60% of
data is randomly selected for training and 40% is for testing.

Tl oa®% 7w
° x_train, x_val, y_train, y_val = train_test split{(
X_train, Y _train,
test size=0.4,random state=0

8. Implementation of Deep Learning and Transfer Learning

8.1 Convolutional neural network used for implementing the architecture

8.2 Creating VGG-16

K.clear_session()
gc.collect ()

vgg_model = vgglé6.VGG16(weights="imagenet",
include_top=False,
input_shape=(224,224,3))

base model = vggle.VGGlée
trainable_layers = 4

base model = base model (weights="imagenet", include top=False, input_ shape=(224,224,3))
Freeze all but the last 4 layers

for layer in base _model.layers[:-trainable layers]:
layer.trainable = False

model = buildﬁmodel(baseimodel J1lr = le-4)
model . summary ()

=

Model @ "sequential™

Layver (type) ocutput Shape Param #
vgglec (Functional) (None, ra " 512 14714688
glokal_ average_pooling2Zd (Gl (None, 5S12) o]
dropout (Dropout) (None, 5S512) o]

batch_ _normalization (BatchMNo (None , 512) 2048
dense (Dense) (None, 2) 1026

Total params: 14,717,762
Trainakble params: 7,081,474

MNon—trainakle params:

7,636,288

8.3 Creating ResNet-50

]

from keras.applications import wvgglé, resnet50

K.clear_ session{()
gc.collect ()

resnet = ResNeth0(
weights='"imagenet',

include top=False,
input_shape= (224,224, 3)

base_model = resnet50.ResNet50
trainable layers = 10

base model = base model (weights="imagenet"”

Freeze all but the last 4 layers

’

for layer in base model.layers[:-trainable layers]:

layer.trainable = False

model = build model (base model ,1r = le-4)
model.summary ()

include top=False, input shape=(224,224,3))

O

[» Model: "sequential”

Layer (type) Output Shape Param #
resnet50 (Functional) (None, 7, 7, 2048) 23587712
qlobal_average_poolingZd (G1 (None, 2048) 0
dropout (Dropout) (None, 2048) 0

batch normalization (BatchNo (None, 2048) 8192
dense (Dense) (None, 2) 4098
Total params: 23,600,002

Trainable params: 4,473,858

Non-trainable params: 19,126,144

8.4 Creating DenseNet-201

[1 from keras.applications import vgglé, resnet50, densenet
K.clear_session()
gc.collect ()

densenet201 = DenseNet201 (
weights='imagenet',
include_ top=False,
input_shape= (224,224, 3)

base_model = densenet.DenseNet201
trainable layers = 10

base model = base_model (weights="imagenet", include_top=False, input_shape=(224,224,3))
Freeze all but the last 4 layers

for layer in base model.layers[:-trainable layers]:
layer.trainable = False

model = build_model (base_model ,1r = le-4)
model . summary ()

[»> Model: "sequential"

Layer (type) Output Shape Param #
densenet201 (Functional) (None, 7, 7, 1920) 18321984
glokal_average_pocling2d (Gl (None, 1920) 0
dropout (Dropout) (None, 1920) 0

batch normalization (BatchNo (None, 1920) 7680
dense (Dense) (None, 2) 3842

Total params: 18,333,506
Trainable params: 294,082
Non-trainable params: 18,039,424

9. Training the model for 10 epochs

[] history = model.fit generator(
train generator.flow(x train, y train, batch size=BATCH SIZE),
steps per epoch=x train.shape[0] / BATCH SIZE,
epochs=10,
validation data=(x val, y val),
callbacks=[learn control, checkpoint]

9.1 10-cross fold validation

[] def evaluate model (X_train, X_val, y_train, y val,model):
model.fit(X_train, y_train, validation_data = (X_val,y val), epochs=1, batch_size=16, verbose=2)#, callbacks = callbacks)
_, val_acc = model.evaluate(X_val, y_val, verbose = 1)

return model,val_acc

n_folds = 10
cv_scores, model_history = 1list(), list()
for _ in range (n_folds):
evaluate model
model, test_acc = evaluate_model (x_train, x_val, y_train, y_val,model)
print ('>%.3f' & test_acc)
cv_scores.append(test_acc)
model_history.append (model)

print ('Estimated Accuracy %.3f (%.3f)' % (np.mean(cv_scores), np.std(cv_scores)))

9.2 Testing Data

[1] Y pred = model.predict (X test)

[1] accuracy score(np.argmax(Y test, axis=1), np.argmax (Y pred, axis=1))

° ¥_pred = model.predict (X_test)

tta_steps =
predictions = [)
r i in tgdm(range(tta_steps)):
preds = model.predict_generator (train_generator,flow(X_test, batch_size=BATCH_SIZE, shuffle=False),
steps = len(X_test)/BATCH_SIZE)
predictions.append (preds)

gc.collect ()

¥_pred_tta = np.mean/(predictions, axis=0)

References

Dataset Source: http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.htmi

Optical flow extractor tool: https://github.com/yjxiong/dense_flow/tree/opencv-3.1
Code reference for CNN: https://keras.io/guides/sequential_model/,
https://www.programcreek.com/python/example/89688/keras.layers.Global AverageP
ooling2D

https://www.tensorflow.org/api_docs/python/tf/keras/applications/VGG16

e https://keras.io/api/applications/densenet/

e https://towardsdatascience.com/exploring-confusion-matrix-evolution-on-
tensorboard-e66b39f4ac12

http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html
https://github.com/yjxiong/dense_flow/tree/opencv-3.1
https://keras.io/guides/sequential_model/
https://www.programcreek.com/python/example/89688/keras.layers.GlobalAveragePooling2D
https://www.programcreek.com/python/example/89688/keras.layers.GlobalAveragePooling2D
https://www.tensorflow.org/api_docs/python/tf/keras/applications/VGG16
https://keras.io/api/applications/densenet/

