ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Ruchira Talekar
Student ID: X18185703

School of Computing
National College of Ireland

Supervisor: Dr. Paul Stynes
Dr. Pramod Pathak

‘-—
National College of Ireland \ National

Collegeof
Ireland

MSc Project Submission Sheet
School of Computing

Student Name: Ruchira Talekar

Student ID: X18185703

Programme: MSc. Data Analytics Year: 2020

Module: Research Project

Lecturer: Dr. Paul Stynes, Dr. Pramod Pathak

Submission Due

Date: 28t September 2020

Project Title: Classification of Customer Satisfaction for the Development of Hospitality
Businesses

Word Count: 1025 Page Count: 12

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Ruchira Talekar

Date: 28t September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project o
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Ruchira Talekar
X18185703
28" September 2020

1 Introduction

This document is representing the instructions to reproduce the classification of customer
reviews for business development and to predict customer satisfaction. The steps and
requirements for reproducing the machine learning models are as follows.

2 System Configuration

Hardware and software setup for the research work is explained below with respective
diagrams.

2.1 Hardware Configuration

For hardware configuration, ASUS laptop has been used, its specification is intel core i5-
8265U with the speed of 1.8GHz and 8 GB RAM with 1TB HDD shown in Figure 1.

Windows edition
Windows 10 Home Single Language -- .
© 2019 Microsoft Corporation. All rights reserved. .. WI n d OWS 1 0
System
Manufacturer: ASUSTek Computer Inc.
Processor: Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz 1.80 GHz e ——
Installed memory (RAM): 8.00 GB (7.85 GB usable) \N SEARCH OF INCREDIBLE
System type: 64-bit Operating System, x64-based processor
Pen and Touch: MNo Pen or Touch Input is available for this Display

Figure 1: Hardware Configuration

2.2 Software Configuration

For software configuration, various software has been used like Jupyter notebook, MS-Excel,
Power Bi and Twitter API Setup. Figure 2 is showing the version of the Jupyter Notebook
that has been used with the help of Anaconda Navigator, while Figure 3 and Figure 4 is
showing how to create an account and get the API keys for the twitter dataset.

1. Anaconda Navigator and Jupyter Notebook (6.0.1)

—
Jupyter
L
Motebook
A 60,
web-based, interactive computing
notebook environment. Edit and run

human-readable docs while describing the
data analysis.

Figure 2: Software Configuration

2. Microsoft Excel- It has been used to store the datasets.
3. Power Bi- This software has been used for exploratory data analysis and visualization.

4. Twitter API Account creation and API keys

“ & @ developertwitter.c fdocs/basice/getting-started

Dashboard twitterfood ~ Q. n

How to get started with the Twitter APIs

To get started using the Labs endpoints, standard APls, premium APls, enterprise APls, or Ads APls, you I
need to create a developer account and generate keys and tokens.

1. Apply and receive approval for a Twitter developer account.

2. Create a Twitter daveloper app.

3. Generate your app's APl keys and user’s access tokens.

4, Generate your app's bearer token.

5. Apply and receive access to the desired APL

6. Find the documentation, libraries, code examples, and other resources that you need to make your
first successful request.

Figure 3: Steps for Twitter API Account Creation

App details Keys and tokens Permissions

Keys and tokens

Consumer API keys

API| key: []

API secret key:

Access token & access token secret Revoke (Regenerate

Access token: 000000000000000000GOOGOOGOGO

Access token secret: X

Access level: Read and write

Figure 4: API keys and Access tokens provided by twitter

3 Implementation

3.1 Data Source
The list of data sources used in this project are given below:

Twitter Dataset: https://developer.twitter.com/en
Yelp Dataset: https://www.kaggle.com/yelp-dataset/yelp-dataset

3.2 Feature Engineering

1. Twitter Dataset has been extracted from twitter API using the below code shown in
Figure 5 and Figure 6.

In [11]:

consumer key = ' HEHREEEKEK KKK R KK KRR K KRR 1
consumer_secret =
access tolkens "% ok ko kR R

access token secret = TEEdEREEkEEckRkEERERRRRERE

T sk ok ok ok ok s ok ok ok o o ok o kR R R o sk R R

attempt authentication

try:

create QAuthHandler object
auth = OAuthHandler(consumer_key, consumer_secret)
set access token and secret
auth.set_access_token(access_token, access_token_secret)
create tweepy API object to fetch tweets
api = tweepy.API(auth)

except:
print("Error: Authentication Failed")

Figure 5: Code to retrieve the twitter data

In L) Code to retrive tweet###
import json
#Import the necessary methods from tweepy Library
from tweepy.streaming import StreamlListener
from tweepy import OAuthHandler
from tweepy import Stream

#This is a basic listener that just prints received tweets to stdout.
class StdOutListener(StreamListener):

def on_data(self, data):
try:

datajson = json.loads(data)

created_at = datajson['created at']

Writing to sample.json

with open("result.txt", "a") as outfile
outfile.write(json.dumps(datajson))

print("Tweet collected at " + str(created_at))
#self.db. twitter_search.insert(datajson)
except Exception as e:

print(e)

def on_error(self, status):
print(status)

def on_connect(self):
Called initially

to connect to the Streaming API
print("You are now connected to the streaming API.")

if _name_ == '_main_':

#This handles Ti
consumer_key
consumer_secret
access_key= '®FEF

access_secret = '**

er authetification and the connection to Twitter Streaming API

1 = StdoutListener()

auth = OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_key, access_secret)
stream = Stream(auth, 1)

WORDS =['lamb', 'pork']
#This line filter Twitter Streams to capture data by the keywords: Lamb and pork

stream.filter(track=WORDS)

Figure 6: Code to retrieve the twitter data
3

https://developer.twitter.com/en
https://www.kaggle.com/yelp-dataset/yelp-dataset

2. In the above code, JSON data has been stored in the text file. In the below code in
Figure 7 and Figure 8, data has been converted into a structured format using python
DataFrame for both the datasets.

Twitter Dataset

In [11]: def get tweets3():

tweet_path = "result.txt’
tweets_arr = []
tweets_file = open(tweet_path, "r")
for line in tweets_file:
try:
tweet = json.loads(line)
tweets_arr.append(tweet)
except:
continue

tweets = []

for i in range(@, len(tweets_arr)):

parsed tweet = {}

saving text of tweet
parsed_tweet['text'] =clean_tweet(tweets_arr[i]['text'])
saving sentiment of tweet
parsed_tweet['sentiment'] = get_tweet_sentiment(tweets_arr[i]['text'])
parsed_tweet['Country']= tweets_arr[i]['user']['location’]
list_of_hashtags=[]
for tag in tweets_arr[i]['text'].split():

if tag.startswith("#"):

list_of_hashtags.append(tag.strip("#"))

parsed_tweet['hashtag']=list_of_hashtags
appending parsed tweet to tweets list
if tweet['retweet_count'] » @:

1f tweet has retweets, ensure that it 1is appended only once

if parsed_tweet not in tweets:

tweets.append{parsed_tweet)

else:

tweets.append(parsed_tweet)

return parsed tweets
return tweets

Figure7: Code for JSON data to Structured Data

Yelp Dataset

In [3]: path='D:/Subject Docs/513782 947211 compressed_review/xab.txt’
json_data = pd.read_json(path, lines=True)
json_data.head()
out[3]:
review_id user_id business_id stars useful funny cool text date
. . Really loved this place. \nl 2016-11-12
0 1KXW20n0XOoAKNNODIGR SAyIqOSTseujePXISONKIg 3-aEgSTX2rbXATSATNARW 5 1 0 1 e A Taaa e
y . Wy friends and | went to the 2018-01-11
1 SUTJxFI90YPuwDZuayASaA -PZwT319VudybNI9DGoEA hivwiLIFtBLGZRIS]ReDw 3 1 0 0 Cheesecake Factor, 06:31-09
s | was in Richmend Hill visiting 2014-02-28
2 _er2fysEUUs-IbOGPNt_A fQVaFbT1NA7uMEsN_sC3Gg dBXOTUPNZAWIVZVSITYE2wW 4 0 0 0 family when th. 03-35.56
Y e N I This is one of the top 5 hotels in 2016-03-09
3 4d6ADWZM27vWETSvsOYBKA gXn9y0DgODWFIQE_tateqQ WixvisLZbHNIDwWJ-ZimtnA 5 0 0 0 Las Vegas 174327
Y 5 ~ : Great places ifyoucangeta 2018-06-10
4 5RcZelO4u3-4oBasrYorvw gYLmEjggSz9RF3vybDiw2g d_L-rf81vT3IMzgCUGtiow 4 3 0 0 seat on the pat. 234797

Figure 8: Code for JSON data to Structured Data

3. Data has been pre-processed and cleaned that has been shown in Figure 9 and Figure
10 for both the datasets.

Twitter Dataset

In [11]: | def processTweet(tweet):
tweet = "".join([char for char in tweet if char not in string.punctuation])

tweet = re.sub('[@-9]+', ', tweet)

tweet = tweet.lower() # convert text to Lower-case

tweet = re.sub('((www\.[*\s]+)|(https?://[*\s]+))", 'URL', tweet) # remove URLs
tweet = re.sub('@["\s]+", "AT_USER', tweet) # remove usernames

tweet = re.sub(r'#([*\s]+)", r'\1', tweet) # remove the # in #hashtag

return tweet

In [12]: def clean_tweet(tweet):
return ' '.join{re.sub("(@[A-Za-z@-9]+) | (["@-9A-Za-z “t]) | (wwe:\A/0E+) |, ™ ", tweet).split())

Figure 9: Pre-processing of Twitter Data

Yelp Dataset

In [8]: def preprocess(text):
clean_data = []
for x in (text[:]):

new_text = re.sub('<.*?>", "' str(x)) # remove HTML tags
new_text = re.sub(r'[*\w\s]', "', new text) # remove punc.
new_text = re.sub(r'\d+','",new_text)# remove numbers
new_text = new_text.lower() # lLower case, .upper() for upper
new_text = new_text.strip() #whitespace

new_text = nltk.word tokenize(new text)

if new_text !=
clean_data.append(" ".join(new_text))

return clean_data
In [9]: json_data['clean txt'] = preprocess(json_data['text'])

In [12]: json_data=z json_data.drop(['useful'], axis = 1)
json_data= json_data.drop([' funny'], axis = 1)
json_data= json_data.drop(['cool'], axis = 1)

Figure 10: Pre-processing of Yelp Data

4. Sentiment as a dependent column created using below code shown in Figure 11 and
Figure 12

Twitter Dataset

In [13]:
def get tweet sentiment(tweet):

create TextBlob object of passed tweet text

analysis = TextBlob(clean tweet(tweet))

set sentiment

if analysis.sentiment.polarity > @:
return 'positive’

elif analysis.sentiment.polarity == @:
return 'neutral’

else:
return 'negative’

Figure 11: Dependent column created Twitter Data

Yelp dataset

In [5]: for index, row in json_data.iterrows():
if row['stars'] < 3:
json_data.at[index, 'sentiment']="negative'
elif row['stars’'] == 3:
json_data.at[index, 'sentiment’]="neutral’
else:
json_data.at[index, 'sentiment']="positive'

print(json_data.head())

Figure 12: Dependent column created Yelp Data

5. Stemming of words shown in below Figure 13.

In [16]: frem nltk.stem.snowball import SnowballStemmer

snowball = SnowballStemmer(language = 'english')
def stemming(words):
new = []

stem_words = [snowball.stem(x) for x in (words[:][@])]
new.append(stem_words)
return new

Figure 13: Stemming of Text

6. Term frequency-inverse document frequency (TF-IDF) Vectorization shown in below
Figure 14.

[n [65]: | from sklearn.feature extraction.text import TfidfVectorizer

Create feature vectors

vectorizer = TfidfVectorizer(min df
max_df 8,
sublinear tf = True,
use idf = True)

train_vectors = vectorizer.fit transform(X_train)

test vectors = vectorizer.transform(X_ test)

2,
0.

Figure 14: Term frequency-inverse document frequency (TF-IDF) Vectorization of
Text

7. Below Figure 15 is the Naive Bayes Model (Experiment 1 and 2) that has been
implemented for both the dataset.

In [61]:
X
¥

dataframe["text'].values
dataframe['sentiment'].values

X_train, X_test, y train, y_test = train_test split(X, y, test_size=0.2, random_state=42)

MNB = MultinomialNaiveBayes(
classes=np.unique(y),
tokenizer=Tokenizer()

). fit(X_train, y_train)

y_hat = MNB.predict(X_test)

Figure 15: Naive Bayes Classifier

8. Below Figure 16 is the Support Vector Machine Model (Experiment 1 and 2) that has
been implemented for both the dataset.

In [3]: dimport time
from sklearn import svm
from sklearn.metrics import classification_report
Perform classification with SVM, kernel=Linear
classifier_linear = svm.SVC(kernel=z'linear')
t0 = time.time()
classifier linear.fit(train_vectors, y_train)
t1 = time.time()
prediction_linear = classifier_linear.predict(test_vectors)
t2 = time.time()
time_linear_train = t1-t@
time_linear_predict = t2-t1
results
print("Training time: %fs; Prediction time: %fs" % (time_linear_train, time_linear_predict))

Figure 16: Support Vector Machine Classifier

9. Below Figure 17 is the Random Forest Model (Experiment 3) that has been
implemented for the Yelp dataset.

[342]: Ffrom sklearn.feature_extraction.text import TfidfVectorizer
Create feature vectors
vectorizerl = TfidfVectorizer(min_df = 5,
max_df = 8.8,
sublinear tf = True, use idf = True,
norm='12", ngram_range=(1, 2))

this block is to split the dataset into training and testing set

X1 = json_data_split['clean_txt']

¥1 = json_data_split['sentiment’]

X_trainl, X_testl, y trainl, y testl = train_test split(X1, Y1, test size=0.25)

instead of doing these steps one at a time, we can use a pipeline to complete then all at once
pipeline = Pipeline([('vect', vectorizer),

('chi', SelectKBest(chi2, k=1208)),

('clf', RandomForestClassifier())])

fitting our model and save it in a pickle for Llater use

model = pipeline.fit(X_trainl, y_trainl)

with open('RandomForest.pickle', 'wb') as f:
pickle.dump(model,)

ytest = np.array(y_testl)

Figure 17: Random Forest Classifier

10. K-means Clustering with term frequency-inverse document frequency (TF-IDF)
(Experiment 4) has been implemented using the below code shown in Figure 18.

In [64]: from sklearn.cluster import KMeans
num_clusters = 4
km = KMeans({n_clusters=num_clusters)
km.fit(train_wvectors)
clusters = km.labels .tolist()

In [65]: review = {'review': X train.tolist(), 'Cluster': clusters}
frame = pd.DataFrame(review, index = [clusters])
frame

Figure 18: K-means Clustering with TF-IDF

11. Counts of reviews per cluster have been shown in Figure 19.

In [66]: frame['Cluster'].value counts()

19577
1e654
15837
11932
Mame: Cluster, dtype: int64

M= @

Figure 19: Value Count Per Cluster

8

12. Different clusters with reviews are shown below in Figure 20.

review Cluster
2 isee all the poor reviews and honestly when b... 2
0 darren the manager was exceptional with our pa... 0
3 this is one of those places that i go back to ... 3
0 great street tacos pollo camitas al pastorall... 0
0 refreshing and delicious homemade popsicles gr... 0
2 i got my first tattoo done by tyson and i coul... 2
2 omg the line for jcole is insane i knew someon... 2
1 we loved this place we had lunch there and the. .. 1
3 ive never had any problems with this store the... 3
1 first and last time i will come here took over. . 1

Figure 20: Cluster with Reviews

3.3 Evaluation Methods

1. For machine learning classifiers, various performance measures have been
represented using the below code shown in Figure 21. This is the result of the random
forest algorithm.

In [344]: print(classification_report(ytest3, model.predict(X¥_test3)))
print(confusion_matrix(ytest3, model.predict(X_test3)))

precision recall fl-score support

negative 8.383 8.77 8.8 4633
positive .92 8.95 8.93 13137
accuracy 8.9 17778
macro avg 8.388 8.36 B8.87 17778
weighted avg B.90 6.90 B.90 17778

[[3569 10864]
[712 12425]]

Figure 21: Classification Report for Random Forest Model

2. For clustering, the elbow method has been implemented using the below code shown
in Figure 22.

In [62]: frem sklearn.cluster import KMeans
wecss = []
for k in range(1, 18):
km = KMeans(n_clusters=k).fit(train_vectors)
km.fit(train_vectors)
wcss.append(km.inertia_)

In [63]: dimport matplotlib.pyplot as plt
K=range(1,18)
plt.plot(K, wcss, 'bx-')
plt.xlabel('k")
plt.ylabel('wcss')
plt.title('elbow')

plt.show()
elbow
60800 -
60600 -
“ 60400
-
60200
60000
1 2 3 4 5 6 7 8 9
k

Figure 22: Elbow Method for K-means Clustering

Visualization and Exploratory Data Analysis

1. Yelp Businesses have been spread all over the world. Figure 23 is representing the
locations of various businesses around the world.

Q
NORg AMERICA *
5 ® . EUROPE
‘e i
Pacific ‘ .. Atlantic

Ocean Ceh

AFRICA
SOUTH AMERICA
AUSTRALIA @

Figure 22: World Map of Yelp Businesses

10

2. Pie chart of positive, negative, and neutral reviews that has been shown in Figure
23 given below.

JBUNE PUBID WDW

U B LN MEN UessuD
sylop BE3

B qunyl eyl

aen |ebeg ey |

%]

sitive

B|SY 8 |POON

sentiment
@ po
@ negative

JoBdo|
o|fe|@g jo sURLNS 4
sdo o ofa|g

8
Le
8
g

|WiruEH
123 UB e} 8,00/ J8]
B - ouiuiecHseslEg

g
-
=1
=]
o,
3

2 deg pnd Bueb)on
I jes AsuoH
B cooueqoupn
B s ol

4 Buwe|q suenp

@
§
=
|0OLPS B[Nl m
'
3
@

i &
I 553
B Ul ei0s npenbyg
B -.oine ety ey)

Figure 22: Pie Chart of Sentiments

y Business Name

o|Be (@ 12 Jaung ey |
“B) LIBLINO S P (gReA

Review Count per business has been shown in Figure 23 using the Bar Chart.

=
=

b [Wgls= @ ¥V ETRET

]

3.
review count b

Figure 22: Bar Chart of Review Count Vs. Business
11

4. The popularity of various hospitality businesses has been shown below in Figure
23.

Popularity by Business Name
350

=
=
o
- |
(o8
(s}
o

Figure 23: Popularity Vs Business

12

