~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Muhammad Imran Shaikh
Student ID: x17119308

School of Computing
National College of Ireland

Supervisor: Dr. Muhammad Iqbal

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Muhammad Imran Shaikh
Student ID: x17119308
Programme: Data Analytics
Year: 2020
Module: MSc Research Project
Supervisor: Dr. Muhammad Igbal
Submission Due Date: 17/08,/2020
Project Title: Configuration Manual
Word Count: 1458
Page Count: 2

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 25th September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Muhammad Imran Shaikh
x17119308

1 Introduction

The main reason to write this configuration manual is to demonstrate the configura-
tion of system setup, software, and hardware compatibility to run and implement the
programming language code which will help to design the Research project and report.
This manual will cover sections like System Configuration, Project Development, Codes
Implementation, and Experiments with different machine learning models.

2 System Configuration

2.1 Hardware

Processor:3rd Generation Intel Core i5-3320M (2.6 GHz, 3MB L3 cache, 2 cores)1 Up to
3.30 GHz, Ram:16gb,System type:64-bit OS, Graphics: NVIDIA Quadro K2000M with
2GB dedicated DDR3, Windows:10pro(2019)

2.2 Software

Microsoft Office 356: Microsoft Word (For all the professional written stuff), Microsoft
Excel(For storing dataset as CSV and Excel format and for visualization purpose too),
Microsoft PowerPoint(presentation slides).

Python coding Language: Loading Libraries, Data Cleaning, Data preprocessing
and engineering, Initial Data Analysis, Training and Test data splitting, Models Im-
plementation, Hyperparameter Tuning, and Evaluation.Python IDE: Jupyter Notebook
and PyCharm.

3 Project Development

The main steps involved in the project development phase are the selection for ideal
IDE(Jupyter Notebook) to perform our coding task, Loading suitable libraries, Data
cleaning(checking null values and imputations with aggregations), and Data preprocessing
and engineering(grouping and joining datasets, Data merging, Describing columns, Re-
moval of unnecessary features, Removal of pipes with string split into Genre columns).Initial
data visualization(Word Cloud, several bar charts).

Preparation of separate class for movie dataset to implement Recommendation system
techniques(Content-based filtering and Collaborative filtering), Splitting train and test set
to fit in various models of our recommendation engine. Getting Top-N movies results from

our Recommendation machine learning models by utilizing different techniques. Models
Hyperparameter tuning (for extracting the best parameters for optimal results). Models
Evaluation(K-fold cross-validation,LOO(Leave One Out) Cross-validation with splits to
get better Accuracy results from our machine learning models)Multiple Evaluation plots
are plotted to get visual analysis.

3.1 Data Extraction and Pre-processing

The dataset is collected and generated by GroupLens Research Group, Dataset (ml-latest-
small)ﬂ consist of almost 100k ratings by different users with over 1200 movie tags from
9125 movies. 'ml‘ stands for movie lens. Each selected user had at least rated 20 movies.
There are 4 files included in this dataset named ‘movies.csv’, ‘ratings.csv’, ‘tags.csv’,
‘links.csv’ but for recommendation purpose, we are considering only two dataset files
i.e. ‘movies.csv’ and ‘rating.csv’ The entire coding is done in the python programming
language. Various python Libraries are imported based on the implementation of different
recommendation techniques. All Recommendation system models are imported from
"Surprise Library” which is an official python recommendation system library can be seen
in Figure 1| . Data preprocessing and engineering are obtained by grouping and joining

Importing libraries

n [183]:
import io # M
import os tionglity
import csv #
from surprise e
import sys # Module con
import pandas as pd
import numpy as np #
import matplotlib.py
from surprise.model selection import
from surprise.model_selection impor
from surprise import KNNBaseline # &
from surprise import KNWWithMeans #
from surprise import SVD,SVDpp # Sir
from surprise import Dataset
from surprise import accuracy # /
import seaborn as sns # Seaborn
from surprise.model_selection imp:
from surprise import get_dataset_dir #
from functools import reduce # functior

Liow python to interact with system

Figure 1: Importing python libraries

datasets, Data merging, Describing columns, deletion of unnecessary features, Removal
of pipes with string split in Genre columns, Create a function that counts the number of
times each genre appear can be seen in Figure [2]

4 Implementation of Recommendation Engine Ma-
chine Learning Models

Our recommendation engine is tested with 3 different recommendation system techniques
i.e. (Content-based filtering, Collaborative filtering, and Matrix Factorization) by res-
ulting Top-N movies results for users and even for movies in content-based filtering. A
separate Movie class is generated to combine both movies and ratings CSV files by group-
ing them by users and movie ids numbers can be seen in the figure. Different machine

'https://grouplens.org/datasets/movielens/latest/

https://grouplens.org/datasets/movielens/latest/

't counts the number of times each gemre appear:
col, liste)

n liste: ke

t ount[s] = @
te_keywords

ref_col].str.split(’ ")z
= flost and pd.isnull{liste_keywords): continue

y 1
for kv yword_count. items():
i_occurences.append([k,v]1)
urences.sort(key = lambda x:x[1], reverse = True)
sord_occurences, keyword_count

In [66]: #here we
genre_label.
for s in ga 1.str.splic(’]).values:

genre_labels = genre_labels.union(set(s))

ach of genres oceur:
= count_word(dsta, 'genres’, genre_labels)

al',
['War*, 3671,
['Vestern', 168],
['IMAX, 1531

['Film-Noir', 133],
['(no genres listed)’, 18]]

Figure 2: Create a function that counts the number of times each genre appears

learning models are implemented with their defined parameters to get better recommend-
ations. Surprise library which is an official python recommendation system library has
been utilized to implement machine learning models for our recommendation engine Fig-
ure [I} Following are the steps that are taken to create and evaluate our recommendation
engine.

4.1 Experiment with Movielens Dataset Analysis

The Analysis on movielens dataset based on the merging of two dataset filesi.e. ‘movies.csv’
and ‘rating.csv’ as an inner join by movies Ids in fig. With the help of this merged dataset,
we are visualizing movie genres by the creation of world cloud and histogram to analyses
which movie genres are most popular can be seen in Figure [3| Figure [l Moreover, top 25
movies with the highest ratings are also plotted to analyze which movie is rated highest
by different users in Figure [f

4.2 Experiment with Content Based Filtering

Content-based filtering works on the phenomena of users’ interest in different items. So,
based on that interest, similar items are recommended to the users. Recommendation
action becomes more accurate if the user provides more input. In our Content-based
recommendation engine, we are finding 10 nearest neighbors of the movie of our interest
by implementing the KNNBaseline algorithm with a similarity metric of Pearson baseline

Figure [6]

color of the words

def random_color_func{word=None, font_size=None, position=None,
orientation=None, font_path=None, random_state=None):
ne / 255.8)

/ 255.8)

random_state.randint(7@, 128)) / 255.8)

] .format(h, s, 1)

+
Lt

._.
5
‘&
]
fe
.

a wordcloud:

trunc_occurences = keyword_occurences[@:58]
for s im trunc_occurences:
words[s[8]] s5[1]

tone = 188 # define the color of the words

£, ax = plt.subplots{figsize=(14, 6))

wordcloud = WordCloud{width=558,height=388, background_color="black',
max_words=1628,relative_scaling=8.7,
color_func = random_color func,
normalize_plurals=False)

wordcloud. generate_from_frequencies (words)

plt.imshow(wordcloud, inmterpolation="bilinear™}

plt.axis("off")

plt.show()

[~

J
U
-
O
O
o'

Figure 3: Word cloud to analyze which Genre are the popular ones

In [71]: # lets display the same result in the histogram

fig = plt.figure(1, figsize=(18,13))

ax2 = fig.add_subplot(2,1,2)

y_axis = [i[1] for i in trunc_occurences]

X_axis = [k for k,i in enumerate(trunc_occurences)]

x_label = [i[@] for i in trunc_occurences]
plt.xticks(rotation=85, fontsize = 15)

plt.yticks(fontsize = 15)

plt.xticks(x_axis, x_label)

plt.ylabel(*No. of occurences”, fontsize = 24, labelpad = 8)
ax2.bar(x_axis, y_sxis, align = 'center’, color='b')
plt.title("Popularity of Genres”,bbox={'facecolor':'k’, 'pad’:5},color='6",fontsize = 3@)
pLt.show()

S - R ST

o
[l oy

C:\ProgramDatalAnaconda3\1ib\site-packages\IPython\core\pylabtools.py:128: MatplotlibDeprecationilarning: Support for uppercase
single letter colers is deprecated since Matplotlib 3.1 and will be removed in 3.3; please use lowercase instead.

Fig.canvas.print_figure(bytes_io, **kw)

4000

3000

)
=]
=1
=]

1000

No. of occurences

Drama
Comedy
Thriller
Romance
Adventure
Horror
Fantasy
Children
Mystery
Documentary
Animation
Musical
War
Western
IMAX
Film-Noir

(no genres listed)

Figure 4: Histogram to analyze which Genre are the popular ones

In [78]: plt.figure(figsize=(30,108))

plt.title('Top 25 movies with highest rating',fontsize=48)

colors=['red", 'yellow', "orange’,'green’,'magenta’,’cyan’, 'blue’,'lightgreen’, skyblue’, 'purple’]
plt.ylabel(' ratings',fontsize=3@)

plt.xticks(fontsize=25,rotation=98)

plt.xlabel('movies title",fontsize=38)

plt.yticks(fontsize=25)

sns.barplot{x=high_rated.index,y=high_rated.rating,palette="rainbow")

W

=R T

Out[72]: <matplotlib.axes._subplots.AxesSubplot at @x2874782703@>

Top 25 movies with highest rating

1400

1200+
1000 :
400"
200
1]

rating
=3 =]
=]

=

il

Fargo (1996}-‘

Shawshank Redemption, The (1994)
Forrest Gump (1994)

Pulp Fiction (1994)

Silence of the Lambs, The (1991)

Star Wars: Episode IV - A New Hope (1977)
Matrix, The (1999)

Schindler's List (1993)

Jurassic Park (1993)

Star Wars: Episode V - The Empire Strikes Back (1980)
Toy Story (1995)
Terminator 2: Judgment Day (1991)+
American Beauty (1999)-

Back to the Future (1985)
Braveheart (1995)-
Godfather, The (1972)
Star Wars: Episode VI - Return of the Jedi (1983)
Usual Suspects, The (1995)
Fight Club (1999){]

Fugitive, The (1993)

Seven (a.k.a. Se7en) (1995)

Aladdin (1992)

Apollo 13 (1995)

wrk (Indiana Jones and the Raiders of the Lost Ark) (1981)
Lord of the Rings: The Fellowship of the Ring, The (2001}

Figure 5: Top 25 movies with highest ratings

Using pearson_baseline as a simliarity measure in KnnBasic algorithm

In [28]: 1 sim_options = {'nam 'pearson_baseline', 'user_based': False}
2 algo = KNMBaseline(k=32 ,sim options=sim_options)
algo.fit(trainset)

Estimating biases using als...
Computing the pearson_baseline similarity matrix...
Done computing similarity matrix.

Qut[28]: <surprise.prediction_algorithms.knns.KNMBaseline at @x1b7fe2666d3>

e 1 | # Read the mappings raw id into movie name
2 rid_to_name, name_to_rid = read_item_names(}

In [22]: 1 | # Fetching inner id of the movie

movie_raw_id = name_to_rid['Clockwork Orange, 4 (1971)']
movie_inner_id = algo.trainset.to_inner_iid({movie raw_id)
movie_neighbors = algo.get_neighbors(movie_inner_id, k=1@)

7 | # Convert inner ids of the neighbors into names.

movie_neighbors = (algo.trainset.to_raw_iid(inner_id)
for inner_id in movie_neighbors)

movie_neighbors = (rid_to_name[rid]

11 for rid in movie_neighbors)

Output

In [23]: 1 | print()

2 print('The 1@ nearest neighbors of {} are:'.format{rid to_name[movie_raw_id]))
for movie in movie_neighbors:
4 print({movie)

The 12 nearest neighbors of Clockwerk Orange, A (1571) are:
Apocalypse Now (1979)

Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb (1963)
GoodFellas (199@)

Crumb (1994)

This Is Spinal Tap (1984)

People vs. Larry Flynt, The (1996)

Full Metal Jacket (1987)

Godfather, The (1972)

Pulp Fiction (1994)

Psycho (196@)

Figure 6: Content based filtering technique by using KNNBaseLine algorithm

4.3 Experiment with User and Item(Memory) Based Collabor-
ative Filtering

User and Item-based collaborative filtering are one of the most extensively used techniques
in the recommendation system, it works by finding a group of similar users who have
given the similar reactions to the item of your interest. The rating matrix is created to
find similar users and items based on ratings that are given by the user. KNNwithMean
machine learning algorithm along with similarity metric of Cosine is utilized to get Top-10
nearest neighbor movies for specific user Figure [7], Figure [§|

User based Collaborative Filtering

» testset = train test sp
fons = {'name’ ine”,"”
sinm_options_other = {'n, pearson’,

data, test size=.25)
': True}
basaed®: True}

Initiating our KNNWithMeans Model and compute the similarities

[1E8]: 1 madel = KNMWithMean(k=58, sim_options=sim opltions)
model Fit(trainset)
simsMatrix = model.compute similarities()
Computing the cosine sinilarity matrix. ..
Done computing similarity matrix.
Computling the cosine sinilarity matrix...
Done computing similarity matrix.

Get top N similar users to ocur test subject

testUserInnerID = trainset.to_Loner_uld(Useér)
4 similarityRow = simsMatrix[testUserDnnerID]

similarUsers = []
7 | for innerID;, score in enumerate(similarityfow):
if (LnnerID != testUserInnerID):
similarllsers, append((LwnerID, score})
kNeighbors = heapg.nlargestik, similarllsers; key=lambda t: t[1])

Get the stuff they rated, and add up ratings for each item, weighted by user similarity

In [198]: 1 candidates = defaultdict(flo
for similariker in kMeighb

innerID = similarUser[@)
userSimilarityScore = similarlser[1]

theirRatings = trainSet.ur|innerID)

for rating in theirRatings:
candidates[rating[@]] += (rating[1] f 5.8} * userSimilarityScore

Create a dictionary of stuff the user has already seen

In [191]: 1 watched = {}
2 for itemlD, rating in trainSet.ur|testUserInnerID]:
watched[itemID] = 1

Output

[192]: 1 | & Get top-rated items fFrom

L 4n” foraat{User))

4 for itemID;, ratingSum in sorted{candidates.items(}, key=itemgetter(l), reverse=True):
if mot itemID in watched:
novielD = trainset.to_raw_iid{itemID)
print (nl.getMovieName [int (novieID))}
pos £= 1
if (pos » 18):
break

User based Collaborative Filtering results for user: 85

Figure 7: User based collaborative filtering technique by using KNNWithMean algorithm

ltem based Collaborative Filtering

Switching user_based parameter in (sim_options_icf] to [False) to utilize item based collaborative filtering

based': False}
, 'user_based*: False}

In [129]: 1 sim options icf = {'name’: "cosine’ ,'user |

2 | sin_eptions_lef_other = {'nane’: 'pearso

Intiating our KNNBasic Algorithm and fit cur model in train et

In [138]: madel_icf = KNNWithMeans(sim_options=sim_sptions_icf)
2 medel_icf . Fit(trainSet}
1 simsMatrix_ief = model_icf.compute_similarities()
Computing the cosime sinilarity matrix...
Done computing similarity matrix.
Computing the cosine simila
Dore computing similarity matrix.
Top N Items
In [131] Ttem = "BS'
2 k=12
1 testItennnerID = trainSet.to_inner_uid(Ttem)
5 |4 Gel the fop K items we rated
& testItenRatings = trainSet.ur|testItemInrerID]
7 kMelighbors_icf = heapqg.nlargestik, testItemRatings, key=Llambda T: t[1]}
Candidates Generation
In [132]: 1 ¥ Get similar itewms Lo STuff we Liked (welghted by rating)
2 candidates icf = defaultdict(float)
1 | for iteaID icf, rating ict in kMeighbors_icf:
4 similar ef = simsMatrix [itemID_icf]
5 for L -] score_lcf in emumerate(sinilarityRow_icf):
6 (& dates_icf[inmerID_icf] += score_lcf * (rating icf f 5.8)
Already watched item dictionary
In [133] watched Ltems= = {}
for itemID icf, rating_ict in trainSet.ur|testItenInnerID]:
watched_items[itemID_icF] = 1
Item based Qutput
In [134]: 1 | prind i based Coll rative filterl results for user: {}n".foraat{Item))
2 ¥ Get ated items from similar user
1 | pos_lcf

4 | for iteaID_icf, ratingSum icf in sorted(candidates _Lcf.items(), key=itemgetter(l}, reversesTrue):
5 if mot itemID icf in watched items:
3 movieId = trainSet.to_rew iid{itemID_ict)
7 print{nl.getMovieNams | int (novieID)))
B pos_fcf += 1
if (pos_icf » 18):
break

Item based Collaborative filtering results for user: 85

James Dean Story, The (1557}
Get Real (1908)

Figure 8: Item based collaborative filtering technique by using KNNWithMean algorithm

4.4 Experiment with Matrix Factorization(Model)Based Col-
laborative Filtering

In Matrix factorization or Model-based collaborative filtering is the Dimensionality Re-
duction technique just like Principal Component Analysis(PCA). Matrix factorization
breaks down the user-item large matrix into a smaller matrix. The hidden features are
defined by latent factors that are created by item and user column and row matrix. In our
Matrix factorization method, we are implementing two matrix factorization algorithms
i.e. SVD(Singular Value Decomposition) and SVDpp(Singular Value Decomposition plus
plus) to get Top-10 recommendation results shown in Figure |§|, Figure .

Matrix Factorization

In [23@]: 1 | # wsing above defined trainedset
trainset = trainset
def GetAntiTestSetForUser(testSubject):
fill = trainset.global mean
anti testset = []
u = trainset.te_inner_uid(str{testSubject)})
user_items = set([j for (Jj, _) in trainset.ur[u]])
anti testset += [(trainset.to_raw uid{u), trainset.to raw_iid({i), fill) for
i in trainset.all items() if
i not in user_items]
return anti_testset

In [231]: 1 # Defining svd model and fitting training set

model swvd = SVD()

model svd.fit{trainset)

User = 85

testset = GetAntiTestSetForUser(User)
predictions _svd = model swd.test({testset)

In [232]: 1 recommendations svd = []
print(“\nMatrix factorization results using SVD for user: {}\n".format(User))
for userID, movieID, actuwalRating, estimatedRating, _ in predictions swd:
intMowieID = int(movieID)
recommendations_svd.append((intMovieID, estimatedRating))
recommendations_svd.sort(key=lambda x: x[1], reverse=True)

for ratings in recommendations_swd[:18]:
print(ml.getMovieName(ratings[@]))

Matrix factorization results using SVD for user: 85

Eternal Sunshine of the Spotless Mind (2004)
Matrix, The (1999)

Dark Knight, The (2888)

Maltese Falcon, The (1941)

Wallace & Gromit: A Close Shave (1995)

Her (2813)

Godfather, The (1972)

Lock, Stock & Two Smoking Barrels (1998)
Indiana Jones and the Last Crusade (1989)
RBnoar & Ma (1GR0Y

Figure 9: Matrix Factorization technique by using SVD algorithm

SVD++ Algorithm

In [224]: 1 model_svdpp = SVDpp()
2 model_svdpp.fit(trainset)
testset = GetAntiTestSetForUser(85)
predictions_SVDpp = model_svdpp.test(testset)

In [225]: 1 recommendations_swdpp = []
2 print("\nMatrix factorization results using SVDpp for user: {}\n".format(User))
for userID, movieID, actualRating, estimatedRating, _ in predictions_sVDpp:
intMovieID = int(movielID)
recommendations_svdpp.append{{intMovieID, estimatedRating))
recommendations_svdpp.sort(key=lambda x: x[1], reverse=True)

for ratings in recommendations_swdpp[:1@8]:
print{ml.getMovieName(ratings[8]), ratings[1])

Lock, Stock & Twe Smoking Barrels (1993) 4.79197622@151584

Star Wars: Episode VI - Return of the Jedi (1983) 4.683258519259@71

Lord of the Rings: The Fellowship of the Ring, The (2881) 4.58951834290199%4
It Happened One Night (1934) 4.587213958522119

Grand Day Out with Wallace and Gromit, A (1989) 4.582666195126913

Matrix, The (1999) 4.55476@912512864

Moon (2809) 4.519638374812435

Lone Star (1996) 4.46588649106575

Lord of the Rings: The Two Towers, The (2882) 4.457753038447894

12 Angry Men (1957) 4.44083959685321

Figure 10: Matrix Factorization technique by using SVD++ algorithm

5 Experiment with Models Hyperparameter Tuning

For Models Hyperparameter tuning we are considering Grid Search CV from Python
Surprise Library, which provides us the best parameters to get optimal value from our
machine learning models when we are training our dataset. The main parameters which
are considered for KNN and Matrix factorization-based algorithms are different K-Values,
Epoches no, learning rate, Similarity options, and accuracy measures(RMSE and MAE)

can be seen in Figure Figure

User-based Collaborative Filtering

In [34] 1 param grid KWM_UB = {'k': [18, 20, 58], 'n_epochs': [1, 3, 5]
‘learning_rat 0001, 00003, .00005] ,
*sim_options’: ine'l,
[sl.
“: [True]}

g5_KUM_UB = GridSearchCV(KNNWithMeans, param grid KWM_UB, measures=['rmse’, ‘mae'], cv=3

gs_KWM_UB. fit(data)

Computing the msd similarity matrix...
Done computing similarity metrix.
Computing the cosine similarity matrix...
Done computing similarity matrix.
Computing the cosine similarity matrix...
Done computing similarity matrix.
Computing the cosine similarity matrix...
Done computing similarity matrix.
Computing the cosine similarity matrix...
Done computing similarity matrix.
Computing the cosine similarity matrix...
Done computing similarity matrix.
Computing the cosine similarity matrix...
Done computing similarity matrix.
Computing the msd similarity matrix...
Done computing similarity matrix.
Computing the msd similarity matrix...
Done computing similarity matrix.
Computing the milarity matrix...
Done computing s: arity matrix. o
Comnuting the msd similaritv matrix

In [35]:| 1 #We can use the algorithm that yields the best
algo KW _UB - gs_KuM UB.best_estimator['rmse’'] # pa
print(gs_KWM_UB.best_score['rmse'])

combination of parameters that gave the best RHSE score
print(gs_KWM_UB.best_params[’rmse'])
cross_validate(algo_KWM UB, data, measures=['RMSE', 'MAE'], cv=5, verbose=True)

he best model to algo

©.926912946516326%
{'k": 58, 'n_epoch:
Computing the msd similarity matrix...
Done computing ilarity matrix.
Computing the msd similarity matrix...
Done comoutine similarity matrix.

: 1, 'learning_rote': 1e-85, 'sim_options’: {'name’: 'msd', 'min_support': 1, 'user_based': True}}

Figure 11: Hyperparameter tuning with GridSearchCV for different params of collabor-
ative filtering models

10

-momm SWD ---e-
[11e, 128, 14@, 168], 'n_epochs': [9@, 100, 11@], 'lr_all': [0.801, @.883, 0.005, ©.8@8],
&g o8, 0.1, .15}

gs = ErldSEarch(V(SVD, param_gnd, measures=[" rms;
gs-Fit(data)

algo = gs.best_estimator['rmse’]
print(gs.best_score['rnse’])

print(gs.best_params[rmse’])

cross_validate(algo, data, measures=['RMSE', 'MAE'], cv=S,

param_grid =

1b cv=3)

verbose=True)

Use the new par th the n data
algo = SVD(n_factors=169, n_epochs=109, lr_all=2.0es, reg_all=e.1)
algo.fit(trainset)

test_pred = algo.test(testset)

print("SVD : Test Set")

accuracy.rmse(test_pred, verbose=True)

oo SVDH -
[20,30,40], 'lr_all': [0.001, 0.003, 0.005, ©.008],

param_grid = {'n_factors': [20, 30, 40], 'n_epochs’
reg all': [0.08, 0.1, 0.15]}

gs = Gndsaar:h:v(svupp, param_grid, measures=['rmse’, ‘maz'], cv=3)
gs.Fit(data)

algo = gs-best_estimator['rnse’]
print(gs.best_score['rmse'])
print(gs.best_params[“rmse’])
cross_validate(algo, data, measures-['RUSE’,

"MAE'], ev=5, verbose=True)

in data
9, 1r_all-0.008, reg all-o.1)

Use the new parameters with th
algo = SVDpp(n_factors=4e, n_epoc
alge = svDpp()

algo.fit(trainset)

test_pred - algo. test(testset)
print("SVD++ : Test Se
accuracy.rmse(test_pred, verbose=True)

Figure 12: Hyperparameter tuning with GridSearchCV for different params of Matrix

Factorization models

6 Experiment with Models Evaluation

For Models Cross-Validation, we are considering two cross validators to test the accuracy
of our recommendation engine models in different splits. Those two Cross validators are
K-Fold cross Validator and LOOCYV leave one out cross validator can be seen in Figure

Figure

K-Fold Cross Validator

In [31]

*: False}

Matrix Factorization

for User based Collabor

Decomposition)plus plus model for Matrix Factorization

algo_svapp.
predictions_s

pp - algo_svdpp.te set)

Figure 13: Models Evaluation with K-fold Cross Validation

11

Leave One Out Cross Validator

In [38]: | # define a Legve orne out cross-volidation iterator
Looc = LeaveOneQuti{n_splits=3)
Defining models
KNN Baseline Algo for Content based Recommendation
sim_option_KNMN = {'name': 'pearson_baseline', 'user_based': False}
algo_KNN_CE = KNNBaseline(sim_options=sim_option_KNN)
KNN with mean Algo for User based Colloboretive Filtering

sim_options = {'name': 'cosine’,'user_based': True}
algo KM UB = KNMMithMeans(k=58, sim_options=sim_options)

KNN with mean Algo for Ttem based Collaborative Filtering
sim_options_IB = {'name': 'cosine','user_based': False}
algo KWM_IB = KNMWithMeans(k=58, sim options=sim_options_IB)

SVD(Singular Value Decomposition) model fer Matrix Faoctorization
algo_svd = SVD()

SVDpp(Singular Volue Decomposition)plus plus model for Motrix Factorization
algo_svdpp = SVDpp({)

Dictionary for folds Of LOOCV accuracy
rmse_KNN L= []

mae_KNN_L = []

rmse_KWM_UB_L = []

mae_KWM_US_L = []

rmse_KiM IB_L = []

mae_KWM_IB_L = []
rmse_svd L = []
mae_swvd_L = []
rmse_svdpp_L = []
mae_swvdpp_L = []

Training and testing data on basis of Leave One Out CV
for trainset, testset in Looc.split(data):

Fitting Train and test sets in models for predictions

KNN Baseline Algo for Content bosed Recommendotion
algo KNN_CB.fit(trainset)
predictions_KNN = algo KMM_CE.test{testset)

KNN with mean Algo for User based Collaborative Filtering
algo KWM_UB.fit(trainset)
predictions_KWM_UB = algo KWM_UB.test(testset)

KNN with mean Algo for Item based Collaborative Filtering
algo_KWM_IB.fit(trainset)
predictions_KWM_IB = algo KWM_IB.test(testset)

SVD(Singular Value Decomposition) model for Motrix Foctorization
algo_svd.fit({trainset)

predictions_swvd = algo svd.test(testset)

SVDpp(Singular Value Decomposition)plus plus model for Matrix Factorization

algo_svdpp.fit(trainset)
predictions_svdpp = algo_svdpp.test(testset)

Figure 14: Models Evaluation with LOO(Leave One Out) Cross Validation

12

	Introduction
	System Configuration
	Hardware
	Software

	Project Development
	Data Extraction and Pre-processing

	Implementation of Recommendation Engine Machine Learning Models
	Experiment with Movielens Dataset Analysis
	Experiment with Content Based Filtering
	Experiment with User and Item(Memory) Based Collaborative Filtering
	Experiment with Matrix Factorization(Model)Based Collaborative Filtering

	Experiment with Models Hyperparameter Tuning
	Experiment with Models Evaluation

