ﬁ

N
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc. In Data Analytics

Yash Nilesh Mehta
Student ID: x18179916

School of Computing
National College of Ireland

Supervisor: Mr. Hicham Rifai

Student Name:
Student ID:
Programme:
Module:
Supervisor:
Submission Due
Date:

Project Title:

Word Count: 936

‘-
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee I
reland
School of Computing
Yash Nilesh Mehta
X18179916
MSc Data Analytics Year: 2019-2020

MSc Research Project

Mr. Hicham Rifai

28t September 2020

“Impact Analysis of Market sentiments, Gold and Crude
oil prices on DOW30 stocks”

Page Count: 12

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Date:

Yash Nilesh Mehta

27t September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple |o

copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both |o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must
be placed into the assignment box located outside the office.

loffice Use Only

|Signature:

|Date:

|Pena|ty Applied (if applicable): |

Configuration Manual

Yash Nilesh Mehta
X18179916

1 Introduction

This configuration manual provides the course of action required to be followed in order to
replicate the proposed research and achieve desired results. The manual includes
requirements of system configuration, steps for collecting and cleaning the datasets, steps and
code snippets of implementing the models and lastly the steps and code snippets for
evaluating the model.

2 System Configuration

All the required tools and software used for this research can be easily installed in any
computer system having basic configuration listed below:

Operating System Windows 10
RAM 8GB

Hard Disk 128GB+ SSD
Processor Intel Core i5 8" gen

This research work used the basic tools that are given below:

a. Microsoft Office Suite
b. Python 3.7
c. Anaconda Jupyter Notebook

Microsoft excel and Microsoft Word are the two tools used from MS office suite. MS word is
used for the purpose of reporting whereas, MS Excel is used for viewing the data and
performing few merging operations. Python is the used for all the processes like data pre-
processing, EDA, model building and evaluation. Python 3.7 is used which is open source

and can be downloaded from the official website®. Jupyter Notebook is used as IDE for entire
coding. Jupyter notebook is accessed from platform called Anaconda, which can be

downloaded from official Websitez.

1 https://www.python.org/downloads/
2 https://repo.anaconda.com/archive/Anaconda3-2019.10-Windows-x86 64.exe

1

https://www.python.org/downloads/

3 Dataset Generation

Total four datasets are used for this research work, which are given as below:
1. DJIA stocks dataset:

This dataset has been downloaded from Yahoo finance official website® in CSV format.
Here the time period for which data is required can be selected, and the resultant data can
be downloaded without any cost.

2. Gold Prices Dataset:

This dataset has been downloaded from Yahoo finance official website* in CSV format.
Here the time period for which data is required can be selected, and the resultant data can
be downloaded without any cost.

3. Crude oil prices dataset:

This dataset has been downloaded from Yahoo finance official website® in CSV format.
Here the time period for which data is required can be selected, and the resultant data can
be downloaded without any cost.

4. Twitter Sentiments data:

This dataset is requested from one of the previous research works (Jain, 2019) done in the
same field. This dataset already has the sentiment label as the author has originally done
text processing and defined the sentiments for tweets. So there was no further
requirement of text processing.

5. News Dataset:

This dataset is downloaded from an opensource platform called Kaggle6. This is a public
dataset and can directly be downloaded into csv format.

3 https://finance.yahoo.com/quote/%5EDJI?p="DIJI
4 https://finance.yahoo.com/quote/GC=F?p=GC=F
5https://finance.yahoo.com/quote/CL=F?p=CL=F

6 https://www.kaggle.com/aaron7sun/stocknews

https://finance.yahoo.com/quote/%5EDJI?p=%5eDJI
https://finance.yahoo.com/quote/GC=F?p=GC=F
https://finance.yahoo.com/quote/CL=F?p=CL=F
https://www.kaggle.com/aaron7sun/stocknews

4 Importing python libraries

Below snippet shows the python code of importing all the required libraries for this research.

In [1]:

#importing Libraries

smatplotlib inline

import os

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import statsmodels.api as sm

import seaborn as sb

import re

from statsmodels.tsa.stattools import grangercausalitytests
from sklearn.utils import resample

import seaborn as sns

from sklearn.metrics import accuracy score

from sklearn.metrics import precision score

from sklearn.metrics import recall score

from sklearn.metrics import f1 score

from sklearn.model selection import train test split
from sklearn.svm import SVC

from sklearn.metrics import accuracy score

from sklearn.neighbors import KNeighborsClassifier
from sklearn import preprocessing

from functools import reduce

from statsmodels.tsa.api import VAR

from statsmodels.tsa.stattools import adfuller

from statsmodels.tools.eval measures import rmse, aic
from sklearn.metrics import mean absolute error,mean squared error
import math

5 Importing the datasets and Checking for missing values

All the datasets were imported into python environment and checks for NA values in the
datasets were performed. Below image shows the code snippet for importing the data and
checking for NA values in data.

In [2]: # Reading stock market datoset into a dataframe
df = pd.read_excel(r'C: /Users/yash8/Desktop/Research project/Datasets/DIIA.x1sx’, index_col = 8)
print({"Overview of DJIA stocks Dataset")
print(df.info())

Checking for NA values in stocks datag
print("NA values in DIIA stocks Dataset are: ")
print(df.isna().sum())

Reading news dataset into a dataframe

dfnews = pd.read excel(r'C:/Users/yashd/Dezktop/Research project/Datasets/News_sentiments.xlsx’, index col = @)
print("Overview of news Dataset")

print(dfnews.info())

Checking for NA values in news data
print("NA values in news Dataset are: ")
print(dfnews.isna().sum(})

import twitter data file

twitter data = pd.read_excel(r'C:/Users/yash8/Desktop/Research project/Datasets/Twitter sentiments.xlsx')
print("Overview of Twitter Dataset”)

print(twitter_data.info())

Checking for NA values in Twitter dato
print("NA values in Twitter Dataset are: ")
print(twitter data.isna().sum())

import Crude oil data file

dfCrude = pd.read excel(r'C:/Users/yash3/Desktop/Research project/Datasets/Crudeoil.xlsx’, index col = 8)
print("Overview of Crude oil Dataset")

print(dfCrude.info())

Checking for NA values in Crude oil dota
print("NA values in Crude oil Dataset are: ")
print(dfCrude.isna().sum())

import Gold dato file

dfGold = pd.read_excel(r'C:/Users/yash/Desktop/Research project/Datasets/Gold.xlsx’, index_col = @)
print("Overview of Gold Dataset")

print(dfGold.infa())

Checking for NA values in gold dato
print("NA values in Gold Dataset are: ")
print(dfGold.isna().sum())

6 Data Pre-Processing

At different levels of study datasets were combined as per the requirement. Also,
positive ratio was calculated on Twitter sentiments data. Code snippets for the same are
given below:

#Grouping -ve and +ve sentiments in twitter data by date

dfDate = pd.DataFrame()

dfDate['Sentiments_Count'] = None

dfDate['Sentiments_Count'] = twitter_data.groupby(['Date’, ‘Sentiments'])['Sentiments'].count()
dfDate = dfDate.reset_index()

neg = dfDate[dfDate['Sentiments']=="Negative']

pos = dfDate[dfDate['Sentiments']=="Positive']

negcount = neg.groupby('Date').sum().reset_index()

poscount = pos.groupby('Date').sum().reset_index()

Counting total number of positive and negative sentiments on each date

allcount = negcount.merge(poscount,on=['Date’],how="outer")

allcount = allcount.set_index('Date’)

allcount.fillna(@,inplace=True)

allcount = allcount.rename(columns={'Sentiments_Count_x':'Negative', 'Sentiments_Count_y':'Positive'})
print(allcount.isna().sum())

print(allcount.head())

Calculating Positive ratio for tweets and storing it into a CSV

allcount['Ratio’] = allcount['Positive']/(allcount['Positive’J+allcount[Negative'])
allcount['Ratio'] = allcount['Ratio’].round(2)

allcount = allcount.sort_index()

allcount = allcount.reset_index()

#allcount.to_csv('C:/Users/yash8/Desktop/Research project/Datasets/PosRatioTweets.csv')#

Defining Sentiment for each date depending on maximum sentimens count for corresponding date

""'Eg: If there are 3 positive tweets and 1 negative tweet on a particular date, than the sentiment assigned to that date
will be positive''’

for i in range(®@,len(allcount)):
if(allcount.loc[i, 'Positive’]>allcount.loc[i, 'Negative']):
allcount.loc[i, 'sentiment'] = 1
else:
allcount.loc[i, 'sentiment’] = @

allcount = allcount.set_index('Date’)
print(allcount.groupby('sentiment’).count())

allcount = allcount.reset_index()

Reading Stockmarket Data into a dataframe

df = pd.read_excel(r'C:/Users/yash8/Desktop/Research project/Datasets/DIIA.x1sx", index_col = 0)
dfGC = pd.DataFrame()

dfGC['StockPrice’] = df.Close

dfg = dfGC.reset_index()

Defining the trend (@ = uptrend, 1 = downtrend)
for i in range(@, len(dfg)-1):
value = dfg.loc[i+1, 'StockPrice’'] - dfg.loc[i, 'StockPrice']
if(value > 1):
dfg.loc[i+1, 'trend’'] = ©
else:
dfg.loc[i+1, 'trend’'] = 1

Merging Dataframes on basis of Date

merged = allcount.merge(dfg,on=['Date’],how="outer")
merged.drop(merged[merged['trend'].isna() == True].index, inplace = True)
merged[‘Date’] = merged['Date’].values.astype(float)
merged.reset_index(drop=True)

7 Exploratory Data Analysis (EDA):

Various steps were carried out for EDA of datasets, code snippets for the same
are given below:

Time series plots for closing values of DJIA, Gold and Crude oil
plt.figure(figsize = (6,6))

plt.plot(df.Close)

plt.title('Closing price of DJIA stocks')

plt.ylabel('Closing price ($)')

plt.xlabel('Trading Day")

plt.grid(False)

plt.show()

plt.figure(figsize = (6,6))
plt.plot(dfCrude.Close)
plt.title('Closing price of Crude o0il')
plt.ylabel('Closing price (%)")
plt.xlabel('Trading Day")
plt.grid(False)

plt.show()

plt.figure(figsize = (6,6))
plt.plot(dfGold.Close)
plt.title('Closing price of Gold')
plt.ylabel('Closing price ($)")
plt.xlabel('Trading Day")
plt.grid(False)

plt.show()

Checking for outliers in DJIA closing data
df['Close’].plot.box()

Checking for outliers in Crudeoil closing prices
dfCrude['Close’].plot.box()

Checking for outliers in Gold closing prices
dfGold[‘Close’].plot.box()

8 Code snippets for Granger Causality test

Calculating Granger Causality of Twitter

#importing stock market and Twitter positive ratio datasets
dfPosRatio = pd.read_excel(r'C:/Users/yash8/Desktop/Research project/Datasets/stocks Posratio.xlsx', index_col = @)

#Calculating Causality
grangercausalitytests(dfPosRatio[['Twitter_pos_ratio’,'Close']], maxlag=3)

Calculating Granger Causality of News Sentiments

Granger Causality test on news sentiments data

dfGranger = pd.DataFrame()

dfGranger['StockPrice'] = df.Close

dfGranger['Sentiments'] = dfnews.Label

dfGranger['Sentiments'] = dfGranger[’'Sentiments'].ffill()
grangercausalitytests(dfGranger[['Sentiments', 'StockPrice’']], maxlag=3)

Calculating Granger Causality of Crude oil

Granger Causality test on crude oil

dfgrangerl = pd.DataFrame()

dfgrangerl['StockPrice'] = df.Close

dfgrangerl['Crude0il’] = dfCrude.Close

dfgrangerl['Crude0il’] = dfgrangeril['Crude0il’].ffill()
grangercausalitytests(dfgrangeri[['Crude0il’, 'StockPrice’']], maxlag=3)

Calculating Granger Causality of Gold prices

Granger Causality test on gold

dfgranger2 = pd.DataFrame()

dfgranger2['StockPrice'] = df.Close

dfgranger2['Gold'] = dfGold.Close

dfgranger2['Gold'] = dfgranger2['Gold"].ffill()
grangercausalitytests(dfgranger2[['Gold’, 'StockPrice’']], maxlag=3)

9 Machine Learning Models

Code snippets for machine learning models implemented in this research are given below:

1. Vector Auto Regression (VAR):

Fitting VAR model
nobs = 660
df train, df test = data_csv[@:-nobs], data_csv[-nobs:]
model = VAR(data_csv)
for i in [1,2,3,4,5,6,7,8,9]:
result = model.fit(i)
print('Lag Order =', i)

print("AIC : ', result.aic)
print('BIC : ', result.bic)
print('FPE & ', result.fpe)
print("HQIC: ', result.hqic, "\n')

x = model.select_order(maxlags=12)

X.summary()

model fitted = model.fit(7)

model fitted.summary()

forecast_input = df_train.values

fc = model fitted.forecast(y=forecast_input, steps=nobs)

df forecast = pd.DataFrame(fc, index=data_csv.index[-nobs:], columns=data_csv.columns + ' 2d")
df_forecast

Calculating MAPE

MAPE = np.mean(np.abs((df test['Close']) - (df_forecast['Close 2d'])) / np.abs(df test['Close']))*10@
print('The Mean Absolute Percentage Error is {:.2f}%'.format(MAPE))

Plotting Actual vs Forecast plot

df_test['predicted close'] = df_forecast['Close_2d']
plt.plot(df_test['Close’], label="Actual Close’)
plt.plot(df_test['predicted close'], label='Predicted Close"')
plt.legend()

2. K-Nearest Neighbour (KNN):

Splitting the data into train and test sets

X = merged[['StockPrice’, 'sentiment']]

Y = merged["trend’]

X_train, X _test, y train, y test = train_test_split(X, Y, test_size=8.20)

n

import KNeighborsClassifier
neighbors = np.arange(1,9)

for i,k in enumerate(neighbors):
Setup a knn classifier with k neighbors
knn = KNeighborsClassifier(n_neighbors=2)

Fit the model
knn.fit(X_train, y_train)

Prediction
pred_knn = knn.predict(X_test)

Evaluating RNN model
evaluate model(knn, X test, y test)

Accuracy

accuracy = accuracy_score(y_test,pred_knn)
print("Accuracy is")

print(accuracy)

3. Support Vector Machine (SVM):

Training and Testing SVM model on twitter sentiments

SVM = SVC(C=1.8, kernel='linear')

merged.drop(merged[merged['sentiment’].isna() == True].index, inplace = True)
merged.reset_index(drop=True)

X = merged[['StockPrice’, 'sentiment']]

Y = merged['trend’]

Splitting the data into test and train
X_train, X _test, y_train, y test = train_test_split(X, Y, test_size=8.28)

Fitting SVM model and making predictions
SVM.fit(X_train, y_train)
y_pred = SVM.predict(X_test)

Function for classification matrix

def evaluate_model(model, testX, testY):
temp = model.predict(testX)
y_true = testyY
precision = precision_score(y_true, temp, average='weighted')
recall = recall score(y_true, temp, average='weighted')
Fl_score = f1_score(y_true, temp, average='weighted')
print("Precision: " + str(precision) + "\n")
print("Recall: " + str(recall) + "\n")
print("f1 score: " + str(Fl_score) + "\n")
return precision, recall, fi1_score

Classification matrix for SVM model on Twitter data
evaluate_model(SVM, X_test, y test)

Accuracy

accuracy = accuracy_score(y_test,y_pred)

print("Accuracy is")
print(accuracy)

10 Transfer Learning

Transfer learning process was carried out under the same environment as above models.
Code snippets for transfer learning process for all the three models are given below:

10

1. SVM model:

importing news dataset into a dataframe
dfnews = pd.read_excel(r'C:/Users/yash8/Desktop/Research project/Datasets/News_sentiments.xlsx', index_col = @)

Creating a dataframe with stock price close column and news sentiments Label column
dfGranger = pd.DataFrame()

dfGranger['StockPrice'] = df.Close

dfGranger['Sentiments'] = dfnews.Label

dfGranger['Sentiments'] = dfGranger['Sentiments'].ffill()

dfgl = dfGranger.reset_index()

Defining the trend (8 = uptrend, 1 = downtrend)
for i in range(@, len(dfgl)-1):
valuel = dfgl.loc[i+l, 'StockPrice'] - dfgl.loc[i, 'StockPrice’]
if(valuel > 1):
dfgl.loc[i+1, "trend'] = 1
else:
dfgl.loc[i+1, 'trend'] = @

dfgl['trend'][@] = @

Defining test variables
X_testl = dfgl[['StockPrice’, 'Sentiments']]
y_testl = dfgl['trend']

Making predictions using pre-trained SVM model
y_predl = SVM.predict(X_testl)

Classification matrix
evaluate_model(SVM, X_testl, y testl)

Accuracy

accuracy = accuracy_score(y_testl,y predl)
print("Accuracy is")

print(accuracy)

11

2. KNN

#F1t the model
knn.fit(X _train, y_train)

Prediction
pred_knnl = knn.predict(X_testil)

Fvaluating pre-trained RNN model on new dataset
evaluate model(knn, X_testl, y testl)

Accuracy

accuracy = accuracy_score(y_ testl,pred_knnl)
print("Accuracy is")

print(accuracy)

3. VAR

Testing VAR model with News sentiments

Reading the Tweets Positive ratio Dataset

data_csvl = pd.read_excel(r'C:/Users/yash8/Desktop/Research project/Datasets/News_stocks.x1lsx")
data_csvl = data_csvl.set_index('Date’)

data_csvl.info()

Fitting VAR model
nobs = 660
df_trainl, df_testl = data_csvi[@:-nobs], data_csvi[-nobs:]

modell = VAR(data_csvi)
for 1 in [1,2,3,4,5,6,7,8,9]:
result = model.fit(i)
print('Lag Order =', i)
print('AIC : ', result.aic)
print('BIC : ', result.bic)
print('FPE : ', result.fpe)
print('HQIC: ', result.hgic, '\n')
x1 = modell.select_order(maxlags=12)
x1. summary()
model_fittedl = modell.fit(7)
model_fittedl.summary()
forecast_inputl = df trainl.values
fcl = model_fittedl.forecast(y=forecast_inputl, steps=nobs)
df_forecastl = pd.DataFrame(fcl, index=data_csv1.index[-nobs:], columns=data_csvl.columns + ' 2d")
df forecastl

Calculating MAPE

MAPE = np.mean(np.abs((df_testl['Close']) - (df_forecast1['Close_2d'])) / np.abs(df_testl['Close']))*10@
print('The Mean Absolute Percentage Error is {:.2f}%".format(MAPE))

12

