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Configuration Manual

Raghav Krishna Kumar
Student ID: x18181848

1 Introduction

This configuration manual is used to describe the requirements for the research project on
short term price forecasting of Agro-products using multivariate time series analysis. This
document explains the step by step process to replicate the model with the exact results
produced. This manual also consists of the software and hardware specifications required for
the project to be replicated.

2  System Specification

2.1 Hardware requirement

The below specified specifications are required to run the model smoothly with no
performance issues.

Processor . Intel(R) Core(TM) i5-8265U CPU @1.60GHz 1.80 GHz
RAM :8GB

Storage : 256 SSD + 1TB HDD

Operating system . 64-bit operating system, Windows 10 Home

2.2 Software Requirement

The software which are required for replicating the project is explained in this section while
the installation procedures are explained in section 3.

Anaconda which is an open source free distribution of python is used in this project. The
Anaconda can be downloaded from the official online website. The Jupyter notebook IDE is
used from the anaconda launcher wherein the model is executed using the python language.

3 Installations

This section illustrates the steps for downloading the required softwares and the procedure for
the installation.

The Anaconda comes with python pre-loaded with its setup and this is no specific
requirement for installing the python separately. The anaconda software is downloaded from
the official website as shown in figure 1. The 64-Bit Graphical Installer (466 MB) option is
selected from the Windows list.
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Figure 1: installing Anaconda software

After the successful installation of the anaconda software, the jupyter notebook is launched
from the homepage of the software as shown in figure 2
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Figure 2: Anaconda Homepage

4 Data Source

The agricultural commodity pricing dataset is obtained from the open source repository
managed by the government of India®. The prices of onion, tomato, banana and cauliflower
are obtained from 2005 to 2016 time period on a daily basis. The climatic factors and weather
statistics are obtained from the Indian meteorological site? for the same time period on a daily
basis.

thttps://agmarknet.gov.in/
2 http://dsp.imdpune.gov.in/
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5 Project Environment Setup

The Jupyter notebook is launched from the anaconda navigator window and is opened in the
online browser and in this case, it opens in google chrome as shown in figure 3. From the
Jupyter homepage the new option in top right corner is selected and python 3 is selected as
the model is run using python programming language.
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Figure 3: Jupyter notebook homepage

When the python 3 option is selected a new python kernel is opened where the coding is
performed. The jupyter notebook kernel looks like the figure 4 where the coding needs to be
written in the tabular column and the RUN button toolbar is used to execute the written code.
The new cell for programming could be created using the + symbol in the tool bar as shown
in figure 4.
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Figure 4: Jupyter notebook execution page

6 Model Implementation:

Prior to the model implementation it is imporatnt to install and load all the libraries and
packages required for the model to run. Some of the basic packages are already inbuit to the
anaconda environment so there is no need to install but only to import the packages. Some
other packages needs to be installed into the anaconda environment. This could be done in the

3



anaconda navigator by selecting the environment tab on the left and searching for the
required packages as shown in figure 5.
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Figure 5: Anaconda Environment setup

Following packages and libraries in figure 6 needs to be installed or exported in to the jupyter
notebook

In[ I: import warnings
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import statsmodels.api as sm
from sklearn import linear_model
from datetime import datetime
from sklearn.preprocessing import MinMaxScaler
import sys
from scipy.stats import randint
from sklearn.model_selection import train_test split
from sklearn import metrics
from sklearn.metrics import mean_squared_error,r2_score
from pandas import read csv
from pandas import DataFrame
from pandas import concat
import keras
from keras.layers import Dense
from keras.models import Sequential
from keras.utils import to_categorical
from keras.optimizers import SGD
from keras.callbacks import EarlyStopping
from keras.utils import np_utils
import itertools
from keras.layers import LSTM
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPoolinglD
from keras.layers import Dropout
from statsmodels.tsa.stattools import grangercausalitytests
from statsmodels.tsa.stattools import adfuller

Figure 6: Packages and libraries required.



6.1 Data import and exploratory analysis:

The file RNN-LSTM.ipynb should be opened for this execution. The figure 7 shows the code
for importing the data into python and exploratory analysis
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df = pd.read_csv( only_tomato.csv’, parse_datess['date’], infer_datetime_formatsTrue,low_sesory=False, index_col='date’)

print(df)

res = su.tsa.seasonal_decompose(df . tomato.dropna(), freqe365)

fig = res.plot()
fig.set_figheight(g)
fig.set_figwidth(15)
plt.show()

Figure 7: data import and exploratory analysis

Selection of the models to run based on the framework is explained. The stationary test using ADF is shwon in
the figure 8.
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In [25]: from statsmode.
def test_stati

sa.stattools import adfuller
ity(timeseries, window = 12, cutoff = 0.01):

stistics
timeseri olling(window) .mean()
rolstd = timeseries.rolling(window).std()

#Pl ing stotistics:
fig figure(figsize=(12, 8))
orig = plt.plot(timeseries, color
mean = plt.plot(rolmean, color
std = plt.plot(rols 1
plt.legend: H
plt.title( &
plt.show()

utolay ", maxlag = 28 )

dfoutput = pd.Series(dftes’ » indexs['Test Statistic','p-value','#Lags Used','Number of Observations used'])
for key,value in dftest[ ems ()2

dfoutput critical val 5) Kkey] = value
pralue = dftest[1]
if pralue < cutoff:

print{'p-value = %.4f. The series is likely stationary.' % pvalue)
else:

print(‘p-value = X.4f. The series is likely non-stationary.’ X pvalue)
print (dfoutput)

In [26]: test_stationarity(dataset[ 'onion price’])

Figure 8: ADF test to check stationarity
The figure 9 shows the granger causality test to select the model’s based on framework.

In [35]: from statsmodels.tsa.stattools import grangercausalitytests
maxlag=12
test = 'ssr_chi2test’
~ def grangers_causation_matrix(data, variables, test='ssr_chi2test', verbose=False):

"""Check Granger Causality of all possible combinations of the Time series.
The rows are the response variable, columns are predictors. The values in the table
are the pP-values. P-values lesser than the significance level (0.05), implies
the Null Hypothesis that the coefficients of the corresponding past values is
zero, that is, the X does not cause Y can be rejected.

data : pandas dataframe containing the time series variables
variables : list containing names of the time series variables.

df = pd.DataFrame(np.zeros((len(variables), len(variables))), columns=variables, index=variables)
v for ¢ in df.columns:
M for r in df.index:
test_result = grangercausalitytests(data[[r, c]], maxlag=maxlag, verbose=False)
p_values = [round(test_result[i+1][e@][test][1],4) for i in range(maxlag)]
if verbose: print(f'Y = {r}, X = {c}, P Vvalues = {p_values}')
min_p_value = np.min(p_values)
df.loc[r, c] = min_p_value
df.columns = [var + '_x' for var in variables]
df.index = [var + '_y" for var in variables]
return df

datasetl = read _csv('final py.csv', parse_dates = [['year', 'month', 'day']], index_col=0, date_parser=parse)
datasetl = datasetl.drop([ 'date’,'state’, location’], axis=1)

grangers_causation_matrix(datasetl, variables = datasetl.columns)

Figure 9: granger causality test



6.2 The implementation of Seasonal ARIMA model

The file Seasonal_ARIMA_FINAL.ipynb file should be opened for execution. The acf and pacf model, box jenkins
method and grid search technique used to find the precise P,D,Q parameters is explained in the figure 10.

Figure 20: Selecting parameters for Sarima Model

Running the Seasonal ARIMA model and extracting the values of the evaluation metrics is shown in figure 11.

In [9]: from sklearn.metrics import mean_squared_error
#seasonal ARIMA model
# sarima = sm.tsa.statespace.SARIMAX(tra,order=(8,1,2),seasonal_order=(2,1,1,3),enforce stationarity=ralse, enforce invertibili
# sarima. summary()
# Evaluation Metrics
pred = sarima.predict(tr_end,te_end)[1:]
#print(pred)
#print(tes)
RMSE = np.sqrt(mean_squared_error(pred,tes))
print('Test RMSE: %.3f' % RMSE)
r2 = r2_score(pred,tes)
#print(r2)
#pred.to_csv(r'pred.csv’, index = False)

Figure 31: implementing the Sarima model

6.3 Implementation of RNN with LSTM (Model 2)

The file RNN-LSTM.ipynb should be opened for this execution. Exploratory analysis of the data required for
implementing the RNN is shown in figure 12.
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Transformation of the data for applying RNN with LSTM model is shown in figure 13.
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In [a71]:
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in [5]:

from pandas import read csv
from matplotlib import pyplot

# Load dataset

dataset = read_csv{'price.csv’, header=g, index_col=0)

values = dataset.values

# specify columns to plot
groups = [@8, 1, 2, 3, 5, 6, 7]
im1

# plot each column

pyplot. figure()

» for group in groups:

“pyplot.subplot (len(groups), 1, i)
pyplot.plotvalues[:, group])

=pyplot.title{dataset.columns[group], y=0.5, loc="right')

=i
pyplot.show()

wate

Delhi {

Figure 42: exploratory analysis for RNN with LSTM
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values = dataset.values|

# ensure all data is float
values = values.astype('f
# normalize features
print(values.shape)
scaler = MinMaxScaler(feature_range=(9, 1))
scaled = scaler.fit_transform(values)
print(scaled.shape)

# frame as supervised Learning

reframed = series_to_supervised(scaled, 1, 1)
print(refrased)

print(reframed.shape)

# drop colusns we don't want to predict

oat32")

reframed.drop(refrased.colums([7,8,9,10,11]],
000

#pandas .options. display.max_rows = 46
print(refrased.head())

(4132, 6)
(4132, 6)

vari(t-1) var2(t-1) vard(t-1) vara(t-1)
0.109457 ©.356834 ©.087636  0.284483
0.094221 0.480519 0.175865  ©.354526
0.094221  ©0.411255  ©.212831  0.215517
0.096322 0.186147 0.252546  ©.154634
0.096322 0.188621 ©9.225350 0.103448

bW

4127 ©.128897 ©0.493506 ©.213761  ©.829741
4128 ©.128897 0.610390 9.1317590 0.859914
4129  0.128371  ©.774892 ©.164910  0.852371
4130  0.128371 9.736796 ©.210564 0.811638
4131  ©.128371 ©.554113  9.235966 ©.810884

axis=1, inplace=True)

vars(t-1) varé(t
1.0

vari(t) var2(t) var3(t) vara(t) vars(t) vars(t)

-1

o000
ERR XX

S.B8®
EER XX

-~

# |Python3 O

s

| Python3 ©

1 9.094221 0.480519 ©.175865 ©0.354526 e.0
2 0.094221 0.411255 ©0.212831 0.215517 0.0 0.0 =
> o ooea2a PP IVE R TSI PR AT IrEY 2

Figure 53: Data transformation for RNN with LSTM

Seperating the training and testing dataset, reshaping the data and fitting the RNN with LSTM model is shown

in the figure 14.
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In [6]: - # split into train and test sets

values = reframed.values
n_train_hours = 365 * 10
train = values[:n_train_hours
test = values[n_train_hours:
# split into input and outputs

train X, trainy = train{:, :-1], train[:, -1]

test X, test_y = test[:, :-1], test[:, -1]

# reshope input to be 30 [sawples, timesteps, features]

trainX = train_X.reshape((train_X.shape[0], 1, train X.shape(1]))
test_X = test_X.reshape((test X.shape[0], 1, test_X.shape[1]))
print(train_X.shape, train_y.shape, test_X.shape, test_y.shape)

(3650, 1, 6) (3650,) (481, 1, 6) (481,)

In [7]): = # design network

import keras
from keras.layers import Dense

from keras.models import Sequential

from keras.utils import to_categorical

from keras.optimizers import SGD

from keras.callbacks import Earlystopping

from keras.utils import np_utils

import itertools

from keras.layers import LSTM

from keras.layers.convolutional import ConviD

from keras.layers.convolutional import MaxPoolinglD

from keras.layers import Dropout|

model = keras.Sequential()

model.add(LSTM(50, input_shape=(train_X.shape[1], train_X.shape[2])))
model.add(Dense(1))

model . compile(loss="mac’, optimizers'adan")

# fit network

history = model.fit(train X, train_y, epochs=50, batch_size=72, validation_data=(test X, test_y), verbose=2, shuffle=False)
# plot history

¢ |Pymon3 O

Figure 64: Implementing the RNN with LSTM model

Predicting and extarcting the evaluation metrics from the model is shown in the figure 15.
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In [131):

ARPUEL Uy @3 P LU ULy
from scipy.stats import randint

import pandas as pd # data processing, CSv file 1/0 (e.g. pd.read_csv), data manipulation as in SQL
import matplotlib.pyplot as plt # this is used for the plot the graph

import seaborn as sns # used for plot interactive graoph.

from sklearn.model_selection import train_test_split # to split the data into two parts

#from sklearn.cross_validation import KFold # use for cross validation

from sklearn.preprocessing import Standardscaler # for normalization

from sklearn.preprocessing import MinMaxScaler

from sklearn.pipeline import Pipeline # pipeline making

from sklearn.model_selection import cross_val_score

from sklearn.feature_selection import SelectFromModel

from sklearn import metrics # for the check the error and accuracy of the model

from sklearn.metrics import mean_squared_error,r2_score

test_X1 = test_X.reshape((test_X.shape[0], test_X.shape[2]))
inv_yhatl = np.concatenate((yhat, test Xi[:, 1:]), axis=1)
print(inv_yhat1. shape)

inv_yhat2 = scaler.inverse_transform(inv_yhat1)
inv_yhat2 = inv_yhat2[:,0]

test_y = test_y.reshape((len(test_y), 1))

inv_y = np.concatenate((test_y, test_Xi[:, 1:]), axis=1)
inv_y = scaler.inverse_transform(inv_y)

invy = inv_y[:,0]

rase = (np.sqrt(mean_squared_error(inv_y, inv_yhat2)))
peint(‘Test RMSE: X.3f" X rmse)

correlation_matrix = np.corrcoef(inv_y, inv_yhat2)
correlation_xy = correlation_matrix[0,1]

r_squared = correlation xy**2

print(r_squared)

plt.plot(inv_y, label = 'Actual’)

plt.plot(inv_yhat2, label = 'Predicted")
plt.ylabel('price of commodity1®)

plt.xlabel("time duration')

plt.legend()

plt.show()

| Pyton3 ©

Figure 75: evaluation for RNN with LSTM

Extarcting the evaluation metrics from the model and plotting the graph between predicted and actual is

shown in the figure 16.
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In [17]: rase = np.sqrt(mean_squared_error{inv_y, inv_yhat2))
print(‘Test RMSE: X.3f' X rmse)
rz = rz_score(inv_y, inv_yhat2)
print(r2)

Test RMSE: 31.375
8. 946365763793143

m[ 1 print()

In [2a]:  plt.plot(inv_y, label = 'Actual’)
plt. label = 'Predicted")
plt.
plt.
plt. amodityl”)
plt. n')

plt. legend()

plt.show()
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Figure 86: plot between predicted and actual data

6.4 Implementation of Multiple Linear Regression :

Open the file Multiple_linear_regression.ipynb should be opened for execution. Feature extraction done for
selecting the required variables in shown in figure 17.
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for multiple Lineor regression
from ets import make_regression
from r_mode] import LinesrRegression
from sklearn.tree import DecisionTreeRegressor
from matplotlib import pyplot

model = DecisionTreeRegressor()

X = dataset[[“temp","rain", "weekends”, “hol
Y = dataset[“onion price”)

sodel. i

-feature_importances_
56 % (4,v)

. portance
pyplot.bar([x for en(importance))], isportance)

pyplot. show()

Feature: 0, Score: 9.21440
eature: 1, S 0.02918
0.01766
: 0.00810
: 9.24071
re: 0.16556
core: 0.12987

e: 0.19452

& Uit % & 8 E

Figure 97: feature extraction for Multiple Linear Regression

The implementation of the linear regression model, extracting the evaluation metrics and plotting the graph
between the predicted and the actual is shown in the figure 18.
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In [46]: predictions = lr.predict(X_test)
mae = sum(abs(predictions - test{“onion price”]).values)) / test.shape(o]
#print(mae)
rase = np.sqrt(mean_squared_error(predictions ,test{"onion price"].values))
sprint(‘Test RMSE: X.3f' X rmse)

r2 = r2 score(prednnons, test[onion price”].values)
#print(r2)

In [33]: plt.plot(test["onion price"].values, label = 'Actual’)
plt.plot(predictions, label = ‘Predicted’)
plt.ylabel(‘price of commodity1’)
plt.xlabel("time duration')
plt.legend()
plt.show()

nmo duuhcn
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Figure 108: Implementation and evaluation for Multiple Linear Regression.

The entire code is submitted as part of the research project to national college of Ireland.
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