Configuration Manual Sumeet Kumar

X18188231

1. Introduction

The configuration manual contains all the pertinent information related to the software and hardware used in the research project. Also, it specifies the important libraries that are used and the data description is given in section 3. Moreover, it elucidates several steps that needs to be taken to reproduce the work in any machine satisfying the requirements which is covered in the following sections

1 Environment Specification

The MSc. Research project runs on a system which has certain specifications for both software and hardware that are described in the following subsections.

1.1 Hardware Specifications

This project is implemented on the hardware with the following configurations:

Hardware	Configuration			
System				
Operation System	Windows 10 (64-bit Operating System)			
RAM	8 GB			
Hard Disk	1 TB, 256 SSD			
Graphic Card	2 GB Nvidia			

Table 1

Windows 10 Home Single Language

© 2019 Microsoft Corporation. All rights reserved.

```
System –
```

 Manufacturer:
 HP

 Model:
 HP Pavilion Laptop 15-cs2xxx

 Processor:
 Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz 1.80 GHz

 Installed memory (RAM):
 8.00 GB (7.89 GB usable)

 System type:
 64-bit Operating System, x64-based processor

 Pen and Touch:
 No Pen or Touch Input is available for this Display

Figure 1

1.2 Software Specification

In this project, plethora of software are used which are represented in Table 2.

	Software	Configuration
--	----------	---------------

Operating System	Windows 10 (64-bit Operating System)
IDE	Google Colab
Scripting Language & Version	Python, Python 1.7

Table 2

1.3 Integrated Development Environment

Google Colab

Google Colab is a cloud based Collaboratory that is created in order to help disseminate machine learning education and research. This is like a Jupiter notebook environment that doesn't need any set up and would run entirely on the cloud.

It helps to combine both executable code and rich text in one document. One can put images, HTML, LaTeX and much more to it. Figure 1 illustrates how a google colab looks after login in.

Steps to reach the Figure 1:

- 1- Login in Google.
- 2- Open Google colab and login in it using the email address.
- 3- Once you are on inside the Google Colab, you'll have option to load any code you have from GitHub, Google Drive or just upload. You can upload any data file you want to use for the learning method and built model. Once the data is mounted on drive one can use it by copying its path whenever needed.

Welcome To Colaboratory File Ede View Insert Rumme Too	is Help						60 Share 🌣 🏠
Table of contents ×	+ Code + Text & Copy to Drive						Connect 👻 🥒 Editing 🗠
Conting started Data science Machine teaming More Resultion Machine Learning Examples Machine Learning Examples Bestion	Collaborations? Collaborations or Collab for short, allows you to write and ex 2.200 contractions on CRUs 4.200 contractions to CRUs 4.200 contractions to CRUs 4.200 contractions to CRUs Whitems you're a student, a data accientist or an Az researce	ecute Python in your Enswerc with					
	just get started below!	Examples Recent	Google Drive	G	tHub	Upload	
	+ Getting started	Filter notebooks	Ŧ				
	The document you are reading is not a static web page, b, code.	Tel+		First opened	Leat opened	87	
	For example, here is a code cell with a short Python script	CO Welcome To Colaboratory		Jul 11, 2020	0 minutes ago		
	<pre>[] seconds_in_a_day = 24 " 60 " 60 seconds_in_a_day</pre>	🙆 Neural Network.jppnb		Jul 11, 2020	3 daya ago	■ 2	
	e 86400	🙆 Rendom forest regression lpynb		Jul 23, 2020	3 days ago		
	To execute the code in the above cell, select it with a click shortcut "Command/Ctrl+Enter". To edit the code, just clic	CO Snippeta: Importing Ibraries		3 days ago	3 daya ago	Ø	
	variables that you define in one cell can later be used in or	🔥 United Jpynb		3 days ago	3 daya ago		
	<pre>[] seconds_in_e_week = 7 * seconds_in_e_day seconds_in_e_week</pre>						
	0 60-500				NEW NOTER	OOK CANCEL	
	Golde notebooks allow you to combine executable code as you create your own Colab notebooks, they are stored in you or friends, allowing them to comment on your notebooks or notebook you can use the File menu above or use the follow Colab notebooks are Jupyter notebooks that are hosted by C	anch text in a single document, along with image a Boogle Drive account. You can easily share you even edit them. To learn more, see <u>Querview of Co</u> wing link: <u>create a new Coleb notebook</u> . Solab. To learn more about the Jupyler project, se	e HTML LaTeX and Colab notebooks v <u>Xab</u> : To create a ne e j <u>upyter org</u>	I more. When with co-worker w Colab	2		
	- Data science						
	With Colab you can harness the full power of popular Python generate some random data, and uses matplotlib to visualiz	n libraries to analyze and visualize data. The code te it. To edit the code, just click the cell and start e	cell below uses nu diting.	mpy to			

Figure 2

2 Libraries

After one has started the notebook installation of vital libraries is done. Important libraries required to execute any project are installed. And if some libraries which are not there then one can use pip install (Library name).

Sklearn.ensemble	Sklearn.neighbors
sklearn.model_selection	Tensorflow.keras.models
skimage	Skimage.io
tensorflow	opencv
Numpy	Pandas
Sklearn, preprocessing	Sklearn
Tensorflow.keras.layers	Sklearn.metrics
Matplotlib	Matplotlib.pyplot
sklearn.pipeline	sklearn.model_selection
sklearn.preprocessing	keras.wrappers.scikit_learn
StandardScaler	KFold
keras.models	keras.layers

Table 3

3 Dataset

There are two different Data sets which have been taken for the research. The dataset are taken from Kaggle which is opensource.

3.1 European Soccer Data set.

The European Soccer Dataset contains seven different files, these files are Country, League, Match, Player, Player Attributes, Team, Team Attributes. A data contains a total of 222,796 rows and 299 rows. Every File has a set of variables which are going to be used in the research. Also, more variables were calculated.

3.2 Complete Player Dataset

The FIFA 20 complete player dataset contains all players around the world in different leagues. We have taken players who were part of FIFA for the year 2015-2016. All skills and attributes of players are available and are used in the research.

These First Dataset had files in SQLite format, these were transformed into CSV with the help of DB browser, DB browser is a free software which can be downloaded from google. After installing it, one can view the files which are present in SQ format. For our research these files were downloaded in csv format. Figure illustrates the files which are present in data and converted into csv.

Figure 5

The second dataset contains player dataset from last 10 years, for this research we have simply downloaded the players who were playing FIFA in 2015.

4 Data Pre-processing

The two files downloaded contained 238,254 rows and 333 columns which in total is 14,441,635 integer value data. This data is cleaned with the help of Ms Excel and mounted to Google Colab for building model.

4.1 Data Scaling

Data scaling is performed for scaling the values.

test_	data.head()									
Но	me Team Average	Away Team Average	Home Team Overall Playing Average	Away Team Overall Playing Average	Home Team Potential Average	Away Team Potential Average	home_team_goal	away_team_go	al B365	H B365A
0	47.7	52.5556	67.666667	73.666667	75.000000	76.555556	2		1 2.6	0 2.80
1	41.9	41.9000	71.333333	71.333333	73.611111	73.611111	1		2 1.6	7 5.50
2	45.7	45.4000	74.77778	80.944444	77.666667	83.722222	0		1 6.5	0 1.57
3	47.1	45.8000	74.611111	70.555556	78.055556	73.666667	0		0 1.5	6.00
4	47.4	44.8000	75.000000	68.277778	79.055556	70.555556	0		1 1.5	7 6.00
]	Figure 6 Before	Scaling					
ŀ	ome Team Average	Away Team Average	Home Team Overall Playing Average	Away Team Overall Playing Average	Home Team Potential Average Aw	ay Team Potential Average hor	ne_team_goal awa	ay_team_goal	B365H	B365A
0	0.497925	0.440094	0.518507	0.503088	0.466667	0.538462	0.2	0.111111 0	.062500	0.052248
1	0.257261	0.161880	0.622020	0.398213	0.402564	0.402564	0.1	0.222222 0	.025240	0.134265
2	0.414938	0.253264	0.719260	0.830201	0.589744	0.869231	0.0	0.111111 0	.218750	0.014885
3	0.473029	0.263708	0.714555	0.363254	0.607692	0.405128	0.0	0.000000 0	.021234	0.149453

Figure 7 Post Scaling

1. Model --- CASE 1

a. Neural Network Model

```
def baseline_model():
    model = Sequential()
    model.add(Dense(8, input_dim=8, kernel_initializer='normal', activation='relu'))
    model.add(Dense(1, kernel_initializer='normal'))
    model.compile(loss='mean_squared_error', optimizer='adam')
    print(model.summary())
    return model
```

model = baseline_model()

Figure 8

b. Ridge Regression

```
ridgeR = Ridge(alpha = 1 )
ridgeR.fit(train_x, train_y)
y_pred = ridgeR.predict(test_x)
```

```
ridgeR.fit(train_x, train_y)
```

```
Figure 9
```

c. Lasso Regression

```
lasso = Lasso(alpha = 1)
lasso.fit(train_x, train_y)
y_pred1 = lasso.predict(test_x)
```

lasso.fit(train_x, train_y)

Figure 10

d. Random Forest

from sklearn.ensemble import RandomForestRegressor

regressor = RandomForestRegressor(n_estimators=20, random_state=0)
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)

```
regressor.fit(X_train, y_train)
```

Figure 11

e. XGBoost

model = XGBRegressor()
model.fit(X_train, y_train)

y_pred_xgb = model.predict(X_test)

Figure 11

2. Models ---- CASE 2

a. Neural Network

```
def baseline_model_C2():
    model_C2 = Sequential()
    model_C2.add(Dense(8, input_dim=8, kernel_initializer='normal', activation='relu'))
    model_C2.add(Dense(1, kernel_initializer='normal'))
    model_C2.compile(loss='mean_squared_error', optimizer='adam')
    print(model_C2.summary())
    return model_C2
```

model_C2 = baseline_model_C2()

Figure 12

b. Ridge Regression

```
ridgeR = Ridge(alpha = 1 )
ridgeR.fit(train_x_C2, train_y_C2)
y_pred_C2 = ridgeR.predict(test_x_C2)
```


c. Lasso Regression

```
lasso = Lasso(alpha = 1)
lasso.fit(train_x_C2, train_y_C2)
y_pred1_C2 = lasso.predict(test_x_C2)
```

```
lasso.fit(train_x_C2, train_y_C2)
```

Figure 14

d. Random Forest

from sklearn.ensemble import RandomForestRegressor

```
regressor = RandomForestRegressor(n_estimators=20, random_state=0)
regressor.fit(X_train_C2, y_train_C2)
y_pred_C2 = regressor.predict(X_test_C2)
```

```
e. XGBoost
```

```
model = XGBRegressor()
model.fit(X_train_C2, y_train_C2)
```

y_pred_C2_xgb = model.predict(X_test_C2)

Figure 16

5 6 Evaluation

For the Evaluation three Metrics have been chosen. MSE, MAE, RMSE

Mean squared error	$ ext{MSE} = rac{1}{n}\sum_{t=1}^n e_t^2$
Root mean squared error	$\text{RMSE} = \sqrt{\frac{1}{n}\sum_{t=1}^{n}e_{t}^{2}}$
Mean absolute error	$ ext{MAE} = rac{1}{n}\sum_{t=1}^n e_t $

Figure 17

6 References

Bhattacharyya, S., 2020. *Ridge And Lasso Regression: L1 And L2 Regularization*. [online] Medium. Available at: https://towardsdatascience.com/ridge-and-lasso-regression-a-complete-guide-with-python-scikit-learn-e20e34bcbf0b> [Accessed 2 August 2020].

Malik, U., 2020. *Random Forest Algorithm With Python And Scikit-Learn*. [online] Stack Abuse. Available at: <u>https://stackabuse.com/random-forest-algorithm-with-python-and-scikit-learn/</u> [Accessed 14 July 2020].