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Abstract

According to the World Health Organization (WHO)] more than 25% of the
European Union’s (EU) population suffer from various levels of depression and anxi-
ety, which if left untreated, could lead to serious health disorders such as Major
Depressive Disorder (MDD) or otherwise called clinical depression. Health condi-
tions like depression and anxiety cost the EU over €170 billion every year. This
study investigates the effectiveness of residual networks in depression detection. It
proposes the use of ResNet-18 to predict if an individual is depressed or not, and
compares its performance to a Base-CNN and AlexNet. The models are trained
on the log-scaled spectrograms of the participant audio recordings from the DAIC-
WOZ dataset. Preprocessing steps such as random undersampling and k-fold cross-
validation contribute significantly to the performance of the models. The ResNet-18
model provides a substantially high Fl-score of 0.83 which is 7.2% higher than the
next best state-of-the-art model. This research demonstrates the effectiveness of
residual networks in depression detection and, hence, advocates its viable use in
listening and depression helpline services. One of the limitations of the model is
that it shows signs of overfitting. Future work could potentially investigate the use
of General Adversarial Networks (GAN) for data augmentation techniques.

1 Introduction

According to a recent studyﬂ by Eurofound in 2019, more than 13% of young people
(aged 18-24) are at risk of depression in Ireland (see. Figure[l)). Over 12% of its young
people (aged 15-24) suffer from chronic depression. While the numbers are still high,
the graph shows that Ireland has done relatively better than other EU countries when it
comes to diagnosing chronic depression among young people. This could be attributed
to the reach of dedicated medical professionals, psychiatrists, and councillors. A recent
COVID-19 mental health surveyf| by Maynooth University (MU) and Trinity College of
Dublin (TCD) shows that 23% of adults in Ireland reported suffering from depression
and 20% from anxiety. Hence, it is evident that the ability to effectively detect and treat

'https://wuw.euro.who.int/en/health-topics/noncommunicable-diseases/mental-
health/news/news/2012/10/depression-in-europe/depression-in-europe-facts-and-figures

“https://www.eurofound.europa.eu/publications/report/2019/inequalities-in-the-
access-of-young-people-to-information-and-support-services

Jhttps://www.maynoothuniversity.ie/news-events/covid-19-mental-health-survey-
maynooth-university-and-trinity-college-finds-high-rates-anxiety
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individuals suffering from clinical depression is paramount to the well-being of a country’s
society.

While traditional methods of treatment such as Cognitive Behavioural Therapy (CBT),
prescribed medication, and social interventions have been used to treat MDD, they first
require the concerned individual to be identified. This is done by putting them through
certain invasive diagnostic procedures that are uncomfortable for those in need of help.
This is where listening services (e.g. NiteLineﬁ) and other depression helplines play an
important role with their non-invasive methods of identifying individuals with signs of
depression.
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Figure 1: Risk of depression (18-24 years, 2016) and reported chronic depression (15-24
years, 2014), by country (%)

The current studies in depression detection use the Wizard-of-Oz interviews from
the Distress Analysis Interview Corpus (DAIC-WOZ) to study depression among adults.
Studies by Haque et al| (2018)), Srimadhur and Lalithal (2020)), and [Yalamanchili et al.|
, have shown the immense power of neural networks being applied to the field of
depression detection. However, with the recent introduction of ResNets (He et al.; 2016a)
in the computer vision domain, there has surprisingly been less research investigating the
use of residual networks in depression detection. ResNets are a type of Deep Convo-
lutional Neural Network (DCNN) that achieved incredible success in computer vision’s
prestigious competition ILSVRC 2015 (ImageNet Large-Scale Visual Recognition Chal-
lenge). Omne of their main characteristics is their ability to solve the vanishing gradient
problem of deeper networks.

This research paper proposes the use of residual networks, more specifically the
ResNet-18 neural network, along with certain effective preprocessing techniques to in-
crease the sample set and improve the model’s prediction performance. This research
uses log-scaled spectrograms of the participants’ speech as input features to ResNet-18.
Two other Convolutional Neural Networks (CNN), Base-CNN and AlexNet, were em-

4NiteLine: https://niteline.ie/
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ployed to use as baseline models to compare the performance of the ResNet. AlexNet
was employed for its promising use in audio classification.

Research Objective: To investigate the potential of residual networks in detecting
if a person is depressed or not based on their PHQ-8 scores while using only their speech
as input.

To investigate the above research objective, this study will implement various ResNet
models including a standard CNN and AlexNet for comparison. They will be trained on
spectrograms of audio recordings, and their effectiveness in prediction will then be eval-
uated using interpretable metrics such as Fl-score, precision, and recall. These metrics
will then be compared with state-of-the-art research conducted in this domain using the
same DAIC-WOZ dataset. While this study uses the DIAC-WOZ corpus which consists
of American participants, it is possible that it might not fair well with other accents of
the English language.

The rest of this research paper is organised as follows: Section |2 reviews state-of-the-
art research performed in depression detection and provides the rationale for studying
residual networks; Section |3 describes the methodology carried out in terms of data
acquisition and its preprocessing; Section [4] provides an overview of underlying design
architecture of this research; Section 5| describes the implementation of the Base-CNN,
AlexNet, and ResNet-18; Section [0] critically analyses the base models and ResNet-18,
and provides a detailed discussion of its implications; finally, Section [7] provides a brief
conclusion of this research study with viable areas of future work.

2 Related Work

2.1 Depression Detection Methods and Speech

In recent research, we have seen data from different domains be used to aid in depression
detection. Traditional machine learning algorithms and, more recently, neural networks
have been used on a variety of data sources in attempts to study and predict the likeliness
and severity of Major Depressive Disorder (MDD) from early signs of depression. This
research has been conducted on datasets of posts from social media and online forums.
Facial expressions (Zhu et al.; 2020) have also been used for prediction. Data of parti-
cipants such as Electroencephalograms (EEG), Electrocardiograms (ECG) (Zhu et al.;
2020), MRI scans (Mousavian et al.; 2019), and other physiological data (Zhang et al.j
2020)) have been regularly used in past research in depression detection.

The methods mentioned above use data that require obtrusive means of retrieval.
This poses a difficulty in obtaining accurate data from clinically depressed individuals.
Speech has recently been widely used in research to predict and analyze signs of depres-
sion in individuals. This provides for a more unobtrusive way to detect signs of early
depression which could ensure that appropriate attention and help are provided to at-risk
individuals. Moreover, it is cost-efficient to record speech than to require individuals to
obtain physiological data such as ECGs, EEGs, and MRI scans.

One of the advantages is that the paralinguistic features of speech such as prosody,
tone, and pitch make it easier to discriminate individuals diagnosed with clinical depres-
sion from individuals who do not suffer from depression. [Huang et al. (2020) proposes



a method that analyzes the acoustic features such as prosodic, spectral, and glottal fea-
tures along with abrupt changes in speech articulation to detect depression in individuals.
Such types of feature extraction have been proven to be the norm when using speech for
depression detection.

2.2 Use of Spectrograms

Spectrograms are a visual method of representing the amplitude of a signal (loudness)
in various frequency spectrums as they vary with time. The amplitude of the signal is
represented by the color intensity of the spectrogram. It is usually represented as a 2D
matrix of a grayscale image where the values of the matrix represent the amplitude or
intensity of the signal.

While prosodic features such as Mel-Frequency Cepstral Coefficients (MFCC), and
Zero Crossing Rate (ZCR) have been extensively used in past research we are seeing a
growing shift to using spectrograms for audio classification as they contain a high level
of detail rather than represent lower-level sound features like MFCCs and other prosodic
features. Spectrograms have been gaining traction and are being used increasingly in
audio classification. In this project, we will be using log-scaled spectrograms that have
been extracted from a widely used signal transformation process called a Short-Time
Fourier Transform (STFT) which is a specific type of Fourier transform.

Guzhov et al.| (2020) advocate for the use of spectrograms in their research of clas-
sifying environmental sounds using the UrbanSound8K dataset. They use pre-trained
ResNets on spectrograms of clips of environmental sounds. It is found that using log-
powered spectrograms is 10% more accurate than existing state-of-the-art approaches that
use MFCCs and also Mel-spectrograms which are those that are Mel-scaled instead of
log-scaled. |[Esmaeili et al. (2018]) achieves high sensitivity and specificity by using spec-
trograms of patient breathing patterns to detect respiratory depression using tracheal
sound analysis.

Dinkel et al.| (2019)) also record the promising results in depression detection when us-
ing log-scaled spectrograms while the Mel-scaled spectrograms perform slightly inferior.
This could be attributed to the nature of the Mel-scaled spectrograms being less re-
sponsive to changes in hyperparameters of the Bidirectional Long Short-Term Memory
(BLSTM) model used. (Choi et al.| (2019) proposes a unique complex-valued spectrogram
that follows a different approach of spectrogram extraction from normal straightforward
STFT log-scaled spectrograms commonly used in audio classification. They propose to
not ignore the phase information when extracting spectrograms from STFT. Magnitude
and phase can be accounted for by methods such as phase reconstruction.

Boddapati et al.| (2017) also shows spectrograms perform better to MFCCs while us-
ing them on popular neural network architectures like AlexNet and GoogLeNet to classify
environmental sounds. It is interesting to note that higher accuracy was obtained from
spectrograms that were created using a lower sample rate of 8 kHz and unsurprisingly
a larger frame length. However, speech signals, unlike environmental sounds, are char-
acterized by frequent abrupt changes in frequency and intuitively larger frame lengths
would mean that we lose the ability to analyze these abrupt changes.



2.3 State-of-the-Art Research

In this section, we will focus on state-of-the-art research that has been conducted in
depression detection with more emphasis on those which have worked on the Wizard-
of-Oz interviews of the Distress Analysis Interview Corpus (DAIC-WOZ) dataset. This
dataset consists of 189 audio files of interview sessions between a virtual interviewer, and
normal and depressed participants. It will be described in more detail later in this report.

2.3.1 Feature Extraction

The DAIC-WOZ dataset also contains transcripts of the interviews and facial expressions
of the participants. However, there will be more focus on features extracted from the
participant speech in the papers discussed below.

Yalamanchili et al. (2020)), in their research, extract Low-Level Descriptors (LLD)
such as spectral and prosodic features from the COVAREP audio processing package.
It is dissatisfying to note that no justification is provided for using statistical measures
of these features. MFCCs, short-term energy coefficients, and spectral entropy features
are extracted from the audio files in Wang et al.| (2020). Sentence-level embeddings are
preferred over phoneme-level and word-level embeddings in (Haque et al.; 2018). While
Yang et al.| (2020) uses GANs to augment data to improve depression level predictions.

Log-spectrograms, which are scaled on the log axis, have been used in Vazquez-
Romero and Gallardo-Antolin (2020). A spectrogram crop of 4 seconds each at a sampling
rate of 16 kHz is used. Spectrograms along with Mel-scale feature bank features are used
in DepAudioNet (Ma et al.; 2016) which is one of the most widely used base architectures
used for comparison in depression detection from the DAIC-WOZ dataset. Spectrograms
have also been used in M.P. et al.|(2019) after low-pass Butterworth filters and the Fast
Fourier Transform (FFT) is applied to the audio signals. Srimadhur and Lalitha/ (2020))
uses waveforms in their proposed model.

2.3.2 Class Imbalance Solutions

Out of 189 participants in the DAIC-WOZ dataset, 133 are not depressed while 56 are
depressed. This posses a class imbalance issue.

An oversampling technique known as Synthetic Minority Oversampling Technique
(SMOTE) has been used in|Yalamanchili et al.| (2020)). Here, the minority class (depressed
participants) in over-sampled. Random sampling is used in Ma et al.| (2016) to address
the class imbalance issue. Here, equal random crops of equal length are taken from each
participant to minimize person-specific features that might influence the model. From
here, an equal number of samples from both classes, depressed and non-depressed, are
chosen to be included in the final training set.

2.3.3 Machine Learning Models

Yalamanchili et al. (2020) finds that using SVM coupled with SMOTE analysis provides
them an Fl-score of 0.74 which performs better than the Logistic Regression and Ran-
dom Forest algorithms tested. |[Haque et al. (2018)) proposed a C-CNN (Casual-CNN)
which provides an Fl-score of 0.76 for the combination of audio, visual, and linguistic
data of DAIC-WOZ. A 3-layered CNN is proposed in |M.P. et al. (2019) which receives
spectrograms as input.



Vazquez-Romero and Gallardo-Antolin| (2020) uses an ensemble averaging technique
to combine the predictions of individual CNNs inspired by [Ma et al. (2016)) but without
the LSTM layer since no improvements were shown. Ma et al. (2016)) includes a 1D-
CNN stacked behind a Long Short-Term Memory (LSTM) layer and two fully connected
layers. In Srimadhur and Lalitha (2020), a spectrogram based CNN is compared with an
end-to-end neural network which performs better and receives an F1-score of 0.77 for the
depressed class. The authors conclude that as the kernel size increases, the model can
learn more nuanced discriminative patterns thereby yielding better performance.

Chlasta et al.| (2019) is one of the very few research papers which use ResNets on the
DAIC-WQOZ dataset and achieve their best performance from a pre-trained ResNet-50
architecture which gave an accuracy of 78% but a poor Fl-score of 0.57. This could be
attributed to the lack of sampling to address the class imbalance issue when using the

DAIC-WOQOZ dataset.

A Hierarchical Attention Transfer Network (HATN), which comprises mainly of an
attention-based encoder-decoder model, is proposed in Zhao et al. (2020) to predict de-
pression levels by using the PHQ-8 scores of participants. A speaker de-identification ar-
chitecture for depression analysis is proposed in |Lopez-Otero and Docio-Fernandez| (2020))
and compared with a General Adversarial Network (GAN) based approach. A GAN-based
architecture called Deep Convolutional General Adversarial Network (DCGAN) is used
for data augmentation in Yang et al.| (2020)) which shows an increase in performance when
more augmented data is introduced. Wang et al.| (2020)) also uses a CNN-GAN based ap-
proach called DR AudioNet which predicts the depression levels in the participants. One
thing to note is that the Discriminator in the GAN uses the LeakyReLU as its activation
function.

2.3.4 Evaluation Metrics

It is found that F1-scores has been used as a measure to accurately evaluate the perform-
ance of machine learning models used in this binary classification of depressed individuals.
F1-score is the harmonic mean between the precision and recall and these metrics will be
used later in this paper. Other metrics such as accuracy perform poorly when it comes
to truly describe the performance of the model. It is satisfying to see that most of the
important evaluation metrics (F1l-score, Precision, and Recall) have been provided in
Haque et al.| (2018), Vazquez-Romero and Gallardo-Antolin| (2020)), and Ma et al.| (2016]).
Sensitivity and specificity have also been found to be reliable metrics to judge the models
in depression detection research which are present in [Haque et al.| (2018]).

K-Fold cross-validation has been used in Srimadhur and Lalithal (2020) to increase the
accuracy of the compared models. Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE) were used to evaluate the predicted PHQ-8 scores in [Zhao et al. (2020),
Yang et al.| (2020), and Wang et al.| (2020).

Some ICT solutions have also been used to further evaluate the models in real-time.
For example, [Yalamanchili et al. (2020) uses an android application to assess subjects
using the PHQ-8 questionnaire just as found in DAIC-WOZ. This provides an F1-score of
0.74. However, their training model’s metrics of fl-score, precision, and recall have been
made to appear high by only highlighting those of the non-depressed class. While the
credible, yet poor depressed, class metrics is camouflaged at best. M.P. et al.| (2019) also
provides an ICT solution which involves a python script-powered Raspberry Pi receiving



input from a microphone and uses the model to predict depression from the user’s voice
recording. Omne again, we see that only the accuracy of the model is provided with no
mention of Fl-score.

Table 1: State-of-the-art research using the audio section of DAIC-WOZ.

Author Model Precision Recall F1-Score
Haque et al| (2018)* C-CNN 0.71 0.83 0.77

Srimadhur__and _ Lalithal End-to-end CNN 0.79 0.77 0.74

(2020)

Yalamanchili et al.| (2020) SVM 0.7 0.78 0.74

Chlasta et al.| (2019) ResNet-50 0.57 0.57 0.57

Ma et al.| (2016 CNN+LSTM 0.35 1 0.52

*Research utilizes audio, video, and linguistic sections of DAIC-WOZ for prediction.

2.4 AlexNet in Audio Classification

AlexNet (Krizhevsky et al.;2012)) is a Deep Convolutional Neural Network (DCNN) which
is believed to be the neural network paved the way for major advancements in the state-
of-the-art CNNs we see today. It won the ILSVRC 2012 (ImageNet Large-Scale Visual
Recognition Challenge) by beating the runner-up by a significant margin. ILSVRC is
something like the Olympics in Computer Vision research. On the ImageNet dataset,
it achieved a top-5 error rate of 15.4% with the runner up achieving the next best of
26.2%. AlexNet has recently been applied in audio classification with the increasing use
of spectrograms, scalograms, and other image representations of audio features.

In their paper, |Jayalakshmy and Sudha| (2020), use a pre-trained AlexNet CNN to
predict respiratory disorders from scalograms using the Adam optimizer. It uses a stand-
ard AlexNet with 5 (convolution + max-pooling) layers followed by 3 fully connected
layers. [Singh et al.| (2019)) also uses scalograms of Phonocardiogram (PCG) signals on a
pre-trained AlexNet and achieve high-performance results with specificity and sensitivity
at 90%.

However, it is important to be wary of the challenges likely to occur in audio clas-
sification using AlexNet. (Cohen-McFarlane et al.| (2020)) predict pre-trained AlexNets
would perform better on spectrograms which differ from conventional images, however,
they make no further attempt to justify this statement. Other effects can be reduced by
introducing noise to increase the generalizability of the model.

2.5 ResNets in Audio Classification

Microsoft Research Asia’s 152-layered ResNet architecture (He et al.; 2016a) was the
winner of ILSVRC 2015 with an incredible error rate of 3.6%. This made them one of
the most acclaimed neural networks in computer vision. The intuition behind this deep
architecture is that a large number of layers help in learning more complex features. Res-
Nets, with their concept of 'residual blocks’, were a solution to the infamous vanishing
gradient problem which DCNNs suffered from. This problem was the reason why shal-
low architectures such as AlexNet and VGG-19 (Simonyan and Zisserman; 2014)) were
preferred until ResNets came along. ResNets usually come with 18, 32, 50, 101, and



152 layers. They have become popular in audio classification but its use in depression
detection has been surprisingly infrequent with the exception of |Chlasta et al.| (2019).

In |Cox et al.| (2018)), grayscale 2D-spectrograms of radio signals are used to predict
signal classes on Search for Extraterrestrial Intelligence (SETI) research data. The re-
search shows that Wide ResNets (WRN) show improved accuracy than DenseNets and
their deeper counterparts, ResNet-18 through ResNet-152. This is achieved with 95%
lesser parameters than standard deep ResNets. In (Chen et al.; 2019), spectrograms ex-
tracted from optimized S-transform (OST) on the audio signals are used in ResNet-50
to predict certain respiratory sounds like wheeze and crackle. A pre-trained ResNet-50
architecture in [Le et al. (2019) is used to make use of transfer learning along with an
SVM to classify cries of babies and identify those with asphyxia, deafness, hunger, and
pain.

3 Methodology

This research will utilize the Knowledge Discovery in Databases (KDD) methodology,
initially proposed by Fayyad et al. (1996). This methodology will be the underlying
approach to acquire, process, experiment with, evaluate, and ultimately gain insights
from data in the domain of depression detection. In summary, this approach entails
the data selection, data preprocessing, data transformation, and the application of the
proposed neural network and its evaluation.

3.1 Dataset

The dataset used in this research is of the Wizard-of-Oz interviews from the Distress
Analysis Interview Corpus (DAIC-WOZ)P| It is obtained from the University of Southern
California’s (USC) Institute for Creative Technologies and was part of the 2016 Au-
dio/Visual Emotional Challenge and Workshop (AVEC 2016) (Valstar et al.; 2016). An
End User License Agreement (EULA) was submitted and, upon approval, credentials were
provided to access the dataset from which the interview audio files were downloaded. All
participants who have taken part in the study in the DAIC-WOZ dataset have signed
waivers that approve the usage of the data collected for academic research purposes.

The dataset consists of 189 .wav audio files of interview sessions with depressed and
non-depressed participants averaging almost 16 minutes for each interview session. The
participant is labelled ’depressed’ or 'not-depressed’ based on the results of a psychiatric
questionnaire, PHQ-8, filled-in by them prior to the interview. A PHQ-score of 10 or
more would indicate the participant suffers from a certain level of depression.

These WOZ-styled interviews are conducted by a virtual interviewer named Ellie who
is controlled by a human interviewer in another room. The participants are asked open-
ended questions such as ”Who’s someone that’s been a positive influence in your life?...
Can you tell me about that?”.

SDAIC-WOZ Dataset: https://dcapswoz.ict.usc.edu/
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3.2 Audio Segmentation

The files have been segmented to extract only the participant’s speech without the si-
lence, background noises, and the voices of other speakers. This was possible since the
participants used microphones in a low-noise environment which permitted the segment-
ation of most audio files with the exception of a few due to technical difficulties. This
was done using python’s pyAudioAnalysisﬂ package.

3.3 Spectrogram Extraction

In this research paper, as mentioned in section [2.2] we have decided to use log-scaled
spectrograms of the audio clips. This decision was influenced by the increased efficiency
obtained by using spectrograms in recent state-of-the-art audio classification research
such as|Guzhov et al. (2020), Esmaeili et al.| (2018), and Boddapati et al.| (2017).

The segmented audio clips, which only contain the participant voices, are then sampled
at a 16 kHz sample rate. The Short-Time Fourier transform (STFT) is then performed on
the signal using a Hanning window, a frame size of 1024, and a hop size of 512 samples.
The resulting spectrogram of each segmented audio clip is obtained in the form of a 2D
matrix. They are then scaled logarithmically to produce log-scaled spectrograms. This
blog |Z| shows that log-scaling of spectrograms perform much better than z-score or min-
max scaling. These are then stored locally as grayscale images in preparation for the next
preprocessing step, random undersampling.
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(a) Participant ID: 482 (Normal) (b) Participant ID: 426 (Despressed)

Figure 2: 15-second crops of log-scaled spectrograms.

One interesting observation to note is that depressed participants generally provide
low-pitched, relatively short, to-the-point, responses to open-ended questions. Whereas,
non-depressed participants tend to be more comfortable with providing detailed re-
sponses. This behaviour can be visualised in the spectrogram of the depressed parti-
cipant (b) where their voice signals hardly activate the high-frequency bands unlike with
the non-depressed (a) participant.

SpyAudioAnalysis: https://github.com/tyiannak/pyAudioAnalysis
"Blog: https://medium.com/using-cnn-to-classify-audio/effects-of-spectrogram-pre-|
processing-for-audio-classification-a551f3daba46|



https://github.com/tyiannak/pyAudioAnalysis
https://medium.com/using-cnn-to-classify-audio/effects-of-spectrogram-pre-processing-for-audio-classification-a551f3da5a46
https://medium.com/using-cnn-to-classify-audio/effects-of-spectrogram-pre-processing-for-audio-classification-a551f3da5a46

3.4 Random Undersampling

Out of the 189 participants in the DAIC-WOZ dataset, a recommend training set of
142 participants and a test set of 47 participants is provided. However, to increase the
training set, all participants are merged and random undersampling is performed on the
spectrograms obtained in the previous preprocessing step.

Random undersampling is performed for two specific reasons. Firstly, the number of
depressed participants is four times smaller than that of the non-depressed participants,
and hence the training set and test set must contain an equal number of samples from
both classes. Secondly, random undersampling ensures that participant-specific features
do not influence the neural network models due to the fact that some interviews are
longer than others.

The shortest interview clip spectrogram is chosen and the maximum number of 4-
second crops is established. The same number of crops is then sampled from all the other
participant interview spectrograms. This resulted in each sample being a spectrogram
matrix of 513 rows (frequency bins) and 125 columns (length of 4-seconds) which is the
matrix representation of a 513X125 grayscale spectrogram. Finally, the training set is
prepared by randomly selecting an equal number of samples (i.e. spectrograms) from
both classes, depressed and non-depressed.

3.5 Exclusion of Shorter Interviews

During the experimentation with the three models, Base-CNN, AlexNet, and ResNet-18,
it was found that the models were showing poor performance, presumably due to the
short training set of 3192 samples. The ResNet-18 architecture obtaining an F1l-score of

62%.

This led to increasing the number of spectrogram samples taken from each participant.
This was achieved by dropping a percentage of the shortest interviews of both depressed
and non-depressed participants to increase the size of the shortest interview. First, 15% of
the interviews were dropped, followed by random undersampling, to increase the sample
set to 5056 samples. Later, 20% of the interviews were also dropped which increased the
sample set to 5520 samples. This set is used as the final dataset to test the models in
this paper. The exclusion of shorter interviews, along with the k-fold cross-validation
implemented later, is the reason for the increase in the performance of the 3 models.

Excluded Interviews No. of Samples
None 3192
10% of shortest interviews 5056
20% of shortest interviews 5520

Table 2: Spectrogram sample set sizes after excluding shortest interviews.

It should be pointed out that common image data augmentation techniques such as
image flipping, shifting, rotation, and zoom would not benefit model performance as a
spectrogram is structurally different from object-based images. This means that there is
no possibility that there will be a scenario where the model has been inputted a real-time
spectrogram that is flipped horizontally or zoomed in.
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4 Design Specification
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Figure 3: Design architecture of the project.

The above design architecture illustrates the data selection, data preprocessing, model
execution, and evaluation of the proposed model using the KDD approach. In Step 1, we
acquire the .wav files of the 189 interview sessions. Audio segmentation is then carried
out which removes silence, noise, and other speaker voices. The segmented .wav files
are then converted to log-scaled spectrograms through a signal transformation known
as Short-time Fourier transform (STFT). Random undersampling is then performed on
the spectrograms due to the inherent class imbalance in DAIC-WOZ. The 3 models in
this research are then trained using 5-fold cross-validation due to the small size of the
dataset. The Base-CNN, AlexNet, and ResNet-18 are implemented in Keras, a neural-
network library in Python. All steps from data collection to evaluation was carried out in
Google Colab. This was due to Colab’s provision of a GPU which considerably reduced
the training time of the neural networks from hours to minutes. The evaluation includes
the critical analysis of the ResNet-18 model advocated for use in depression analysis, and
its comparison with other state-of-the-art research carried out using the interview audio

files of the DAIC-WQOZ dataset.

5 Implementation

The 3 CNNs are implemented in Python using Keraﬂ with a tensorflow-backend. Keras
is an open-source neural network library in Python. The first, Base-CNN; is a shallow
layered CNN. After that, AlexNet and an 18-layered ResNet architecture (ResNet-18) is
used to investigate the possibility of improved performance.

8Keras: https://keras.io/
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5.1 Base-CNN

The 2D-CNN applied in this research is used as the base model with which the other
DCNNs, AlexNet and RestNet-18, will be compared with. It is inspired based on the pa-
per titled "Environmental Sound Classification with CNNs’ by (2015)). The Base-
CNN comprises of 2 (convolution 4+ max-pooling) layers. The output is then flattened
and fed to 2 consecutive dense layers, each with 512 neurons. A dropout of 0.5 is added
to the output from the 2"¢ dense layer and is fed to the final output layer which classifies
the spectrogram as depressed or not depressed. ReLU activation functions are used in
the convolution and dense layers except for the last dense layer which uses the sigmoid
activation function for binary classification. Binary cross-entropy is used to calculate the
loss function for the Base-CNN, while the Adam optimizer with a learning rate of 0.001
is used.

5.2 AlexNet

l

)

| 3x3conv, 384,11 |
.

fc 4096, dp 0.4
*

fc 1000, dp 0.4

[ 5%5 conv, 256, /1 j

.'g
=
o=
i
~
0=

2x2 max pool, /2
3x3 conv, 384, /1
3x3 conv, 256, /1

2x2 max pool, /2

| 11x11 conv, 96, /4 |
2x2 max pool, /2

|
|

I
|
I

Figure 4: Architecture of AlexNet.

The AlexNet implemented in this research consists of 5 convolutional layers and 3 fully
connected layers. Max-pooling is applied to the 1%, 24 and 5% convolution layers. The
output is then flattened as passed through 3 fully connected layers with a dropout of 0.4.
The final output layer contains a sigmoid activation function for binary classification.

Batch Normalization is the the technique of normalizing the output of the activation
layer. While it is not usually applied in AlexNet, it was employed in all the layers of this
model which increased performance. No padding has been used in any of the layers in this
implementation of AlexNet. All convolutional and dense layers use the ReLLU activation
function while the output layer uses the sigmoid activation function.

The hyperparameters were tweaked and the final version of the model used a 64
batch size, 20 epochs, and Adam optimizer with 0.001 learning rate. Due to the batch
normalization, AlexNet receives a lesser training accuracy and therefore suffers less from
overfitting than ResNet-18.
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5.3 ResNet-18
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Figure 5: Architecture of ResNet-18 with ’skip connections’.

The ResNet, proposed by [He et al| (2016al), was the first Deep-CNN (DCNN) neural
network to efficiently tackle the problem of the 'vanishing gradient’. Due to the repeated
multiplication of the gradient due to back-propagation, it starts to become extremely
small and this leads to the CNN’s training loss increasing rapidly after a period of satur-
ation. ResNets use the technique of 'skip connections’ or ’'identity shortcut connections’.
Later, bottleneck residual block (a slight variation of the basic residual block) was intro-
duced by the same authors in |He et al.| (2016b). A skip connection (see. Figure |5|) works
by taking the activation from one layer and feed it to another layer while 'skipping’ a few
layers. This ensures that feature information normally lost or become abstract can still
influence the layers later in the network.

The ResNet-18 implemented in this research utilizes the basic residual block instead
of the bottleneck variant. Each residual block consists of two 3x3 colvolutional layers,
where the input to the 15 layer is added to the output of the 2"¢ layer before the ReLU
activation takes place as implemented in [He et al.| (2016al). In total ResNet-18 consists
of 17 convolutional layers and one fully connected output layer.

The final version of ResNet-18 which provided the best performance based on the
F1-score used a 64 batch size, 20 epochs, and an Adam optimizer with a 0.001 learning
rate. Higher learning rate values resulted in a decrease in performance due to the model
being unable to find the global minima. The model takes an average of 3.5 minutes to
train for 20 epochs.

6 Evaluation

6.1 K-Fold Cross-Validation

Due to the inherent class imbalance in the DAIC-WQOZ dataset, k-fold cross-validation
was employed with a k value of 5. This substantially improved the F1-score of ResNet-18
by more than 9% from 0.75 to 0.83. This is due to the fact that the model is able to learn
from sample sets of spectrograms that are better at discriminating between depressed
and non-depressed participants. All 3 models were trained using this approach.

It is worth noting that 3-fold cross-validation was also carried out which provided
polarizing F1-scores across different folds. This indicates that the test set is too small for
3-fold cross-validation due to its 2:1 ratio of training to test set. Hence, in certain folds,
there is not enough helpful spectrogram samples to help train the model efficiently.
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6.2 Base-CNN & AlexNet

Model Precision Recall F1-Score
Base-CNN 0.64 0.66 0.65
AlexNet 0.7 0.8 0.75

Table 3: Evaluation metrics of Base-CNN and AlexNet on DAIC-WOZ.

The Base-CNN that was implemented obtained an F1-score of 0.65. The inadequate
performance is to be expected as it was initially designed for detecting environmental
sounds (Piczak; [2015) which is structurally different from speech signals.

The AlexNet neural network obtained an Fl-score of 0.75. While its performance
might not be as efficient as RestNet-18 (Fl-score: 0.83), there is reason to believe that
shallow networks, subject to appropriate model parameter tweaking, can perform just
as reasonably well. Note, that an Fl-score of 0.75 means that AlexNet’s performance is

comparable and even marginally better than Yalamanchili et al. (2020) and Srimadhur
and Lalithal (2020 in Table [1]

6.3 ResNet-18

The ResNet-18 model performs significantly better than Base-CNN and AlexNet. This is
due to the residual connections that help in amplifying features that would have otherwise
become too abstract to be picked up on in the deeper layers. Its 'skip connections’ is
the reason for its improved performance, and is also the reason why it performs better to
most DCNNs which have more than 10 layers.

Model Precision Recall F1-Score
ResNet-18 0.76 0.92 0.83
ResNet-34 0.7 0.88 0.78
ResNet-50 0.73 0.85 0.79
ResNet-101 0.71 0.82 0.76

Table 4: Evaluation metrics of ResNets on DAIC-WOZ.

Other ResNet architectures like ResNet-34, 50, and 101 were also implemented with
personalised parameter tweaking. Despite the increase in the depth of the architectures,
the other ResNets show a decrease in performance. This, coupled with the increase
in training time for the deeper ResNets, make them impractical for use in real-time
applications such as listening services and emergency helplines where continuous training
on new data is required for the model to adapt and for its performance to not deteriorate.

Instead of the standard 4-second 513x125 spectrograms, 16-second crops of 513x513
spectrograms were also created to explore the possibility of improved performance. How-
ever, the performance of the 3 models did not show any improvement.
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Figure 6: Accuracy and AUC of ResNet-18.

The accuracy plot (Figure @ of ResNet-18 shows that the model reaches 100% train-
ing accuracy but only gets an 81% testing accuracy. This indicates a case of overfitting
which must be addressed in future work. Certain techniques of introducing noise to the
spectrograms can be carried out to investigate the possibility of improvement in perform-
ance.

From the Receiver Operating Characteristic (ROC) curve (Figure[6b]), we can see that
the AUC (Area Under the ROC Curve) is 0.91. This is significantly higher than the AUC
of 0.85 by [Yalamanchili et al. (2020). The high ROC value indicates the model’s ability
to precisely distinguish between the depressed and non-depressed classes.

6.4 Discussion

In this section, the performance of the ResNet-18 model will be discussed and its im-
plications analyzed. In this research, accuracy will not be used as the principal measure
to evaluate the performance of ResNet-18. Precision and recall are far better and more
interpretabldﬂ metrics which indicate how good the model performs in predicting specific
classes in relation to others. Fl-score, the balance between precision and recall, is the
key measure of performance which will be examined. The F1-score of 0.83 for ResNet-
18 indicates that the model performs exceptionally better than all the state-of-the-art
models discussed in the literature review, as seen in Table [5] It must be noted that ap-
propriate hyperparameter tweaking, along with the usage of 5-fold cross-validation, and
the increase of the sample set by excluding short interviews has contributed greatly to
the high F1l-score by ResNet-18.

The high precision of 0.76, which is only marginally lesser than 0.79 by |Srimadhur and
Lalitha (2020), indicates the percentage of instances that the model correctly predicted
a 'depressed’ participant out of all the 'depressed’ predictions it has made. That is, 76%
of the depressed predictions were correct. The recall of 0.92 indicates the percentage
of instances that the model correctly predicted a 'depressed’ participant out of all the
"depressed’ participants in the entire test set. That is, 92% of the total depressed par-
ticipants are predicted correctly. The high recall and comparable precision make them

9Medium: https://towardsdatascience.com/beyond-accuracy-precision-and-recall-
3da06bea9f6c
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Table 5: Comparison of ResNet-18 with top-3 models in terms of F1-scores from Table .

Author Model Precision Recall F1-Score
“[Haque et al/| (2018)* C-CNN 0.71 0.83 0.77

Srimadhur _and Lalitha End-to-end CNN 0.79 0.77 0.74

(2020)

Yalamanchili et al.| (2020) SVM 0.7 0.78 0.74
S ResNet-18 ~ 0.76  0.92 0.83

*Research utilizes audio, video, and linguistic sections of DAIC-WOZ for prediction.

powerful for use, for example in listening and emergency services. In this scenario, it is
crucial to diagnose correctly most of the people with actual depression (i.e. recall), but
it would not hurt to have a slight increase in false positives (diagnosing non-depressed
people as depressed) which only ensure that more care is taken.

The specificity (percentage of non-depressed people being correctly diagnosed as such)
of ResNet-18 is 0.71 is much higher compared to 0.66 by Haque et al.| (2018) which
also used facial expressions of the participants from DAIC-WOZ. This method of using
only spectrograms is non-invasive as no information of gender or age is preserved which
increases its applicability in various domains that adhere to stringent regulations of data
privacy (e.g. GDPR in Europe).

While the results may seem encouraging, there are some drawbacks of this research,
and the data itself, that must be examined in future research. The ResNet-18’s high
training accuracy of 100% and relatively low testing accuracy of 81%, as seen in Figure [6al,
indicates that the model is experiencing a serious case of overfitting. This could be due to
imperfect preprocessing, for instance, where the voice of the interviewer or other speakers
may not get filtered by the audio segmentation performed. This could be remedied by
excluding the first few seconds of the clip to decrease the chances of the assistant’s voice
from seeping into the segmented audio clip.

Another drawback in this research, and more generally with depression detection using
only speech, is that people with Major Depressive Disorder (MDD) might sometimes be
in a happy mood and their voice might not show signs of depression. This could be the
case with the participants in the DAIC-WOZ dataset. It would be interesting to see
how this model fairs on those people in their daily life. But then again, the very aim
of the application of neural networks, in this research field of depression detection from
speech, is to identify those with depression who healthcare professionals, psychiatrists,
and counsellors find hard to diagnose. Or at its worst, this model could serve as an
indication for the necessity to seek professional help.

7 Conclusion and Future Work

This paper proposed the use of residual networks in detecting if a person is depressed or
not using spectrograms of the audio files of interviews. Preprocessing techniques, which
included audio segmentation through to increasing sample set sizes, that were employed
were a major contribution to the ResNet-18’s superior performance. The Base-CNN, and
AlexNet achieved an F1-score of 0.65 and 0.75 respectively which proved to be unsatisfact-
ory. The ResNet-18 model, implemented among other ResNet architectures, provided the
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best Fl-score of 0.83 (see Table [f]). With the considerable improvement in performance
of ResNet-18 over the existing state-of-the-art models implemented in current research,
we can conclude that the research objective has been met and its effectiveness thoroughly
evaluated.

This research is to be aimed to be of use in listening services (e.g. NiteLine) and
emergency services (e.g. 999 calls) where only the voice of the individual is available.
Here, phone conversations can be used to aid in detecting people with depression. This
could help service operators provide the necessary care when dealing with depressed
individuals. Since the DAIC-WOZ participants use microphones, a much better quality
of speech is captured when compared to mobile phones. Hence, this could present some
challenges for the proposed model’s practical use in listening and emergency services.

The implications of ResNet-18’s high F1l-score coupled with a high recall provides
promise in the rise of the use of ResNets and residual type network architectures for
use in depression detection. While the use of residual networks has been explored in
environmental sound classification using spectrograms, these environmental sounds are
inherently different from speech spectrograms as it is more complex to find patterns in
speech signal spectrograms. All the more difficult it is to predict illnesses such as MDD
which contain a plethora of nuanced discriminative features. Considering the difficulty in
predicting depression from speech alone, the superior performance of the ResNet-18, in
relation to the current literature, reinforces the claim for residual networks in depression
detection.

There are still many areas in which this research can be improved. This section
aims to shed light on those potential areas in which the future work of this research
could be carried out. There has been promising research using Generative Adversarial
Networks (GAN) for feature augmentation (Yang et al.; 2020)) (Esmaeilpour et al.; [2019),
and depression severity prediction (Wang et al.; [2020)) of audio spectrograms from DAIC-
WOZ. ResNets’ encouraging potential with transfer learning (Du et al.; 2018) could also
be investigated. ResNet-18’s performance on more interpretable prosodic features, such
as MFCC and ZCR, could be investigated as it is difficult to interpret which spectrogram
features are most effective for the neural network. Curriculum learning (Hacohen and
Weinshall; 2019)), a sampling technique, could also be examined due to its increased
popularity in training neural networks.
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