

Configuration Manual

MSc Research Project Data Analytics

Rohit Jagadale Student ID: x18184545

School of Computing National College of Ireland

Supervisor: Mr.

Mr. Hicham Rafai

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:	Rohit Jagadale		
Student ID:	x18184545		
Programme:	MSc Data Analytics	Year:	2019- 2020
Module:	Research Project		
Supervisor: Submission	Mr. Hicham Rafai		
Due Date:	17/08/2020		
Project Title:	Configuration Manual		
Word Count:	1117		

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Rohit Jagadale

Date: 17/08/2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Rohit Jagadale x18184545

1 Introduction

Configuration Manual provides detailed documentation of the implementation of Storm Trajectory Prediction System. The system configurations required for the project are listed as below:

Operating System: Windows 10 Processor: Intel i7 2.8 GHz RAM: 12 GB System: 64-bit Operating System

2 Integrated Development Environment

The project is implemented using Python 3.7 version on Google Colab¹. Google Colab is a free cloud service where the python applications can be developed and can be executed on GPU if required. As this project does not involve large processing, the Google Colab environment is kept in default CPU mode. To save the dataset, Microsoft Excel is used

3 Datasets

The National Hurricane Center (NHC) data present on Kaggle² data repository is used for the research. The data is present in CSV file format and contains 49105 records. The data file is uploaded on Google Colab environment

4 Data Preprocessing

The code implemented as part for the research is developed with the reference of GitHub Repository³ and the LSTM model hyperparameters are based on a previous research carried out by authors (Alemany *et al.*, 2019)

As a first step of the implementation, the HURDAT2 dataset is loaded into Google Colab environment from local system. As a next step, all the required libraries are loaded for the analysis

¹ <u>https://colab.research.google.com/notebooks/intro.ipynb#recent=true</u>

² <u>https://www.kaggle.com/noaa/hurricane-database</u>

³ <u>https://github.com/hammad93/hurricane-net</u>

import pandas as pd import numpy as np import tensorflow import matplotlib.pyplot as plt import math as Math from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.layers.recurrent import LSTM import math, time from keras.models import model from json from geopy.distance import great_circle as vc import seaborn as sns from keras.layers.core import Dense, Dropout, Activation from keras.layers import Bidirectional %matplotlib inline %config InlineBackend.figure_format = 'retina'

The data file is loaded into dataframe and further is processed using different processing techniques.

storm_data = pd.read_csv('atlantic.csv')

storm_data.head()

	ID	Name	Date	Time	Event	Status	Latitude	Longitude		Minimum Pressure	Low Wind NE	Low Wind SE	Low Wind SW	Low Wind NW	Moderate Wind NE			Moderate Wind NW	High Wind NE	High Wind SE		
0	AL011851	UNNAMED	18510625	0		HU	28.0N	94.8W	80	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999
1	AL011851	UNNAMED	18510625	600		HU	28.0N	95.4W	80	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999
2	AL011851	UNNAMED	18510625	1200		HU	28.0N	96.0W	80	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999
3	AL011851	UNNAMED	18510625	1800		HU	28.1N	96.5W	80	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999
4	AL011851	UNNAMED	18510625	2100	L	HU	28.2N	96.8W	80	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999

storm_data.info()

<class 'pandas.core.frame.DataFrame'> RangEIndex: 49105 entries, 0 to 49104 Data columns (total 22 columns); # Column Non-Null Count Dtype

#	COTUNIT	NON-NULL COUNC	Drype
0	ID	49105 non-null	object
1	Name	49105 non-null	object
2	Date	49105 non-null	int64
3	Time	49105 non-null	int64
4	Event	49105 non-null	object
5	Status	49105 non-null	object
6	Latitude	49105 non-null	object
7	Longitude	49105 non-null	object
8	Maximum Wind	49105 non-null	int64
9	Minimum Pressure	49105 non-null	int64
10	Low Wind NE	49105 non-null	int64
11	Low Wind SE	49105 non-null	int64
12	Low Wind SW	49105 non-null	int64
13	Low Wind NW	49105 non-null	int64
14	Moderate Wind NE	49105 non-null	int64
15	Moderate Wind SE	49105 non-null	int64
16	Moderate Wind SW	49105 non-null	int64
17	Moderate Wind NW	49105 non-null	int64
18	High Wind NE	49105 non-null	int64
19	High Wind SE	49105 non-null	int64
20	High Wind SW	49105 non-null	int64
21	High Wind NW	49105 non-null	int64
dtyp	es: int64(16), obi	ect(6)	

ucypes: int64(16), object(6) memory usage: 8.2+ MB

Data preprocessing:

From the dataset, irrelevant columns are removed and the remaining columns are renamed for better understanding. Null values and duplicate records are checked in the data. The Latitude and longitude columns are changed from string type to float for further calculations

```
#Remove columns which are not relevant for the research
storm_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 49105 entries, 0 to 49104
Data columns (total 10 columns):
# Column
                      Non-Null Count Dtype
0
    TD
                       49105 non-null object
                      49105 non-null object
1
     Name
    Date
                        49105 non-null int64
 2
                        49105 non-null int64
     Time
 4
    Event
                        49105 non-null object
     Status
                        49105 non-null object
 6
    Latitude
                        49105 non-null object
    Longitude
                        49105 non-null object
 8 Maximum Wind
                        49105 non-null int64
    Minimum Pressure 49105 non-null int64
dtypes: int64(4), object(6)
memory usage: 3.7+ MB
#Total Number of records in the dataset
len(storm_data)
49105
#Renaming the columns into meaningful information
storm_data.columns = ['Storm_ID', Name', 'Date', 'Time', 'Event', 'Status', 'Latitude', 'Longitude', 'WindSpeed', 'Pressure']
#Removing the values with negative pressure
storm_data = storm_data[storm_data['Pressure'] != -999]
#Checking for the NaN values
#c = (storm_data['WindSpeed'] == NULL ).sum()
count = storm_data["WindSpeed"].isna().sum()
count1 = storm_data["Pressure"].isna().sum()
print(count,count1)
0 0
#Cheking for the blank values in latitude and longitude
storm_data.loc[storm_data['Latitude'] == ''].count().iloc[0]
0
storm_data.loc[storm_data['Longitude'] == ''].count().iloc[0]
```

0

As seen from the above outputs, there are no null values in the data. The below code describes the number of storms present in the dataset

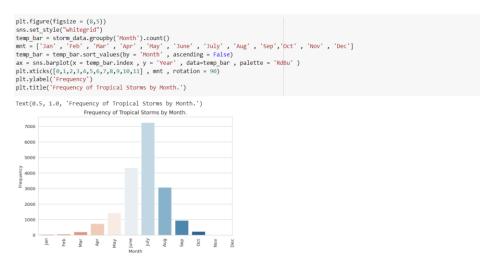
```
#Total amount of storms we have in our dataset
storm_count = len(pd.unique(storm_data['Storm_ID']))
print(storm_count)
1030
#Removing the storms which have only one instance in the dataset
storm_data = storm_data.groupby('Storm_ID').filter(lambda x : len(x)>1)
#Total amount of storms we have in our dataset
storm_count = len(pd.unique(storm_data['Storm_ID']))
print(storm_count)
905
#Remove "N" from latitude and longitude
storm_data['Latitude'] = storm_data['Latitude'].str[:-1]
storm_data['Longitude'] = storm_data['Latitude'].str[:-1]
#Converting Date, Time into string
storm_data['Inime'] = storm_data['Latitude'].astype(str)
storm_data['Latitude']=storm_data['Latitude'].astype(float)
storm_data['Latitude']=storm_data['Latitude'].astype(float)
storm_data['Latitude']=storm_data['Longitude'].astype(float)
#Lambda function to make all the records in Time column of length 4 by adding preceding zeros
storm_data['Time'] = storm_data['Time'].apply(lambda x: x.zfill(4))
```

Date Extraction: Day, Month and Year is extracted from date column whereas Hour is extracted from time column

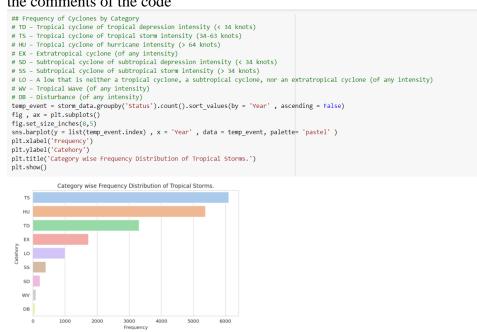
```
#Date Extraction : Deriving seperate columns Year, Month, Day and Hour from Date and Time columns
storm_data['Year']=storm_data['Date'].str[0:4]
storm data['Month']=storm data['Date'].str[4:6]
storm data['Day']=storm data['Date'].str[6:]
storm_data['Hour']=storm_data['Time'].str[0:2]
#Dropping Date and Time columns as we have seperate columns now
storm_data.drop(['Date', 'Time'], axis = 1, inplace = True)
storm data.head()
                Name Event Status Latitude Longitude WindSpeed Pressure Year Month Day Hour
     Storm ID
346 AL031854 UNNAMED HU 28.0 78.6 110 938 1854 09 07 12
                              HU 31.6 81.1
                                                         100 950 1854 09 08 18
351 AL031854 UNNAMED
352 AL031854 UNNAMED L HU 31.7 81.1 100 950 1854 09 08 20
                              TS 42.0
                                               71.5
                                                          50 1000 1861 11 03 12
1039 AL081861 UNNAMED
1040 AL081861 UNNAMED TS 44.0 70.0 50 999 1861 11 03 18
# Enumerating the objects of dataframe into integers for EDA
keys = list(enumerate(pd.unique(storm_data['Storm_ID'])))
storm_count = len(pd.unique(storm_data['Storm_ID']))
print(storm count)
y = np.zeros((storm_count))
for x in range(0,storm_count)
       range(0, storm_count)
 y[x] = len(pd.DataFrame(storm_data[storm_data['Storm_ID'] == keys[x][1]], columns = storm_data.keys()).reset_index(drop = True))
#Deriving number of records for each storm instance
storm_instance = pd.DataFrame(y)
905
```

5 Exploratory Data Analysis (EDA)

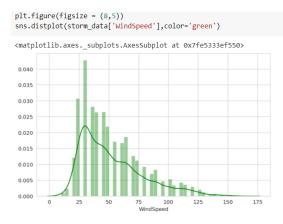
The Below figure shows the frequency of Storms by month. As per the figure, July month displays the highest tropical storms



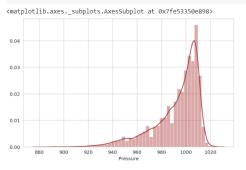
Below figure explains the category wise storm distribution. The categories are described in the comments of the code



The windspeed and pressure distribution is plotted using seaborn library



plt.figure(figsize = (8,5))
sns.distplot(storm_data['Pressure'],color='brown')



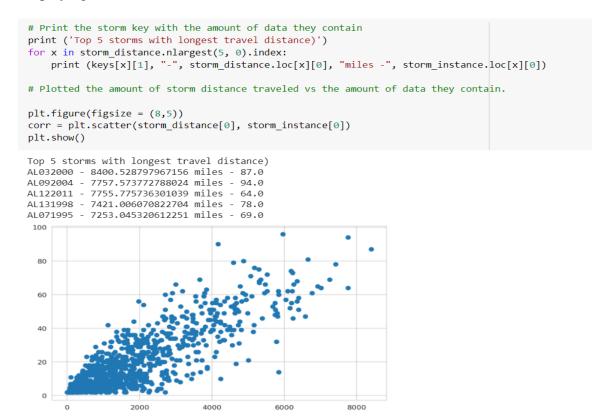
6 Data Transformation

Data is transformed using multiple techniques like log transform, feature scaling, handling outliers. Distance of the storm is calculated using great-circle distance whereas angle of the storm or direction is calculated using in-build mathematical functions. All the comments in the code explains the transformation steps

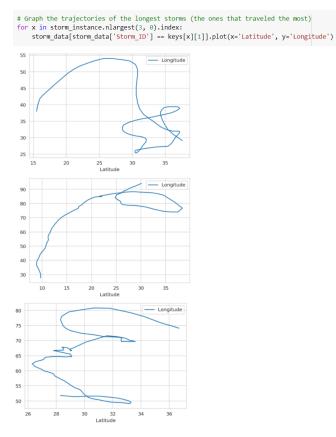
Checking the newly added columns distance and direction in the dataframe

<pre>storm_data.describe()</pre>										
	Latitude	Longitude	WindSpeed	Pressure	Year	Month	Day	Hour	distance	direction
count	18311.000000	18311.000000	18311.000000	18311.000000	18311.000000	18311.000000	18311.00000	18311.000000	18311.000000	18311.000000
mean	27.134963	63.373906	52.484408	992.326907	1991.852384	8.720059	15.83742	9.286768	91.804588	165.558382
std	10.111113	20.425977	26.398620	19.065069	19.854077	1.308524	8.89313	6.748599	107.572730	112.074834
min	7.200000	0.000000	10.000000	882.000000	1854.000000	1.000000	1.00000	0.000000	0.000000	-0.000000
25%	19.000000	48.400000	30.000000	984.000000	1983.000000	8.000000	8.00000	6.000000	41.855997	62.310919
50%	26.800000	64.800000	45.000000	999.000000	1996.000000	9.000000	16.00000	12.000000	71.363219	172.801334
75%	33.500000	79.600000	65.000000	1006.000000	2005.000000	9.000000	24.00000	18.000000	110.146413	254.800929
max	70.700000	109.300000	165.000000	1024.000000	2015.000000	12.000000	31.00000	23.000000	2704.994140	359.987816

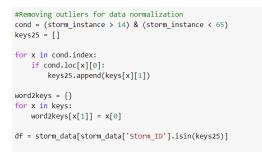
Displaying the distribution of storm instances across the data



Below graphs shoes the longest travelling storm trajectories



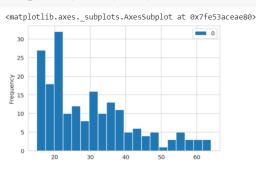
Checking the outliers in the data and removing them



Distribution of the data after removing outliers

df.to csv('Data with Gridpoints.csv') # Save the dataframe to csv for checkpoint

storm_instance.plot.hist(bins=20)



Defining the Grid Model

Below code depict the grid model design. As seen in the code Grid_Point column is created in the dataframe and using the hyperparameters, the grid points are developed.

```
# Assigning each point to a specific location in the grid.
# For example, we will learn how a storm in quadrant 2 with move.
df['Grid_Point'] = np.zeros(df_count)
# These variable are hyperparameters
lat_interval = round(66 - 7.2)
long_interval = round(13.5 + 109.3)
df['Grid_Point'] = np.floor(df['Latitude'] - 7.200)* long_interval + np.floor(df['Longitude'] + 109.3)
df['Grid_Point'] = round(df['Grid_Point'])
df.head()
df.head() # Check loaded data
     Storm_ID Name Event Status Latitude Longitude WindSpeed Pressure Year Month Day Hour distance direction Grid_Point
20701 AL091945 UNNAMED HU 25.1 80.0 115 949 1945 9 15 18 0.000000 2280.0
                                   25.3
                                             80.3
                                                        115
20702 AL091945 UNNAMED
                         1
                              HU
                                                              949 1945 9 15 19 23,296261 16,943232
                                                                                                            2403.0
20703 AL091945 UNNAMED
                              HU 25.4 80.4
                                                        115 949 1945 9 15 20 9.312732 5.526718
                                                                                                            2403.0
                         L
                              HU
                                      25.9 80.9 100 954 1945
20704 AL091945 UNNAMED
                                                                         9 16 0 46.511365 20.205036
                                                                                                            2404.0
20705 AL091945 UNNAMED HU 26.6 81.5 85 963 1945 9 16 6 61.004848 3.360923 2527.0
```

7 Implementation and Evaluation of RNN models

For predicting the storm trajectories, LSTM and BiLSTM models are applied. Below code shows the model design

<pre># Load the preprocessed data import pandas as pd import numpy as np import matplotlib.pyplot as plt df = pd.read_csv('Data_with_Gridpoints.csv', index_col=0) df.head() # Check loaded data</pre>															
	Storm_ID	Name	Event	Status	Latitude	Longitude	WindSpeed	Pressure	Year	Month	Day	Hour	distance	direction	gridID
20701	AL091945	UNNAMED		HU	25.1	80.0	115	949	1945	9	15	18	0.000000	0.000000	2280.0
20702	AL091945	UNNAMED	L	HU	25.3	80.3	115	949	1945	9	15	19	23.296261	16.943232	2403.0
20703	AL091945	UNNAMED	L	HU	25.4	80.4	115	949	1945	9	15	20	9.312732	5.526718	2403.0
20704	AL091945	UNNAMED		HU	25.9	80.9	100	954	1945	9	16	0	46.511365	20.205036	2404.0
20705	AL091945			HU	26.6	81.5	85		1945				61.004848	3.360923	2527.0

Before training the model, the manual feature selection is performed by selecting only the required columns and removing columns like Month, Day, Hour, Event, Latitude, Longitude and Status.

```
df.drop(['Month', 'Day', 'Hour', 'Event', 'Latitude', 'Longitude', 'Storm_ID', 'Year', 'Name', 'Status'], axis = 1, inplace = True)
temp_df = df
temp_df[temp_df['distance'] > 0]
temp_df['distance'] = np.log(temp_df['distance'])
temp_df = temp_df[temp_df['direction'] > 0]
temp_df['direction'] = np.log(temp_df['direction'])
temp_df.head()
/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:5: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy.
"""
```

	WindSpeed	Pressure	distance	direction	Grid_Point
20702	115	949	3.148293	2.829868	2403.0
20703	115	949	2.231383	1.709594	2403.0
20704	100	954	3.839697	3.005932	2404.0
20705	85	963	4.110953	1.212216	2527.0
20706	75	974	4.172329	5.842832	2651.0

Below code shows that the data has 7627 grid points.

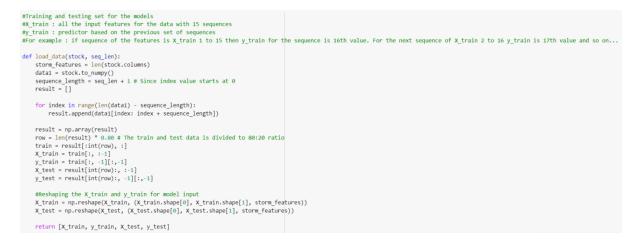
```
max(temp_df['Grid_Point']) # Total grid spots
7627.0
```

The data is scaled for final models using MinMaxScalar functions.

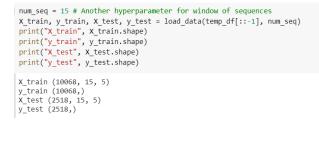
v_s tem		NaxScaler(f DataFrame(N	_	nge=(0, 1)) t_transform	(temp_df), co
	WindSpeed	Pressure	Distance	Direction	Grid_Point
0	0.677419	0.471831	0.262629	0.647543	0.302816
1	0.677419	0.471831	0.098857	0.518344	0.302816
2	0.580645	0.507042	0.386122	0.667848	0.302949
3	0.483871	0.570423	0.434572	0.460983	0.319365

Splitting the data into training and testing sets:

Simple random sampling is used for splitting the data into training and testing set. The Training set contains 80% of the data. The model is trained for sequence data which means if the sequence of features is 1 to 15 in training set, the predicted feature is 16th value and so on.



The X_train and X_test has 10068 and 2518 records respectively with 5 features and sequence window of 15



Model 1: LSTM

Long Short-Term Model is applied with 28 neurons, dropout value of 0.1 and two hidden layers. Activation function 'tanh' is used with loss function of mean squared error and 'adam' optimizer.

```
#Model 1 : LSTM model
# LSTM model is optimized for faster computational speed
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.layers.recurrent import LSTM
import math, time
np.random.seed(1337)
#Defining all the layers of the model
def build model_lstm(layers):
    model_lstm = Sequential()
    for x in range(0,2):
        model_lstm.add(LSTM(units=28,input_shape = (X_train.shape[1],X_train.shape[2]), return_sequences=True))
    model_lstm.add(LSTM(layers[2], return_sequences=False))
    model_lstm.add(Dropout(0.1))
    model_lstm.add(Dropout(0.1))
    model_lstm.add(Dropout(0.1))
    start = time.time()
    model_lstm.add(Dropout(0.1))
    model_lstm.add(Dropout(0.1))
    model_lstm.add(Dropout(0.1))
    model_lstm.add(Dropout(0.1))
    model_lstm.add(Dropout(0.1))
    model_lstm.add(Dropout(0.1))
    model_lstm.add(Dropout(0.1))
    model_lstm.add(Dropout(0.1))
    model_lstm.add(Dropout(0.1))
    model_lstm.add(Dropout(Dropout(Dropout(Dropout(Dropout(Dropout(Dropout(Dropout(Dropout(Dropout(Dropout(Dropout(Dropout(Dropout(Dropout(Dropout(Dropout(Dropout(Dropout(Dropout(Dropout(Dropout(Dropout(Dropout(Dropout(D
```

#building the model
model_lstm = build_model_lstm([5, num_seq, 1])

Compilation Time : 0.0070552825927734375

model_lstm.summary() #Layer of the LSTM model

Model: "sequential_13"

Layer (type)	Output Shape	Param #
lstm_32 (LSTM)	(None, 15, 28)	3808
dropout_38 (Dropout)	(None, 15, 28)	0
lstm_33 (LSTM)	(None, 15, 28)	6384
dropout_39 (Dropout)	(None, 15, 28)	0
lstm_34 (LSTM)	(None, 1)	120
dropout_40 (Dropout)	(None, 1)	0
dense_13 (Dense)	(None, 1)	2
dropout_41 (Dropout)	(None, 1)	0
Total params: 10,314 Trainable params: 10,314		

Non-trainable params: 0

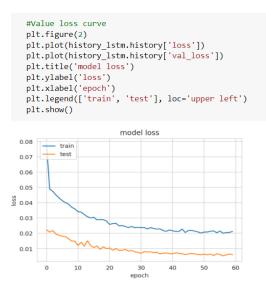
<pre>#training the model history_lstm = model_lstm.fit(X_train, y_train, batch_size=512, epochs=60, validation_split=0.1, verbose=1)</pre>
Epoch 1/60 18/18 [========================] - 2s 112ms/step - loss: 0.0783 - val_loss: 0.0222 Epoch 2/60
18/18 [========================] - 1s 56ms/step - loss: 0.0489 - val_loss: 0.0208 Epoch 3/60
18/18 [========================] - 1s 56ms/step - loss: 0.0474 - val_loss: 0.0218 Epoch 4/60
18/18 [========================] - 1s 56ms/step - loss: 0.0450 - val_loss: 0.0195 Epoch 5/60
18/18 [=======================] - 1s 56ms/step - loss: 0.0431 - val_loss: 0.0187 Epoch 6/60
18/18 [=====================] - 1s 56ms/step - loss: 0.0413 - val_loss: 0.0181 Epoch 7/60
18/18 [==================] - 1s 57ms/step - loss: 0.0400 - val_loss: 0.0178 Epoch 8/60
18/18 [=======================] - 1s 57ms/step - loss: 0.0390 - val_loss: 0.0164 Epoch 9/60 18/18 [========================] - 1s 57ms/step - loss: 0.0370 - val loss: 0.0149
Epoch 10/60 18/18 [====================================
Epoch 11/60 18/18 [====================================
Epoch 12/60 18/18 [====================================
Epoch 13/60 18/18 [=======================] - 1s 56ms/step - loss: 0.0322 - val loss: 0.0116
Epoch 14/60 18/18 [====================================

Once the model is trained, the prediction is done using X_test. The test data is evaluated using MSE, MAE, RMSE and R-squared values which are displayed in below figure

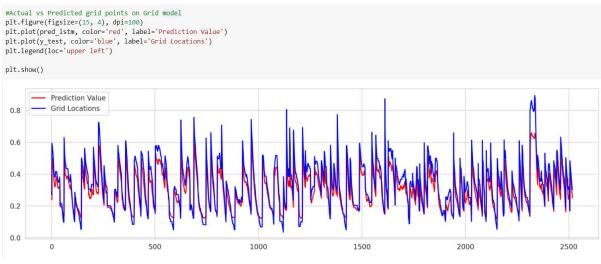
```
#applying the trained model on test data
pred_lstm = model_lstm.predict(X_test)

#Evaluating the model
import sklearn.metrics as sm
from math import sqrt
print("Mean absolute error (MAE) =", round(sm.mean_absolute_error(y_test, pred_lstm), 4))
print("Mean squared error (MSE) =", round(sm.mean_squared_error(y_test, pred_lstm), 4))
print("Root Mean squared error (RMSE) =", round(sqrt(sm.mean_squared_error(y_test, pred_lstm)),4))
print("Median absolute error =", round(sm.median_absolute_error(y_test, pred_lstm), 4))
print("Root Mean squared error (MSE) = ", round(sm.median_absolute_error(y_test, pred_lstm)),4))
print("Registron = ", round(sm.explained_variance_score(y_test, pred_lstm), 4))
print("R2 score =", round(sm.r2_score(y_test, pred_lstm), 4))
Mean absolute error (MAE) = 0.0568
Mean squared error (MSE) = 0.0871
Median absolute error = 0.0453
Explain variance score = 0.7615
R2 score = 0.6599
```

The model loss diagram is plotted for checking the training progress of LSTM model



Actual vs Predicted grip points are for LSTM model



Model 2: Bidirectional LSTM

The bidirectional LSTM model is applied with hyperparameters such as dropout value with 0.05, 64 neurons and single hidden layer. Activation function 'tanh' is used along with loss function 'mean squared error'. 'Adam' optimizer is used in the model

#Model 2 : Bidirectional LSTM : Bidirectional LSTM is extention of LSTM model with forward and backward layers of processing

#Building the model model_biLSTM = build_model([5, num_seq, 1])

Compilation Time : 0.007235288619995117

model_biLSTM.summary() Model: "sequential_14" Layer (type) Output Shape Param # 35840 bidirectional_7 (Bidirection (None, 15, 128) dropout 42 (Dropout) (None, 15, 128) 0 lstm_36 (LSTM) (None, 1) 520 dropout_43 (Dropout) (None, 1) 0 dense 14 (Dense) (None, 1) 2 Total params: 36,362 Trainable params: 36,362 Non-trainable params: 0

Model is trained with 60 epochs and batch size of 512

#Training the model with 60 epochs

history_biLSTM = model_biLSTM.fit(X_train, y_train, batch_size=512, epochs=60, validation_split=0.1, verbose=1)

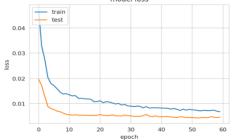
18/18 [] - 2s 112ms/step - loss: 0.0327 - val_loss: 0.0171
Epoch 3/60
18/18 [======] - 2s 114ms/step - loss: 0.0276 - val_loss: 0.0128
Epoch 4/60
18/18 [=======] - 2s 113ms/step - loss: 0.0204 - val_loss: 0.0089
Epoch 5/60
18/18 [======] - 2s 114ms/step - loss: 0.0180 - val_loss: 0.0080
Epoch 6/60
18/18 [====================================
Epoch 7/60
18/18 [=======] - 2s 115ms/step - loss: 0.0159 - val_loss: 0.0070
Epoch 8/60
18/18 [=======] - 2s 115ms/step - loss: 0.0145 - val_loss: 0.0068
Epoch 9/60
18/18 [====================================
Epoch 10/60
18/18 [====================================
Epoch 11/60
18/18 [====================================
Epoch 12/60
18/18 [====================================
Epoch 13/60
18/18 [====================================
Epoch 14/60
18/18 [====================================
Free AF ICA

The model is predicted using test data and evaluated using multiple evaluation techniques mentioned in below figure

```
#Applying the model on test data
pred = model_biLSTM.predict(X_test)

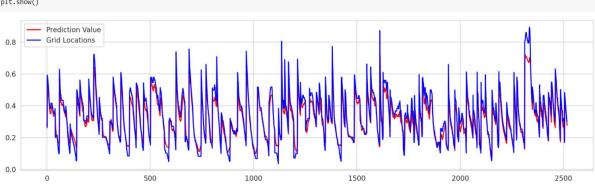
#Evaluating the model
import sklearn.metrics as sm
print("Mean absolute error (MAE)=", round(sm.mean_absolute_error(y_test, pred), 4))
print("Mean squared error (MSE) =", round(sm.mean_squared_error(y_test, pred), 4))
print("Root Mean squared error (RMSE) =", round(sqrt(sm.mean_squared_error(y_test, pred)),4))
print("Median absolute error =", round(sm.median_absolute_error(y_test, pred), 4))
print("Explain variance score =", round(sm.explained_variance_score(y_test, pred), 4))
print("R2 score =", round(sm.r2_score(y_test, pred), 4))
Mean absolute error (MAE) = 0.0404
Mean squared error (RMSE) = 0.0755
Median absolute error = 0.0261
Explain variance score = 0.7694
R2 score = 0.7446
```

BiLSTM training curve is depicted in below figure



#Actual vs Predicted grid points for grid-based model
plt.figure(figsize=(15, 4), dpi=100)
plt.plot(pred, color='red', label='Prediction Value')
plt.plot(y_test, color='blue', label='Grid Locations')
plt.legend(loc='upper left')

plt.show()



References:

Alemany, S. *et al.* (2019) 'Predicting Hurricane Trajectories Using a Recurrent Neural Network', *Proceedings of the AAAI Conference on Artificial Intelligence*, 33, pp. 468–475. doi: 10.1609/aaai.v33i01.3301468.