
 

 

 

 

 

 

 

 

 

 
 

Configuration Manual 
 

MSc Research Project 
Data Analytics 

 
 
 
 

                    Anusha Gorur Chandrashekar 

                                            Student ID: x18195059 

 

 

 
School of Computing 

National College of Ireland 
 

 

 

 

 

 

 

 

 

 

 

 

 

Supervisor: Dr.Paul Stynes, Dr.Pramod Pathak



 

National College of Ireland 
Project Submission Sheet 

School of Computing 
 
 

Student Name: Anusha Gorur Chandrashekar 

Student ID: x18195059 

Programme: Data Analytics 

Year: 2019-2020 

Module: MSc Research Project 

Supervisor: Dr.Pramod  Pathak, Dr.Paul Stynes 

Submission Due Date: 17/08/2020 

Project Title: Configuration Manual 

Word Count: 1913 

Page Count: 14 
 

I hereby certify that the information contained in this (my submission) is information 
pertaining to research I conducted for this project. All information other than my own 
contribution will be fully referenced and listed in the relevant bibliography section at the rear of 
the project. 

ALL internet material must be referenced in the bibliography section. Students are 
required to use the Referencing Standard specified in the report template. To use other 
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary 
action. 

 

Signature: Anusha Gorur Chandrashekar 

Date: 17th August 2020 

 

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST: 
 

Attach a completed copy of this sheet to each project (including multiple copies).  
 

Attach a Moodle submission receipt of the online project submission, to each project 

(including multiple copies). 

 

 
You must ensure that you retain a HARD COPY of the project, both for your own reference and 
in case a project is lost or mislaid. It is not sufficient to keep a copy on the computer. 

 

 
Assignments that are submitted to the Programme Coordinator office must be placed into 

the assignment box located outside the office. 
 

Office Use Only 

Signature: 
 

Date:  

Penalty Applied (if applicable):  



1  

 

                          Configuration Manual 

                                                 Anusha Gorur Chandrashekar 

                                                                     x18195059 

 Msc Data Analytics 

 

Introduction 
This configuration manual is a formal document includes sections specifying the hardware, software 

requirements, design detail, operational information, implementation phases and the settings of the research 

project in detail: “A Deep Neural Network Framework for Seismic Image Classification & Analysis” 

 

1. System Configurations 

 
1.1 Hardware  

• Processor: Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz, 1800 Mhz, 4 Core(s), 8 Logical Processor(s) 

• RAM: 16 GB 

• System Type: Windows OS, 64-bit 

• GPU: Intel(R) UHD Graphics Family, 8GB 

• Storage: 1 TB HDD 

 

 1.2 Software 

• Google Colaboratory: A promising machine learning research platform that offers free cloud 

service to run machine learning and deep learning models. The interface is similar to Jupyter 

notebook with the default installed libraries also with hardware accelerator options such as GPU, 

TPU, and runtime type. The “out of memory” is an infamous warning while working with a large 

volume of the database, hence we need expensive GPU memory. The Google Colab provides free 

Tesla K80 GPU of about 12GB and Tensor Processing Unit (TPU) which is 15-30 times faster than 

GPU.  

  
                                                          Figure 1: GPU Configuration: Google Colaboratary 

 

• Microsoft Excel: A spreadsheet program offered by Microsoft is used for visualization of data, plots, 

table formation.  

 

 

2. Project Development 

Implementation was carried out entirely using python programming. This research work mainly has three 

phases namely: Data preparation, Modelling stage, Evaluation stage. The first stage has data preprocessing, 

data selection followed by modelling stage includes model implementation using TensorFlow, Keras, Scikit-



2  

learn, fine-tuning hyperparameters and lastly, evaluation models using performance metrics such as MAE, 

precision, categorical accuracy.  

2.1 Data Preparation 

Importing of datasets and data manipulation are done using pandas (data frames), NumPy (arrays), segyio (to 

import seismic volumes. The below sections describe the data pre-processing stages employed in this research 

work. 

2.1.1 F3 Netherlands Seismic Dataset 

The F3 Netherlands seismic data is available publicly in the DGB Earth Sciences repository. Using segy.io to 

import the seismic data SEGY files format from the F3 Netherlands directory. Segyio library is popular for 

seismic data parsing and processing. And some of the code sources are adopted from segyio documentation.  

• Manipulating the similarity to enhance discontinuity/faults of the seismic volume. 

• creating fault mask, fault extraction, displaying samples of amplitude time slices. 

• normalizing the plot by calculating the percentile of its amplitude.  

• Creating data slices from the seismic cube.  

 

 

 

Figure 1- Importing libraries 

 



3  

 

Figure 2- Importing data from drive and directory content display 

 

 

 

Figure 3- Normalizing plot by calculating percentile of amplitude  

 

2.1.2 MalenoV labeled Dataset 

MalenoV contains facies annotation of the 3D SEGY seismic cube which was previously defined by the user. 

The data contains 158812 rows and 4 columns Inline, Crossline, Time, Labels/Class. The first column, 339 

inline corresponds to Crossline 330 to 1247, time slices ranging from 716 to 940, and appropriate facies label is 

predicted.  



4  

 

Figure 4- Loading MalenoV dataset 

 

2.2 Data Selection/Patch Extraction 

The F3 seismic dataset is a cube formulated image data, consisting of attributes inline, crossline, time. This data 

is fed into the model using a python library called segyio. The experiment is conducted on specific slices of 

seismic cube based on the rich information found in the seismic image slices. Analyzing the seismic image 

slices has been done using the customized widget Graphical User Interface (GUI) created using python. An 

interactive 2D and 3D viewer interface are developed to analyze the image.  

 

 

Figure 5- Interactive 2D viewer GUI 

 



5  

 

Figure 6- Interactive seismic image slice  

 

A graphical object is created using the scale widget, which enables the user to optimize a numerical value by 

adjusting the knob along the scale of values assigned. A slider is created using the scale() method. Parameters 

have set to minimum and maximum values to inline, crossline, timeslice. Using matplotlib colormaps are built 

and parameters are set to gray, seismic, RdBu, PuOr to enhance the faults, explicitly view the amplitudes in the 

seismic image. 

 

 

Figure 7- Interactive 3D viewer 

 

It is now easy to select the slices which are more insightful based on the analysis done using GUI viewer. The 

next step is to slice the desired images from the seismic cube to perform further analysis. In the below code 

snippet it is evident that slice 500th and 339th are selected for the interpretation of seismic facies. The data is read 

in 212.3 seconds and slices are created in 6.2 seconds.  

 



6  

 

Figure 8- data slicing  

 
 
The patch extraction is carried out to extract the patches from the 2-dimensional, 3-dimensional array. A sliding 

window approach is implemented to extract patches from each pixel in an image. 

 

 
 

Figure 9- Patch extraction of an image 

 

3. Modelling 

 

3.4.1 Data split 
 

Train Test split is performed and random_state is assigned to 42, to get the same split of train and test data 

points every time. Used for reproducing the same problem every time it is run. If a random_state is not used in 

train_test_split, the split obtained will be a different set of train and test data points and will not help in 

debugging in case you get an issue. 

 

 
Figure 10- Data Split 



7  

 
 
 

 

This is the Keras data generator that wraps the patch_extractor2D() 

 

 
Figure 11- Keras data generator  

 

Then we build acc_assess() to format our test accuracy assessment for each model 

 

 
Figure 12- acc_assess function 

 

3.4.2 Hyperparameters-tuning  
 

In neural networks, the hyperparameters tuning is done using TensorFlow to the training job. To gain the 

advantage of Keras Early stopping, the training code should report to the hyperparameter metric AI platform 

training persistently. When the monitored metrics have stopped showing improvements, the training should be 

stopped hence we use early stopping. The arguments considered are “min_delta”- to ignore the improvement 

less than the assigned value i.e. 0. “verbosity” mode, mode specifying to “auto” to stop the training, when 

monitored metrics are not increasing. “Checkpoint” to store the best weights only. Below is the Keras API 

reference to Early stopping. The weights to be stored in python “HDF5” file in the binary data format. 



8  

 
 

Figure 13- Keras EarlyStopping class 

 

 

Some parameters need to be defined to fit the model we are testing. The “patch_size” of the image is set to 64 in 

the case of VGG, 244 for ResNet model, and EfficientNet model, “batch_size” is set to 64, the number of image 

data samples to be processed before the model is updated also it controls the error gradient estimation. The best 

starting point is generally 32 or 64, channels refer to the number of patches stacked in the image volume, an 

“epoch” is set to 10-15 indicating the number of times or the iteration the entire training dataset is passed into 

the model, argument “steps” are assigned to 200 to 450, meaning that in one step, “batch_size” = 64 many 

samples are processed.  

 

 
 

Figure 14- Tuning parameters 

 
The optimizer SGD is chosen for all three models also Adadelta is chosen as an additional optimizer to the 

VGGNet-16 model, categorical cross-entropy is used as the loss function to measure the performance of the 

multi-class classification model. The arguments passed to the SGD class are learning rate= 1E-1 to 1E-4 to 

indicate the step size while optimizing to minimize a loss function, momentum is set to 0.9 to improve the 

accuracy and faster training.  
 

 

 

 

 

 

 

 

 

 

 



9  

 
Figure 15- Baseline model 

 

 

The fully convolutional network is built as our baseline model. However, transfer learning helps in using pre-

trained networks and replace the fully connected layers with the baseline model. These fully-connected layers 

are for classification and specific to the task and fine-tuned according to the seismic data. The main models i.e 

VGGNet, ResNet, EfficientNet, and the baseline model are designed using the same network blocks, trained 

using the same optimizers and hyperparameters techniques. The softmax activation last layer is used in the 

probability fo the classification. 
 

3.4.3 VGGNet 16 
 

The VGGNet-16 network is implemented in this research, 3 x 3 convolutional layers stacked with each other on 

top, increasing the depth, same padding, and max pool layer of 2 x 2 filter and stride 2. The network is pretty 

large with 138 million parameters and the last two-fully connected layers followed by the softmax layer for the 

classification out. The model is specified as sequential and the below explains the architecture.  

 

 
 

Figure 16- VGGNet-16 model 



10  

 
 

Figure 17- Training VGGNet 

 

3.4.4 ResNet 
 

ResNet variants 101 and 152 versions are implemented based on the concept of skip connection. This model is 

inspired by VGGNet and the network has 101 and 152 layers. The model architecture is adopted from the 

Imagenet project and mounted on the baseline model. The input fed is of 244 x 244 size, the same 

hyperparameters tuning is done as VGGNet with SGD optimizer.  

 

 

 
Figure 18- ResNet model 

 

3.4.5 EfficientNet B7 
 

Compared to other models, EfficientNet is smaller which only takes 5,330,564 parameters, where it outperforms 

models with 23 million parameters. To implement our classification model, to hold on top of the efficientNet 

model we use, GlobalMaxPooling2D to transform 4D to 2D. To preserve the knowledge of the transfer learning 

model, we freeze the convolutional base’s weights. Below is the model summary  

 

 



11  

 
 

Figure 19- EfficientNet summary  

 

4. Evaluation 

 
The model evaluation is done based on the classification metrics “precision” and regression metrics 

“MAE”. Below are the sample figures witnessed as results and evaluation.  

 

 

 
Figure 20- Validation evaluation 

 

 
 

Figure 21- Plotting from NumPy array to image 



12  

 
 

Figure 22- Image plot of EfficientNet B7 

 

 

                                            
                                                                             Figure 20- Model loss plot 

 

 
Figure 21- VGGNet model output 

 

 

 

 

 

 

 

 

 



13  

References 

 
[1]"Python2 Tutorial: Sliders in Tkinter", Python-course.eu, 2020. [Online]. Available: 
https://www.python-course.eu/tkinter_sliders.php. [Accessed: 15- Aug- 2020]. 
 
[2]"Module: tf.keras  |  TensorFlow Core v2.3.0", TensorFlow, 2020. [Online]. Available: 
https://www.tensorflow.org/api_docs/python/tf/keras. [Accessed: 15- Aug- 2020]. 
 
[3]"Netherlands Dataset: A New Public Dataset for Machine Learning in Seismic Interpretation", DeepAI, 
2020. [Online]. Available: https://deepai.org/publication/netherlands-dataset-a-new-public-dataset-for-
machine-learning-in-seismic-interpretation. [Accessed: 15- Aug- 2020]. 
 
[4]J. El Zini, Y. Rizk and M. Awad, "A Deep Transfer Learning Framework for Seismic Data Analysis: A 
Case Study on Bright Spot Detection", IEEE Transactions on Geoscience and Remote Sensing, vol. 58, 
no. 5, pp. 3202-3212, 2020. Available: 10.1109/tgrs.2019.2950888. 

 


