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Configuration Manual

Omkar Doke
x18179525

1 Introduction

This configuration manual presents the software and hardware requirements along with
the details of programming codes written for model implementation in research project:

“Data Mining for Enhancing Silicon Wafer Fabrication”

2 System Configuration

2.1 Hardware Specifications

Table 1 represents hardware specification of the system on which the research was ac-
complished.

Table 1: Hardware Specification

RAM 8 GB
Processor Intel i7 8550U

Speed 1.99 GHz
Operating System Windows 10, 64 Bit

Storage 1 TB HDD
GPU NVIDIA GeForce MX150

2.2 Software Specifications

• Microsoft Excel 2019:
Both the data-sets used in the research were downloaded and stored in csv (comma
separated values) in excel. It was used for quick evaluation and exploratory plot.

• Jupyter Notebook from Anaconda Distribution:
Anaconda Navigator is an open source software downloaded from the anaconda
distribution website 1 . It supports jupyter notebooks to implement machine learn-
ing models on research data. Latest version of jupyter notebook (version 5.7.4)
was used in the research for data preprocessing, exploratory data analysis (EDA),
manipulation of data, transformation and implementation of models.

1https://www.anaconda.com/products/individual
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3 Development of Project

Python programming was used to accomplish the research in various phases viz. data
pre-processing of both the data-sets, EDA, merging of both the data-sets, addressing class
imbalance and normalization of data to overcome the impact of outliers. It was followed
by splitting data into train and test set for predictive modelling using classification-based
machine learning algorithms and their cross validation using stratified K-fold validation
technique. Sk-Learn (scikit-learn) and Keras were primary libraries used along with
numpy, panda, matplotlib for executing the code.

3.1 Data Preparation

Both data-sets2 downloaded from different websites3 have been uploaded onto jupyter
notebook in csv format. Following sections provide a detail insight of data-processing,
EDA, feature engineering, dimensionality reduction performed on both data-sets followed
by merging of data-sets for implementation and evaluation of models after addressing class
imbalance.

3.1.1 UCI SEMCOM Dataset

Pre-processing of UCI SEMCOM dataset involves handling missing values. UCI SEM-
COM dataset consists of 591 attributes with 27 attributes having more than 50% of
missing values which were dropped as it didn’t lead to data loss. Apart from that, at-
tributes with zero variance (i.e. no effect of dependent variable) were dropped as their
presence or absence didn’t have any impact on research. Attributes with less than 50%
of missing values were imputed with median as the attributes had outliers and data has
skew symmetric distribution. Thereafter, dataset was normalized using MinMaxScaler
library for scaling because attributes consisted of outliers as well as the attribute values
were in different range. The dependent variable of UCI SEMCOM dataset consists of
pass category defined as ‘-1’ and fail category as ‘+1’. Code for preprocessing of UCI
SEMCOM dataset is highlighted in Figure 1.

3.1.2 WAFER Dataset

Pre-processing of WAFER dataset involves handling missing values. WAFER dataset
consists of 154 attributes with no attributes having more than 50% of missing values
thereby none of the attributes were dropped. Also, when checked for impact of attributes
on dependent variable, it was found that none of the attributes had zero variance. At-
tributes with less than 50% of missing values were imputed with mean as the attributes
didn’t have outliers. Thereafter, dataset was normalized using MinMaxScaler library for
scaling. The dependent variable of WAFER dataset consisted of pass category defined as
‘+1’ and fail category as ‘-1’. To have standardized definition of pass and fail classes in
dependent variable, we interchanged the designation for WAFER dataset thereby assign-
ing ‘-1’ to pass class and ‘+1’ to fail class. Code for preprocessing of WAFER dataset is
highlighted in Figure 2.

2http://www.timeseriesclassification.com/description.php?Dataset=Wafer
3https://archive.ics.uci.edu/ml/datasets/SECOM
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Figure 1: Data Cleaning of UCI SEMCOM Dataset

Figure 2: Data Cleaning of WAFER Dataset
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3.2 Dimensionality Reduction on both data-sets

3.2.1 UCI SEMCOM Dataset

Feature extraction was performed using principle component analysis (PCA) technique
to extract top components explaining 80% variance of the data. PCA was applied to
extract 250 components from 447 attributes. Then after, variance ratio was calculated
and plotted for principal components which led to the selection of top 100 components
as they explained more that 80% variance of data. Figure 3 represents the code for im-
plementation of PCA on UCI SEMCOM data for extracting principle components.

Figure 3: Feature Extraction using PCA on UCI SEMCOM Data

Feature selection was performed using Analysis of Variance (ANOVA) technique to select
top features explaining more that 80% variance in data. Initially number of features
were gradually reduced to identify feature count for which models provide optimum per-
formance, however different models provided optimum performance for different feature
count. Then after, top 100 features were selected from the data to compare model’s
performance with that of feature extraction technique. Code for feature selection using
ANOVA is highlighted in Figure 4.
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Figure 4: Feature Selection using ANOVA on UCI SEMCOM Data

3.2.2 WAFER Dataset

Feature selection was performed using Analysis of Variance (ANOVA) technique to select
top features explaining more that 80% variance in data. Initially number of features
were gradually reduced to identify feature count for which models provide optimum per-
formance, however different models provided optimum performance for different feature
count. Then after, top 100 features were selected from the data to compare model’s
performance with that of feature extraction technique. Code for feature selection using
ANOVA is highlighted in Figure 5.

Figure 5: Feature Selection using ANOVA on WAFER Data

Feature extraction was performed using principle component analysis (PCA) technique to
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extract top components explaining 80% variance of the data. PCA was applied to extract
150 components from attributes. Then after, variance ratio was calculated and plotted
for principal components which led to the selection of top 100 components as they ex-
plained more that 80% variance of data. Figure 6 represents the code for implementation
of PCA on UCI SEMCOM data for extracting principle components.

Figure 6: Feature Extraction using PCA on WAFER Data

3.3 Merging of data

3.3.1 Merging of feature extracted data frames

Two data frames are created of principle components extracted from both data-sets which
are then merged as both had same number of columns. The pass category which was
initially assigned ‘-1’ label was reassigned with label ‘0’ and descriptive analysis was
performed on final merged dataset. Code in Figure 7 shows how feature extracted PCA
data frames from both data-sets were merged together.

3.3.2 Merging of feature selected data frames

Two data frames are created of feature’s selected from both data-sets which are then
merged as both had same number of columns. The pass category which was initially
assigned ‘-1’ label was reassigned with label ‘0’. Code in Figure 8 shows how feature
selected data frames from both data-sets were merged together.
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Figure 7: Merging two PCA Data Frames

Figure 8: Merging two Feature Selected Data Frames

3.4 Splitting the data into Train and Test set

After merging, both the data-set were split into train and test part in 75:25 ratio respect-
ively. Models were trained on train set and evaluated on test set. Their performance was
cross validated using stratified K-fold validation technique. Figure 9 illustrates the code
for train test split of final dataset.

Figure 9: Train Test Split of Merged Data
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3.5 Addressing Class Imbalance

3.5.1 Oversampling of Feature Selected and Feature Extracted Data

After splitting the data, major class imbalance was observed in train set with fail class
contributing approximately 10% of entire data. This was then addressed using Syn-
thetic Minority Over-Sampling Technique (SMOTE) wherein the minority class was over-
sampled to 50% to that of majority class in both features extracted and features selected
data. Figure 10 represents the code for oversampling of minority class using SMOTE.

Figure 10: Oversampling of Train Set using SMOTE

3.5.2 Random Sampling of Feature Selected Data

In another experiment, class imbalance of feature selected data was address by random
oversampling of minority class along with random under-sampling of majority class. 3
different rations of oversampling and under-sampling respectively were experimented viz.
40:60, 45:55 and 50:50. Figure 11 represents the code for sampling of majority and
minority class using random sampling.

Figure 11: Random Sampling of Train Set in Feature Selected Data
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3.6 Model Implementation and Cross Validation

Various classification models viz. Decision Tree, Logistic Regression, XGBoost, Ran-
dom Forest, SVM-Linear, SVM-RBF, Näıve Bayes, KNN and basic Neural Network were
implemented on pre-processed and feature engineered data. Their performance was eval-
uated for precision and accuracy. The accuracy of each model was further cross validated
using stratified K-fold validation.

3.6.1 Decision Tree

Braha and Shmilovici (2002) used Decision Tree (DT) in their research and achieved an
accuracy of 77%. DT was implemented using default parameters and was cross validated
using K-fold validation with folds ranging from 10 to 50. Code for DT is illustrated in
Figure 12 whereas Figure 13 represents the K-Fold validation of DT.

Figure 12: Code for Decision Tree
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Figure 13: K-Fold Validation of Decision Tree

3.6.2 Logistic Regression

Logistic Regression was implemented using default parameters and was cross validated
using K-fold validation with folds ranging from 10 to 50. Code for Logistic Regression is
illustrated in Figure 14 whereas Figure 15 represents its K-Fold validation.

Figure 14: Code for Logistic Regression
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Figure 15: K-Fold Validation of Logistic Regression

Model’s precision failure was further studied for its threshold for classification of its
probabilities. It was then adjusted after plotting the histogram plot and the model
was re-implemented which saw further reduction in precision. Figure 16 shows code for
experiment with logistic regression.

Figure 16: Understanding Poor Performance of Logistic Regression

11



3.6.3 XGBoost

XGBoost was implemented using default parameters and was cross validated using K-fold
validation with folds ranging from 10 to 50. Code for XGBoost is illustrated in Figure
17 whereas Figure 18 represents its K-Fold validation.

Figure 17: Code for XGBoost Classifier

Figure 18: K-Fold Validation of XGBoost
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3.6.4 Random Forest

Random Forest was implemented using default parameters and was cross validated using
K-fold validation with folds ranging from 10 to 50. Code for RF is illustrated in Figure
19 whereas Figure 20 represents its K-Fold validation.

Figure 19: Code for Random Forest

Figure 20: K-Fold Validation of Random Forest
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3.6.5 SVM-Linear

Yu et al. (2017) used SVM-Linear in their research and achieved a F1 Score of 90%.
SVM was implemented with ‘Linear’ Kernel using default parameters and was cross
validated using K-fold validation with folds ranging from 10 to 50. Code for SVM-Linear
is illustrated in Figure 21 whereas Figure 22 represents its K-Fold validation.

Figure 21: Code for SVM-Linear

Figure 22: K-Fold Validation of SVM-Linear
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3.6.6 SVM-RBF

Adly et al. (2015) used SVM-RBF in their research and achieved an accuracy of 87.5%.
SVM was implemented with ‘Radial Basis Function’ Kernel using default parameters and
was cross validated using K-fold validation with folds ranging from 10 to 50. Code for
SVM-RBF is illustrated in Figure 23 whereas Figure 24 represents its K-Fold validation.

Figure 23: Code for SVM-RBF

Figure 24: K-Fold Validation of SVM-RBF
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3.6.7 Naive Bayes

Näıve Bayes was implemented using default parameters and was cross validated using
K-fold validation with folds ranging from 10 to 50. Code for NB is illustrated in Figure
25 whereas Figure 26 represents its K-Fold validation.

Figure 25: Code for Näıve Bayes

Figure 26: K-Fold Validation of Näıve Bayes

16



3.6.8 KNN

Chien et al. (2012) used KNN in their research and achieved an accuracy of 75%. KNN
was implemented using default parameters and was cross validated using K-fold validation
with folds ranging from 10 to 50. Code for KNN is illustrated in Figure 27 whereas Figure
28 represents its K-Fold validation.

Figure 27: Code for KNN

Figure 28: K-Fold Validation of KNN
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3.6.9 Neural Network

Fernandes et al. (2020) used KNN in their research and achieved an accuracy of 89.64%.
Basic Neural Network was designed and implemented. It was tested for epochs 25 and
50 with constant batch size of 60. Code for design, training and implementation of NN
is illustrated in Figure 29.

Figure 29: Code for Neural Network
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