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Configuration Manual

Harsh Chudasama
X18187340

1 Introduction

This configuration manual specifies the hardware and software requirements and the code
snippets explaining the implementation of the below research project in detail:

“Forecasting the Novel Coronavirus(COVID-19) using Time Series Model”
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2.1

2.2

System Configurations

Hardware

Processor: Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.60 GHz
RAM: 8 GB

System Type: Windows 10 (64 bit)

GPU: Intel(R) UHD Graphics 620 , 2 GB

Storage: 256 GB SSD

Software

Microsoft Excel 2019

[ am currently using the latest version of MS Excel(2019) Version for the data
handling for Comma Separated Values(CSV) and Plotting the graphs. Additionally,
the NumXL Plugin]is installed for ARIMA and ARMA Forecasting.

Anaconda Distribution-Jupyter Notebook

Jupyter NotebookE] is an interactive cell-based Integrated development environ-
ment(IDE).In this software, Python or R machine learning codes can be executed
in a cell and output will be displayed. For this project, Exploratory data analysis,
Data preprocessing, Data Transformation, Visualization, and Model Implementa-
tion is done using Jupyter Notebook (Python Version 3.8.3)

!NumXL Tool Plugin : https://www.numxl.com/products/numxl
2 Anaconda Distribution https://www.anaconda.com/distribution/


https://www.numxl.com/products/numxl
https://www.anaconda.com/distribution/

3 Project Development

The research project was executed successfully and all the four models(LSTM, ARMA,
ARIMA, and Prophet) were deployed. Python language was used for scripting in the
Jupyter Notebook IDE. The Project Development lifecycle consists of following steps
Data preparation, Data Transformation, and Time Series Modelling.

3.1 Data preparation

For this project, Data(University; [2020) is downloaded and loaded in the Jupyter Note-
book using Numpy libraries, and the Data manipulation task is done using the Pandas
library.

3.1.1 Symptom Dataset

The main objective of this project was to extract the key symptoms for early prediction
of COVID-19. The dataset was loaded successfully using Numpy CSV reader function
and it consisted of 32 columns with 14,216 entries(Refer to Figure [1] ).

#Importing the dataset
open_line = pd.read_csv('COVIDLS
open_line = open_line.iloc[:, :-1Z2]

# Check for missing information, datatypes and shape
open_line.info ()

S T TS SV R

#cdutput
<class 'p core.frame.D
8 RangeIndex: 14126 entries, 0
z Data columns (total 33 columns):
1 # Column Non-Null Count Dtype
11 H--- - mmmmmmmmmemee e
12 0 D 13173 non-—null flocaté4d
13 1 age 134% non-null object
14 2 sex 1264 non-null object
15 3 city 10194 non-null object
16 4 province 16 non-null object
17 5 country 13148 non-null object
18 [ wuhan (0) _not_wuhan (1) 13170 non-null floaté4d
7 latitude 13147 non-null flcaté4d
g longitude 13147 non-null floate4d
9 geo_resolution 13147 non-null object
10 date_onset_ symptoms 746 non-null cbject
11 date admission hespital 730 non-null cbject
12 date_confirmation 1308% non-null object
13 symptoms 493 non-null object
14 lives_in_Wuhan 565 non-null cbject
15 travel history dates 503 non-null cbject
16 travel history location 758 non-null cbject
17 reported market_exposure 35 non-null ocbject
18 additional_information 2412 non-null cbject
19 chronic disease binary 18 non-null floaté4d
20 chronic_disease 13 non-null object
Z1 source 12950 non-null cobject
22 seguence_available 1 non-null cbject
23  outcome 184 non-null object
24 date_death_or_discharge 23 non-null object
25 notes_for_discussion 187 non-null object
26 location 1024 non-null cbject
27  admin3 115% non-null object
28  admin2 9068 non-null object
29 adminl 1 7 non-null object
30 country new 1307% non-null object
31 admin_id 13103 non-null object
-~ 32 data_moderator_initials 17 non-null object
5 dtypes: floaté4(5), object(Z8)

Figure 1: Symptom Dataset



3.1.2 COVID-19 Dataset

This is the main dataset which consists of the Number of confirmed cases, deaths, and
recovered cases that are mapped to their respective states(Refer to Figure 2] ).

In [1]: |#importing Libraries
import numpy as np # Linear algebra
import pandas as pd # data processing, CSV file I/0 (e.g. pd.read csv)
import matplotlib.pyplot as plt # for data visualization
%matplotlib inline
import matplotlib # for data visualization
from matplotlib import cm # for data visualization
import geopandas as gpd #To plot Indian Country Border Map
import plotly.express as px # for dota visuvalization
import seaborn as sns # for data visualization
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplet
init_notebook_mode(connected=True) #THIS LINE IS MOST IMPORTANT AS THIS WILL DISPLAY PLOT ON
#NOTEBOOK WHILE KERNEL IS RUNNING
import plotly.graph_objects as go
from IPython.display import HTML,display
import warnings
warnings.filterwarnings("ignore")

In [2]: |#importing main dataset
df = pd.read_csv('covid_19 india.csv', parse_dates=['Date'], dayfirst=True)

#importing tests dataset

tests = pd.read_csv('StatewiseTestingDetails.csv® )

#keeping only required columns

df = df[['Date’, ‘State/UnionTerritory’,’'Cured’, Deaths’, 'Confirmed’]]
#renaming column names

df.columns = ['date’, 'state’,'cured’,’deaths’, confirmed’]

In [3]: | df.tail(5)

out[3]:
date state cured deaths confirmed
4341 2020-08-04 Telengana 49675 563 58946
4842 2020-08-04 Tripura 3675 28 5505
42343 2020-08-04 Uttarakhand 4538 90 7800
4844 2020-08-04 Uttar Pradesh 55393 1778 97362
4845 2020-08-04 West Bengal 54313 17N 78232

Figure 2: COVID-19 Dataset

3.2 Data Transformation
3.2.1 Symptom Dataset

Dataset was loaded successfully with 32 features consisting of 14,216 rows. But, not all
features were required for the analysis, and hence a sneak peek of data was done with the
first four rows of each column with its data types and respective values counter. Below
are a few observations (Refer to Figure |3|) :

e Feature ‘sex’ contains some ambiguities and requires unifying the values.

e Feature ‘Wuhan(0)_not_wuhan(1)’ indicates that all cases originate from outside of
Wuhan the i.e. epicenter of the disease.

e Features (‘age’,‘additional _information’, ‘reported market_exposure’) are
currently not planning for the project scope.

e The following features are removed as they are inconsistent and provide ambiguous
information:



In [6]: # running a Loop to Look at the data contained in each feature columns to analyze which one is relevent
for col in open_line.columns:
print(open_line[col].value_counts().head(4))

print(‘*)

a-italianofmenu-notiziefp-dalministerokid-4112 129 -~
With cases subtracted from here http://uww.salute.gov.it/portale/nuovocoronavirus/dettaglioNotizieNuovoCoronavirus.jsp2lingu
a-italianofmenu-notiziefp-dalministerofid-4116 121

Qingdao Daenam Hospital

93
Name: additional_information, dtype: inté4

1.8 13
8.8 5
Name: chronic_disease_binary, dtype: inté4

lung cancer 1
coPD 1
hypertension; diabetes 1
HIV positive 1

Name: chronic_disease, dtype: int64

hittp: //news.163. con/special/epidemic/?spssid-7283291cdbald8c2d13ea3da2 Fb76@&spsw=7&spss=otheridmap_block s 7

Inference:

column wuhan(0)_not_wuhan(1) indicates that all are from outside of wuhan the epicentre of the disease

sex contains some ambiguities, and are corrected by changing it to sentence case.

column age additional_information, reported_market_exposure : currently not planning an analysis of it

the feature columns below gives very less or ambiguous information and hence not taken into consideration:

age, chronic_disease_binary, chronic_disease, sequence_available, cutcome, date_ceatn_or_discharge, notes_for_discussion, locatien, admin2, admin2,
admin1, country_new, admin_id, data_moderator_initials, lives_in_Wuhan, travel_history_dates, travel_history_location

In [7]: # Columns Selected
open_line = open_line[['sex’, 'city’, "province’, ‘country’,’latitude’, 'longitude’, 'geo_resolution’,
‘date_onset_symptoms', 'date_admission_hospital’', ‘date confirmation', 'symptoms', ‘lives_in Wuhan',
‘travel_history_dates’, 'travel_history location’]]
open_line.shape

out[7]: (14126, 14)

Figure 3: Symptom Dataset Analsis

age, chronic_disease_binary, chronic_disease, sequence_available, outcome,
date_death_or_discharge, notes_for_discussion, location, admin3, admin2,
adminl, country_new, admin_id, data_moderator _initials, lives_in_Wuhan,
travel_history_dates, travel_history_location

e As the feature ‘sex ‘consisted of ambiguity it was normalized and the graph was
plotted to look at the date(Refer to Figure

In [8]: # Removing the ambiguities in the 'sex’ column
open_line.drop(open_line.loc[open_line.sex=="4808'].index, inplace=True)
open_line[ 'sex’].replace( 'male’, ‘Male’, inplace=True)
open_line[ 'sex’].replace( female’, ‘Female’, inplace=True)

In [9]: # Plotting the distribution of gender
import seaborn as sns # for data visualization
sns.set(style="whitegrid")
gender_df = open_line.sex.value_counts().rename_axis('gender’).reset_index(name="count")
gender_df.head()
sns.barplot(y="gender’, x="count’, data=gender_df)
plt.title( Distribution of gender’, fontsize=15)
plt.shou()

Distribution of gender

gender

Female

o
2
g
5]
]

00 400 50 600 700
count

Figure 4: Normalized Feature "Sex’

e Based on the feature ‘Symptom’, Text analysis was performed to extract the Top
10 Key Symptoms by defining the custom function(Refer to Figure 5] ).
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In [11]: # A function to extract symptoms
def find_symptoms(word):
word_split = word.replace('()",",").split(",")
word_split = [word.strip().rstrip(’,") for word in word_split]
key_symptoms.extend(word_split)

In [12]: # creating a dataframe of major symptoms (Top 18)
key_symptoms [1
symptoms_df[ 'symptoms ' ].dropna().apply(find_symptoms)
key_symptoms pd.Series(key_symptoms)
key_symptoms key_symptoms[key_symptoms!=""]
major_symptoms = key_symptoms.value_counts()
print("Top 18 Major Sympyoms identified are :™)
major_symptoms[:18]

[T ]

Top 18 Major Sympyoms identified are :

Out[12]: fever 290
cough 158
sore throat 27
pneumonitis 19
fatigue 17
chills 16
pneumonia 16
headache 13
runny nose 13
malaise 12

dtype: inte64

Figure 5: Top 10 Key Symptoms Feature Extraction

e The Outcome of the key Symptom was summarized using a Word cloud pack-
age(Refer to Figure|] ).

weakness

energy

sympt0m§

reflux

throat

soreness -

Figure 6: Word Cloud of Key Symptoms

3.2.2 COVID-19 Dataset

e Some discrepancies were observed in the state names and hence they were corrected
and stored in new data frame ‘merged’(Refer to Figure[7]).

e Additional feature ‘merged[’dcratio’]” was derived using the following formula and
applied to each row of the data frame.



1.2 Covid-19 Exploratory Data Analysis

In [15]: |#current date
today = df[df.date == "2820-88-84"]

In [16]: |# Datae Transformation

gdf = gpd.read_file( Indian_States.shp')

#renaming state names

gdf['st_nm"].replace({"Andaman & Nicobar Island": "Andaman and Nicobar Islands"
"Arunanchal Pradesh™: "Arunachal Pradesh™
‘Dadara & Nagar Havelli':'Dadra and Nagar Haveli and Daman and Diu’
“Jammu & Kashmir':"Jammu and Kashmir',
"NCT of Delhi':'Delhi'}, inplace=True)

merged = gdf.merge(today , left_on="st_nm’, right_on="state')

merged.state.replace({"Andaman and Nicobar Islands™ : "A & N",
‘Dadra and Nagar Haveli and Daman and Diu' : 'Daman & Diu’,
*Jammu and Kashmir® : *J & K'

}, inplace=True)|

In [17]: merged.info()

<class 'geopandas.geodataframe.GeoDataFrame’ >
Int64Index: 33 entries, @ to 32

Data columns (total 7 columns):

# Column Mon-Null Count Dtype

@ st_nm 33 non-null object

1 geometry 33 non-null geometry

2 date 33 non-null datetime64[ns]
3 state 33 non-null object

4 cured 33 non-null inte4

5 deaths 33 non-null inte4

6 confirmed 33 non-null inte4

dtypes: datetime64[ns](1), geometry(l), int64(3), object(2)
memory usage: 2.1+ KB

Figure 7: COVID-19 Dataset Transformation

merged[’dcratio’] = merged[’deaths’] / merged[’confirmed’] * 100

e Seaborn library was used for plotting the graph of Fatality Rate Per State that
required geopandas library for plotting the layout of India map (Refer to Figure .

3.3 Time Series Modelling
3.3.1 LSTM Model

e LSTM model was implemented which belongs to the following Recurrent Neural
Network(RNN) class (Ayyoubzadeh et al.; 2020)).

e Model Consisted of following layers deep neural network layer followed by dense
and drop out layer(Refer to Figure @ ).

3.3.2 Prophet Model

e The simplest and straight forward model to implement.

e Simple provide the input time series and give trend-setting information.(Refer to
Figure [10] )(Taylor and Letham; [2018)).

3.3.3 ARIMA & ARMA Model
e These models were implemented using the MS Excel NumXL Plugin(Zhang} |2003)).

e Initially, data were log-transformed and provided as input and the stationary test
was performed.



Fatality Rate Per State

Percentage
[0.00, 0.10]
(0.10, 0.20]
(0.20, 0.40]
(0.40, 0.80]

e (0.80,160]
e (1.60,3.20]
(3.20, 6.40]

Figure 8: Fatality Rate Per State

e Stationary test results proved that model shows ARCH Effect i.e. lags are not
constant rather exponential(Refer to Figure [11])(Kelvin et al.; 2020)).

e In conclusion, The model is aligned dependent on beginning segments and coeffi-
cients, and the result is anticipated with the ideal strides to conjecture(Refer to

Figure|12] ).
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In [172]: | #Importing the required Package
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()

#scaling the dote

scaler.fit(train_data)

scaled train_data = scaler.transform{train_data)
scaled_test_data = scaler.transformtest_data)

#reating Datafrome of Scoled Dota os Model Input
data = pd.pataFrame(columns = ['ds','y'])

data[ 'ds'] = train_data.index

data['y'] = scaled_train_dsta

#reating Model

#from keras.preprocessing. sequence import Timeseriescenerotor
from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers import Dropout

import tensorflow as tf

n_input = 12 # Number of Forecasting Days
n_features= 1 #Input Columns

#generating batches of temporal dato

generator = Timeseriescenerator(scaled_train data, #Scaled Inmput Train Dofao
scaled_train_data, #Target Dota
length=n_input, #Length os per input size=12
batch_size-1) #Baiches generoted

#5tarting of Model in sequential manner

1stm_model = sequemtial()

#First LSTM Layer of size (12,1) with 588 hidden Llayers
1stm model.add{LsTM({5@®, activation="tanh', input shape=(n_input, n_features}))
#0rop out Layer

1stm model.add({Dropout(e.1e))

#dding Dense Layer

1stm model.add{Dense{1)}

#ompiling the model with ogptimiszer as adam

1stm model.compile(cptimizer="adam', loss="mse")
#pisplaying Summary of the model

1stm_model. summary ()

#cenerating the model with 58 Epochs

1stm model.fit generator({generator,epochs=58)

Model: "sequential_18"

Layer (type) output Shape Param #
1stm_19 (LSTM) {Mone, 528) 1204228
dropout_1e (Dropout) {Mone, 528) 2
dense_13 (Dense) {Mone, 1) 521

Total params: 1,804,581
Trainable params: 1,804,581
nNon-trainable params: @

Figure 9: Code for LSTM Model




In [138]: #importing fbprophet
from fbprophet import Prophet

#model
m = Prophet()

#fitting the model
m.fit(df3)

#forecasting Future dates
future = m.make_future_dataframe(periods= 12)
future.tail(12)

#rename the column

fb_res.columns = ['ds’, 'FBProphet’]
fb_res['FBProphet'] = fb_res[ 'FBProphet'].astype(int)
result = pd.concat([df2,fb_res],axis=1)

del result['deaths’]

del result['cured’]

del result['ds’]

result.FBProphet = result.FBProphet.replace(np.nan, 8)
out = result.tail(12)

result.tail(12)

Out[13@]:
date confirmed FEBEProphet

176 2020-07-24 1287945 1148408.0
177 2020-07-25 1336861  1171513.0
178 2020-07-26 1385522 1195112.0
179 2020-07-27 1435453 1218749.0
180 2020-07-23 1483156 1242036.0
181 2020-07-29 1531669  1265485.0
182 2020-07-30 1583792  1288950.0
183 2020-07-31 1638870  1307538.0
184  2020-08-01 1695988  1330644.0
185 2020-08-02 1750723 13542420
186 2020-08-03 1803695 1377879.0

187 2020-08-04 1855745  1401167.0

Figure 10: Code for FB Prophet Model
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Stationary Test
Test Score' P-Value C.V.' Stationary?-
ADF
No Const 22 99.3% -2.0 FALSE
Const-Only -1.5 54.3% -2.9 FALSE
Const + Trend -0.5 325% -1.6 FALSE
Const+Trend+Trend"2 -3.8 0.0% -1.6 TRUE
200%

100%

0%

ACF

ARCH Effect Test

Lag

1 17264 384 0.0% FALSE
2 341.89 5.99 0.0% FALSE
3 507.67 7.81 0.0% FALSE
4 669.93 9.49 0.0% FALSE
5 828.62 11.07 0.0% FALSE
6 983.66 1259 0.0% FALSE

‘; Score ' C.V. P-Value' Present?-

-100%

150%
100% mm PACF
50% —UL
0% T T — T — T T T | LL
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3
Figure 11: Stationary Test Check for ARIMA & ARMA Model
ARMA(1,1) Goodness-of-fit Residuals (standardized) Analysis
param Value LLF TAIC T CHECK AVG ~ STDEV " Skew " Kurtosis' Noise? Normal? ARCH?'
" .65 L4664 50127 L 0.07 013 805 8415 FALSE FALSE FALSE
N
@, 100 Target 0.00 100 000 0.0
~ -
91_ 0.09 siG? TRUE TRUE TRUE TRUE
¢ T 101
ARMA(1,3) Goodness-of-fit (standardized) Analysis
param Value LLF TAIC T CHECK AVG ~ STDEV " Skew " Kurtosis' Noise? Normal? ARCH?'
p | 86 25450 517.00 L 0.06 013 757 8021 FALSE FALSE FALSE
~ N
@, 1.00 Target 0.00 100 000  0.00
~ ]
91_ 0.28 sIG? TRUE TRUE TRUE TRUE
Step Mean STD UL LL
1 14.03207963 N 1.012822498 16.01717525 12.04698401
2 14.03153587 1496123649 16.96383434  11.0991874
3 14.03099217 1.857610735 17.67184231  10.39014203
4 14.03044852 2.15935279 18.26270222 9.798194824
5 14.02950493 2.423767008  18.78040097 9.275408889
6 14.02936139  2.661999963 19.24678545  8.81193734 1
7 14.02881791 2.880554877 19.67460173  8.383034097
8 14.02827448  3.083618711 20.0720561 7.984492868
? 14.02773111  3.274075094 20.44430038  7.610661346
10 14.02718779  3.454010211 20.79692341  7.257452179
1 14.02664453  3.624991153 2113149664  6.921792429
12 14.02610132  3.788230554 21.45089678 6.601305873

Figure 12: ARMA Model Predictions
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