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Text Summarization of Customer Reviews Using 
Natural Language Processing 

 
Ridwan Atanda  
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Abstract 

Humans have a strong capability to summarize complex and lengthy documents in a 

simple and concise format. However, in processing and summarizing large volumes of 

documents within a fraction of seconds, machines outperform the humans. In this 

particular work, a novel text summarization model was developed by combining extractive 

and abstractive summarization methods to summarize the large volumes of customer 

reviews extracted from Amazon data set. The extractive method was used to capture a 

summary that selects the top-ranking sentences in the corpus using a graph-based 

TextRank algorithm while these summaries are further fed into a neural network of Long 

short-term memory (LSTM) to produce the final abstractive summary. The effectiveness 

of this approach has been measured using the most popularly adopted ROUGE metrics for 

Natural Language Processing Task. Among multiple models tested, Bi-LSTM is shown to 

effectively capture the salient information present in the reviews achieving high accuracy 

and resulted in a concise summary without losing the factual meaning of the reviews. 

 

1 Introduction 
 

With the advent of open markets and online marketing, there has been a tremendous 

amount of growth in the e-commerce sector led to unprecedented engagement both in financial 

and non-financial matters between the consumers and businesses on the web. To enhance the 

transparency and customer loyalty along with shopping experience, most of the online retailers 

such as Amazon encourages consumers to share their experiences, opinions on the products or 

services that have been purchased online. This particular feature has given significant power 

to consumers to express their views openly on the web, which led to a significant increase in 

the number of customer reviews. As the customers are free to express their opinions, these 

reviews tend to be lengthy and have only a few sentences that carry significant information 

about a product. Besides, the lengthy and usually bombastic sentences make it difficult for a 

prospective buyer to read and understand the complex jargon used by the customers and seldom 

helps the potential buyer in deciding whether to buy a particular product or not.   

In the age of the digital world, customer reviews play a vital role for businesses to prosper 

as these views impact the decision making of the potential buyers. Hence, to provide a simple, 

clear, and easy understand summary of customer reviews which further influences the decision 

making of the buyer, a text summarization tool can be used to help the potential buyers. A text 

summarization tool is capable of converting long documents into short summaries while 

preserving the semantic richness of the document. The application of this technique provides 

an effective solution to summarize a large number of documents in various fields, including 

news articles, blogs, and research papers. Depending on the final output, conventionally, there 
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have been two main approaches used in the text summarization process and they are extractive 

summarization and abstractive summarization method which are used interchangeably as per 

the requirement. The extractive summarization takes into account the important words or 

sentences in the input document using statistical features to produce a summary of the 

document (Christian et al., 2016). In contrast, abstractive summarizes the document in a way 

similar to the human style of summarization by paraphrasing the document and produces novel 

words using language generation models. The extractive method is easier to implement because 

it copies the words or sentences from the input document, which results in a more 

grammatically correct summary and has been popularly adopted by many researchers (Joshi et 

al. 2019). On the other hand, the abstractive summarization has more sophisticated features 

that are relevant in producing a high-quality summary as opposed to the extractive approach, 

by incorporating a real-world knowledge, generalization and paraphrasing in its framework. 

The abstractive summarization has several key features in its framework which make an 

efficient tool to produce better summaries however, it is quite complex and difficult to enforce, 

hence a limited work is available in the literature (Rush et al., 2015). 

To overcome the challenges faced by the abstractive method during implementation, 

Gupta’s research team (Gupta and Gupta, 2019) have employed a deep learning approach using 

an encoder-decoder framework such as a recurrent neural network (RNN). In this method, the 

input from the encoder passes through an internal representation or hidden states that the 

decoder uses to construct the output sequence (LeCun et al., 2015). This approach has been 

successfully applied to several deep learning tasks in various fields, such as image captioning, 

speech recognition, machine translation, and video captioning for its reliable results. As a 

result, recent work (Niu et al., 2019) on text summarization are now directed towards the 

abstractive summarization method using the encoder-decoder deep learning technique. Several 

authors (Nallapati et al. 2016), (Zhou et al. 2018), (Shi et al. 2019) have employed this approach 

over time and have made significant contributions to the field. In the similar lines, the Weston 

group (Rush et al. 2015) implemented the long short-term memory (LSTM) to solve the 

problem of exploding and vanishing gradient of the regular RNN framework. In contrast, 

several authors (See et al. 2017), (Li et al. 2017) also discussed the key drawbacks of these 

techniques. One such drawback is the inability of the model to obtain a good representation of 

the input document in its framework during training, which results into incorrect factual 

information and repetition of summaries produced (See et al., 2017). This limitation of the 

abstractive approach is a major challenge when summarizing not only the Amazon reviews 

also other datasets due to repetition of the comments and complexity of the human language. 

Thus, this notion has prepared us for the computational issues and misinterpretation that may 

arise in text summarization when dealing with a large amount of text data, hence the key 

questions which are aimed to be addressed in this project are as follows: 

 

I. Can the abstractive summarization model produce a concise and human-readable 

summary when paired with the traditional extractive summarization model? 

II. Can the Abstractive learning approach grasp the meaning of vocabulary in a raw, 

unstructured text to generate a concise and non-repetitive summary? 
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To address these challenges, we propose a summary model that incorporates the extractive and 

abstractive framework for summarization tasks. The combination of these frameworks would 

enable the models to grasp the semantic meaning of the raw input text and yields a better 

representation to facilitate the creation of a concise, non-repetitive summary. The contribution 

of this paper can, therefore, be defined as follows: 

• Explore the state-of-the-art framework for identifying the appropriate model for text 

summarization. 

• Implement the models that best captures the semantic context and represents a better 

input document.  

• Investigate different data mining techniques that can produce cohesive and non-

repetitive summaries. 

• Build a model that can understand the text documents on various topics and results in 

better summaries. 

 

Considering the research objectives outlined above, the major contribution of this project 

is at improvisation of capturing a good representation of the input documents and producing a 

non-repetitive summary. Subsequently, in this project we review the state-of-the-art in text 

summarization domain in section 2, laying a foundation for appropriate methodology in section 

3, followed by describing the design specifications in section 4. Likewise, the implementation 

procedure is explained in section 5 and section 6 describes the experimentation and evaluation 

of the results. The conclusion and future works are presented in section 7.  

 

2 Related Work 
 

This section gives a concrete overview of the state-of-the-art literature available in text 

summarization and demonstrates the evolution and improvisation of different methodologies 

over time. As previously mentioned, a summary model is required as it condenses all the text 

available in the documents and produces a summary that encompasses all the relevant details 

contained in the document. Generally, it can be done in two ways; extractive summarization 

and abstractive summarization, most of the research work in the past focused on extractive 

summaries since it essentially identifies important sentences in the document. In contrast, 

abstractive summarization does not solely depend on a simple extraction method to generate 

summaries, but rather generates new sentences intelligently from the given document(s). These 

methods are reviewed in this section to identify the best practices appropriate for this research 

and also to elaborate on the potential gaps in state-of-the-art papers literature. 

 

  

2.1 Statistical Approach for Extractive Summarization  

 

The 'Topic Sentence' was the first seminal work on text summarization which appeared in the 

year 1958 aimed at summarizing the scientific documents (Baxendale 1958). This method 

considered the first and last paragraphs as a basis for summarizing the documents. 

Interestingly, this simple yet effective method worked perfectly on scientific publications and 
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became a foundation for other methods to evolve. In the same year, Luhn (1958) put forward 

the theory called “frequency of terms of content”, which considers the most frequently used 

words in the document as significant and words that occur least as less significant. As a result, 

a frequency-based approach was used to score key words in the document to generate a 

summary. This method was popular until Edmundson (1968) introduced a new method that 

combined topic sentence and word frequency and adds to its cue words. These were the words 

that strongly related to the meaning of sentences and were further used to calculate the weight 

of each sentence in a document to generate human-readable summaries. Another entirely 

different strategy was that of DeJong (1979), he created the first knowledge-based 

summarization system called Fast Reading Understanding Memory Program (FRUMP) that 

uses a template filling method. This method used to obtain predefined text information that 

covers all topics in a news article and incorporates appropriate information to produce the final 

summary.  

 

In 1995, automatic text summarization progressed as authors began using machine learning 

techniques to extract information from textual data, the very first work using a trainable method 

was a Naïve Bayes algorithm used in a supervised manner to classify important text in a 

document (Kupiec et al. 1995). This approach produced similarity of about 44% when 

compared to the human-generated summary. Similarly, the Shetty’ s group (Shetty et al. 2018) 

also proposed a DOCUSUM technique using K-Means to construct lexical clusters and selected 

topic keywords that generated summaries. This approach was based on using word features 

(contents, title, cue words), sentence-level features (location, length, cohesion), and clustering 

methods (Naïve Bayes, K-Means) to determine the output of the summary. However, apart 

from the methods mentioned above, there were other summarization methods such as graph-

based (Yu et al. 2016) and neural networks (Khan et al. 2019) also contributed to the 

improvement of the extractive approach.   

 

2.2 Graph-based approach for Extractive Summarization 
 
Graph-based ranking algorithms have also been used in the summarization task, it works 

similar to the architecture of the PageRank algorithm introduced by Google (Brin and Page 

1998). In 2004, the Radev research group (Erkan and Radev 2004) proposed a new method 

called LexRank algorithm which worked based on 'Lexical Centrality'. This basic idea was to 

construct a graph representing the phrases in the document therefore, similar phrases can be 

linked via the vertex and then used to construct the summary. In another work (Mihalcea et al 

2004), unsupervised method for extracting keywords and sentence-level features using the 

TextRank algorithm was proposed. In this method, the keywords and sentences were treated as 

nodes in the graph followed by assigning an arbitrary value to each node. The computation 

continues to iterate until its convergences to a value below a certain threshold. In the end each 

vertex in the graph associates with a ranking and the vertices with the highest score, which 

further uses to generate the summary. In 2013, Ferreira et al. (2013) extended the work of 

(Mihalcea et al 2004) by considering four main features (similarity, semantic similarity, co-

reference, discourse information) to achieve similarities between sentences. The introduction 
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of these features helped in selecting the salient sentences that represent the output summary. In 

another work (Yu et al. 2016), authors developed a novel approach named iTextRank which 

considers statistical and linguistic features such as similarities in titles, paragraph structures, 

special sentences, sentence positions and lengths when building sentence graph for the 

TextRank algorithm.  

 

Following the developments in this domain, the Term Frequency and Inverse Document 

Frequency (tf-idf) has been used mainly to evaluate the context or significance of a word to a 

document given a larger body of a document. And this method has been widely integrated into 

the graph-based approach as a pre-processing measure to produce a high-quality summary. 

Khatri et al., (2018) computed term frequency-inverse sentence frequency (tf-isf) an adaptation 

of the tf-idf of a document to determine the sentences that should be included in a summary. 

As described in (Christian et al. 2016) the tf-idf scores increase with respect to the number of 

times a word appears across several documents, hence frequent words that appear in the 

document were included in the summary for news articles. It was also used as a weighting 

factor to determine words that will be relevant in a summary (Khan et al. 2019). After 

evaluating these extractive methods, we find that these methods consider only top-k relevant 

sentences from the input document and in most cases results in summaries that are almost equal 

in length to the original document which is a serious limitation. Therefore, there is a need for 

a novel model that can provide a more condensed summary while preserving the relevant 

details in the corpus. Hence, to address this limitation in this particular project work we 

implemented the deep learning encoder-decoder method which is described below. 

 

2.3 Encoder-Decoder for Abstractive Summarization 

 

A sequence to sequence framework has an encoder that reads a source article, transforms 

through its hidden states followed by a decoder that takes the hidden state as an input to produce 

an output. This model has been successfully applied to various NLP tasks and more recently 

has achieved the state-of-the-art abstractive summary result (Gupta and Gupta, 2019). A neural 

sequence-to-sequence model was first implemented by Rush et al., (2015) using the Recurrent 

Neural Network (RNN) to capture key phrases from the input document in the encoder and 

pass the resulting sentences to the decoder to generate a short concise human-readable 

summary. Similar encoder system was used by Xiang group (Nallapati et al., 2016) to capture 

relevant keywords and Out of Vocabulary (OOV) words in a source document and pass the 

corresponding sequences to a GRU-RNN decoder. This was carried out to solve the issues in 

modelling, hierarchical phrase-to-word, problems in keyword matching and to substantially 

boost summarization result over traditional methods. In another work, Li et al. (2017) put into 

consideration the latent semantic structure of the input document using RNN generative 

encoder to improve the quality of the summary produced. Most of these prevalent models have 

employed the RNN framework however, RNN frameworks are difficult to train due to the 

problems of vanishing and exploding gradient. It was later found that the LSTM could be a 

possible solution to these problems and was further implemented by several authors (Zhou et 

al., 2018), (Han et al., 2019). The LSTM based encoder-decoder framework was introduced by 
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Zhou et al., (2018) for abstractive summarization task. They further introduced an information 

filter system using a selective gate network that controls the flow of information from the 

encoder to the decoder.  

 

Subsequently, Rekabdar et al. (2019) also proposed a complete Gated Recurrent Unit (GRU) 

for both encoder and decoder to solve the problem of vanishing gradient. Even though these 

approaches solve the problem of long output summary associated with the traditional approach, 

they have limitations in producing salient information from the input document and the 

inability to handle repetitions in summaries. To this end, Han et al. (2019) introduced a read 

again mechanism using double LSTM layers to improve the quality of the representation of the 

input document. This method was inspirited by the repetitive reading habit of humans before 

writing an article summary. Similarly, See et al. (2017) also addressed this problem by 

proposing a pointer generator network, which copies word from the input document via a 

pointer and generates novel words from a vocabulary via a generator. With this approach, 

factual information can be reproduced and summary's repetition can be properly handled when 

generating a final summary. 

 

2.4 Attention-based Abstractive Summarization 

 

The pointer generator network has addressed the problem of repetition and readability; thus, 

the attention mechanism has been further introduced to improve on readability, uncommon 

words, and repetition handling problem (Gupta and Gupta, 2019). In the attention-based 

encoder-decoder architecture, the decoder does not only receive the input representations from 

the encoder but also selectively focuses on some part of the input sequence at each decoding 

step. In later developments, Wang’s research group (Shi et al., 2019) proposed a system called 

NEUSUM which encompasses the LSTM with an attention mechanism. The attention 

mechanism used in this was to enable the hidden layers to focus on a particular sequence on 

the input document, thus producing a non-repetitive readable summary. Moreover, Niu et al. 

(2019) presented a feedforward neural network to work on sentence-level summarization and 

used the attention-based mechanism similar to Shi et al. (2018) for encoding the input and a 

beam search mechanism for decoding the output to produce an accurate summary. Since the 

attention mechanism prevents the model from attending to the same part of the document by 

tracking past attention weights, it has been considered as the state-of-the-art approach to 

improving abstractive summarization results.  

 

In the recent past, researchers incorporated the strength of the extractive and abstractive 

approach towards summarization tasks. This approach effectively represents the salient 

sentences from the source document by using the traditional extractive approach prior to 

subjecting the encoder-decoder framework that generates the abstractive summary. The Sun 

group (Hsu et al. 2018) proposed a unified model by combining the strength of extractor (Khan 

et al. 2019) and abstracter (See et al. 2017) models and introduced an inconsistency loss 

function that ensures the model to benefit from both the extractive and abstractive models. This 

approach led to improvements in ROUGE score when evaluated on benchmark summarization 
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datasets and outperforms past work on summarization tasks. Moreover, it was shown that the 

capturing synthetic and semantic features of the input document using word vectors and 

paragraph vectors before feeding the encoder-decoder model could improve the state-of-the-

art results. Therefore, word vectors and PageRank were implemented to obtain extractive 

summaries while LSTM framework was trained for each sentence present in the corresponding 

extractive summary (Monalisa and Dipankar, 2020). 

 

2.5 Summary of Related Work 

 
We discussed various methods such as the traditional word and sentence level method (Shetty 

et al. 2018), the graph-based and tf-idf method (Khatri et al. 2018), and the abstractive methods 

(Hsu et al. 2018) which were employed to achieve a good summarization model. Therefore, 

based on the literature, we can see that no single model yielded the desired result of making a 

good summary of the text or articles. Hence, a novel model which is a combination of extractive 

and abstractive summarization models together would be appropriate to achieve arguably state-

of-the-art results. The key merits of this combination model are due to its capability to handle 

uncommon and repetitive words and construct a concise human-readable summary. To the best 

our knowledge we found a limited work in the literature. This is the key motivation bending 

this project work to implement a summarization model by combining the features of the 

extractive and abstractive method on a novel dataset. To demonstrate the capabilities of this 

novel approach the Amazon reviews were adopted. Amazon is a popular e-commerce website 

and has a public data repository available for researchers to collect data for research purpose. 

Though the model built in this project was specifically tested on Amazon reviews, it is a generic 

model and usually applicable to other e-commerce websites as well. 

 

In this particular work, we followed the extractive model described in (Christian et al. 2016) to 

achieve an extractive summary, which was further presented as an input to the abstractive 

model. In this case, we implemented a three-layer LSTM encoder and a single layer LSTM 

decoder with an attention mechanism. The encoder was stacked in three layers to make it easier 

for the model to get a deeper understanding of the reviews before passing corresponding 

sequences to the decoder which produces the final output. The important sentences retrieved 

from the extractive summary were contributed to generate a concise human-readable summary. 

While the stacked LSTM layer was used to effectively obtain a better representation of the 

extracted summary before constructing the abstractive summary. In Table 1, a detailed 

summary of the cited literature is presented for a better overview of the various methods used 

in text summarization domain. 
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Table 1: Overview of the literature review 

 

 

 

 

 

 

 

 

 

 

Year Reference Framework Dataset Metrics 

Extractive Summarization 

1958 Luhn 
Word frequency and phrase 

frequency 

Technical 

Articles 
Human 

1995 Kupiec et al. 
Cluster Base and Naïve Bayes 

Classifier 

Scientific 

Journals 
Human 

2004 Erkan & Radev Graph-Based LexRank 
DUC 2002, DUC 

2003, DUC 2004 
ROUGE 

2013 Ferreira et al. Graph-Based TextRank CNN/DailyMail ROUGE 

2016 Christian et al. 
Term Frequency-Inverse 

Sentence Frequency (tf-isf)  

Online eBay 

Reviews 
BLEU 

2018 Khatri et al. 
Term Frequency-Inverse 

Document Frequency (tf-idf) 
DUC 2007 

ROUGE, 

Human 

Abstractive Summarization 

2015 Rush et al. 
Complete RNN encoder-

decoder 

DUC 2003, DUC 

2004, DUC 2007 
ROUGE 

2016 Nallapati et al. 
RNN encoder with GRU 

decoder 

CNN/DailyMail, 

DUC 2007 

ROUGE, 

Human 

2017 Li et al. 
RNN with an Attention 

mechanism 
DUC 2004 ROUGE 

2017 See et al. 
LSTM with pointer generator 

network 
CNN/DailyMail 

ROUGE, 

METEOR 

2018 Zhou et al. 
LSTM with selective gate 

network 
CNN/DailyMail ROUGE 

2018 Niu et al. 
LSTM with variational 

Autoencoders 

Gigaword, DUC 

2004 
ROUGE 

Extractive and Abstractive Summarization 

2018 Hsu et al. 
Extractor= GRU, Abstractor= 

Pointer Generator Network 
CNN/DailyMail 

ROUGE, 

Human 

2020 

Monalisa Dey 

and Dipankar 

Das 

Extractor = PageRank, 

Abstractor= Double LSTM 

encoder and single LSTM 

decoder  

DUC/Gigaword 
ROUGE, 

METEOR 

Our Approach 

2020 

Extractor = TextRank, 

Abstractor = Triple-layered 

LSTM with Attention 

mechanism 

Online Amazon 

Reviews 

ROUGE, 

Human 
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3 Research Methodology 
 

This section discusses the research methodology as well as the type of assessment used in this 

particular study. To create a model that effectively generates reliable and succinct summaries 

of the Amazon reviews, the choice of the right data mining technique is crucial. After careful 

review of the popular data mining techniques such as Knowledge Discovery in Databases 

(KDD), Cross Industry Standard Process for Data Mining (CRISP-DM), and Sample, Explore, 

Modify, Model, Assess (SEMMA) (Azevedo et al. 2008). We have chosen the KDD method 

for this study, beginning with data collection, pre-processing, and model building, which aims 

to derive useful information from large corpus following due process. A detailed schematic of 

the proposed model is shown in Figure. 1.  

 

Figure 1: Proposed Methodology 

3.1 Data Collection 

 

First and foremost, step in the data summarization project was to collect the data, here we used 

online Amazon review dataset which is available to the general public (Ni et al. 2019). The 

entire corpus consists of approximately 233 million customer reviews covering all kinds of 

products, ranging from books, accessories, food, software, and movies. As the specific aim of 

the project was to build a robust model that could generalize online reviews; hence to 

demonstrate the capabilities of data summarization tools developed here, we selected four 

categories of the review sections. And they were from clothing, shoes and jewellery; cell phone 

and accessories; movies and TV; along with foods. The reviews consist of various headings 

such as ReviewerID, ReviewerName, ReviewText, Reference Summary, Ratings and Product 

Information.  

 

3.2 Data Preparation and Pre-processing  

 

We discover that in the online Amazon portal every product entry has millions of customer 

reviews. And it was beyond the capacity of the computational resources to handle all the data 

when fed for processing. Therefore, we decided to extract only 200,000 customer reviews for 

each category of the product which ended up to a total of 800,000 reviews for all four 

categories. Preliminary work was done to prepare the dataset, we first cleaned out the noise to 

reduce the inconsistencies in the dataset, as this may have negative effects in training the model 

and consequently affects the output results. The necessary columns (ReviewText and 

Reference Summary) were selected from the raw text file and transformed into a data frame. 

We subjected the model to delete missing values, duplicate reviews, stop words, special 
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characters, punctuations, HTML tags, and numbers because they were very common and do 

not contribute to the contextual meaning of the reviews. In the process, we performed 

tokenization and transformed the abbreviated words to their original format using contraction 

mapping and eventually, each text was subjected to convert into a lower case.  

 

3.3 Feature Extraction 

 
During the operation, the preprocessing stage was needed to enhance the extraction of relevant 

features from the raw text. These features were fed into various machine learning models as 

mentioned above for implementing the work. Here, the tf-idf features were extracted to obtain 

the frequent words and phrases that were relevant in the reviews using the tf-idfVectorizer1 

from the Scikit learn library in Python. 

 

3.4 Data Mining  

 
The data mining phase involved two main stages, namely the extractive and the abstractive 

stage. The results of the first stage were consequently fed as an input to the second phase, which 

further produces the final output. In the extractive stage, resulting vectors were fed from the 

extracted features of the tf-idf and were fed into an unsupervised graph-based ranking algorithm 

using TextRank (Christian et al. 2016). This upon selects the candidate sentences in the reviews 

that would eventually produce an extractive summary. While in the abstractive phase, a 

sequence to sequence RNN-LSTM model was implemented using TensorFlow and Keras. The 

extractive summary served as the input to this phase and the data was divided into Train and 

Test using the sklearn library. The training was performed by fine-tuning hyperparameters to 

achieve a model that yields a better representation of the reviews and also capable of making 

accurate predictions.   

 

3.5 Inference and Evaluation 

 
After training the model, the next activity was to utilize this trained model to make predictions 

on unseen data and also measure its accuracy. Furthermore, this model produces a probability 

distribution for each token in the output sequence for all possible characters. That means for 

each summary the model predicted, it would produce an array of the maximum amount of 

words that can occur in the summary, in addition to this, the probability would show how likely 

a particular word be included in the summary. To make sense of this probability distribution 

there was a need to use a decoding algorithm such as Greedy search or Beam search decoder 

for prediction (Wilt et al. 2010). For any prediction, the Greedy search decoder essentially 

considers the words with the highest likelihood and concatenates all the predicted words to get 

the final output sequence. While on the other hand, the Beam search decoder does not only 

 
1 https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html 
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consider the most likely word for each prediction, it takes into account top-k words with high 

probabilities (k is called beam size). Hence, it does not give one output sequence like the 

Greedy search but gives k-different outputs along with their probabilities. The Greedy search 

has mostly been implemented due to its performance in achieving better results with lesser 

computational resources as opposed to the Beam search method.  

 

Upon making inferences from the predictions, we moved on to calculating the model's 

accuracy. The model’s accuracy was achieved by measuring overlapping words between the 

reference summary and the model’s generated summary. Historically, precision and recall were 

used to obtain model’s accuracy, however, these metrics do not measure how much of the 

model's predicted summary was, in fact, relevant or needed. Thus, these methods were 

insufficient, hence we further proceeded to measure the accuracy of the model using Recall-

Oriented Understudy for Gisting Evaluation (ROUGE) metrics. In this case, we compare these 

summaries on different levels of granularities using ROUGE-1, ROUGE-2 and ROUGE-L. 

 

4 Design Specification 
 

Here, we discuss the workflow of the implementation process carried out in this particular 

work. Throughout this section, we define the structure underlying the implementation of the 

proposed models. The model was a combination of extractive and abstract summarization 

techniques. In the next process step, the reviews were passed on to the TextRank algorithm, 

since this was an unsupervised learning technique, there were no necessary steps needed to 

pass the reference summaries along with. The TextRank generates an extractive summary of 

the reviews which is further concatenated with the reference summary and serves as an input 

to the RNN-LSTM model. The schematic of the working models is presented in Figure. 2 and 

described in detail below. 

 

4.1 Stage 1: Extractive Approach 

 
This was the first experiment to generate an extractive summary. This was performed by using 

an unsupervised learning strategy, which picks up key sentences in the reviews. The detailed 

procedure is presented in the subsequent sections below. 

 

4.1.1 Preprocessing  

 
For any machine learning task, it is important to pre-process the dataset in an acceptable format, 

which is possibly one of the most critical stages as its impact will be seen in the remaining 

phases of the model system. Thus, in the proposed workflow, the data was prepared by 

removing inconsistencies and irregularities which may affect the output result. Four of the 

review categories listed above were gathered and concatenated into a data frame. Because of 

limited computing resources, we pick 200,000 rows for each review category. As mentioned 

previously rows with missing reviews or summaries, along with stop words and punctuations, 
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are removed from the data frame because they were common and do not contribute much to 

the character of the text. Finally, contraction mapping was performed to convert abbreviated 

words to their base format and converted to lowercase words.  

 

 

Figure 2: Model Flow 

 

4.1.2 Feature Engineering 

 
As shown in Figure. 2, the next stage was to extract the features from the prepared clean text 

and recall that for any machine learning algorithm, data fed into it must be represented in 

numerical values. Thus, it was a necessary step to extract word tokens from the document and 

compute the frequency of word tokens using tf-idf (Christian et al., 2016), then further construct 

word vectors out of these frequencies. The tf-idf has been widely adopted in NLP tasks to 

extract relevant features from textual data. It is a weighting mechanism that shows the 

importance of a word in a document given a larger body of documents. For each word in the 

ReviewText, we may simply state that it assigns a tf-idf value, and such values differ depending 

on the significance of that word in the review. It is not feasible to store these strings of words 

and it corresponding tf-idf values into the computer memory. Therefore, it saves space and 

maps every word to a numerical hash function in a fairly distributed manner given that the 

space of the hash value is sufficiently large. This way the extracted features consumes less 

memory when converted to vectors. 
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4.1.3 TextRank and Extractive Summary 

 
As shown in Figure. 2, the resulting vectors from the previous stage were fed into a ranking 

algorithm named TextRank that works based on the PageRank algorithm introduced by Google 

(Brin and Page 1998). This innovative unsupervised graph-based ranking algorithm has been 

widely adopted in NLP task, it converts the resulting vectors from the previous phase into a 

web graph. In the graph, there were nodes and edges, and it assumes that each node has equal 

weights and the importance of a node would be determined by the number of edges that points 

to it. This looks like a voting mechanism (Yu et al., 2016), whereby the more edges that point 

to a node, that means the node becomes significant. Therefore, the word vectors with the 

highest nodes are considered relevant to the text document and are a good candidate for the 

extractive summary. Base on a threshold these word vectors were picked and combined to form 

the extractive summary.   

 

4.2 Step 2: Abstractive Approach 

 
The extractive summary obtained from the previous step is concatenated with the reference 

summary in the dataset and serves as an input to the deep learning model which produces the 

final output summary. To this end, we employed the artificial neural network since they learn 

the best way to make sense of unstructured data. Many data mining models implement the 

Convolutional Neural Networks (CNN) or the Recurrent Neural Networks (RNN) depending 

on the task at hand. For instance, researchers mostly implement CNN for deep learning tasks 

that involve images and videos, such as image captioning or facial recognition. While the RNN 

is more suitable for tasks that take a sequence of words as the input and produces sequences of 

words as the output. Based on the merits, we consider this and implement the RNN for this 

research work and the schematic of the encoder-decoder model is shown in Figure 3. The RNN 

is an encoder-decoder framework, the encoder extracts the text of equal length from the raw 

text while the decoder generates translation from this representation. It passes through hidden 

layers to compute weight and biases that help in generating a better representation of the input 

text. However, the RNN is only effective for short sequences of words, as it suffers from the 

problem of vanishing and exploding gradients for longer sequences. Thus, we implemented an 

extension of the RNN which was the LSTM capable of handling long sequences of data and 

was developed to handle the problem of vanishing gradient that can be encountered when 

training RNN. We also integrated the attention mechanism inspired by Bahdanau et al. (2015) 

into the RNN-LSTM model text. This helped the decoder to determine the source words to 

concentrate on when generating the next word. Hence, the abstractive approach was the RNN-

LSTM with the attention-based mechanism.   
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Figure 3: Encoder-Decoder Model 

 
 

5 Implementation 
 

This section discusses the procedures taken to achieve the summarization task set out for this 

research. 
 

5.1 System configuration 

 
The Python (version 3.6.9) programming language was used to perform the implementation for 

this work due to the availability of enough library packages which can be readily imported. It 

was deployed both on our local machine and as well on the Google cloud services. The local 

machine was an Intel Core i5, 3.1GHz processor, 8GB Ram, and 64 bits MacOS Catalina. The 

first experimentation for step 1 was carried out on a local machine, and due to more 

computational power and requirement for a Graphics Processing Unit (GPU), the second stage 

of the experiment was moved to Google cloud platform popularly known as ‘Google Colab’. 

Google cloud platform is an Infrastructure as a service (IaaS) provided by Google2 that runs 

entirely on the Google cloud platform and uses the Google compute engine backend for all 

computing purposes. The execution runtime was set to utilize the free GPU of 1xTesla K80, 

2496 CUDA cores, and a RAM of 12GB. Because the cloud service was a free account, the 

GPU service can only be run for up to 12 hours per day, due to this constraint, it took about a 

week for the model training. 

 

5.2 Dataset Description 

 
For this research work, we collected the Amazon review dataset (Ni et al., 2019) which is 

available in a public data repository3, the reviews span over multiple products for four years. 

 
2 https://cloud.google.com/compute/docs/resources 
3 http://deepyeti.ucsd.edu/jianmo/amazon/index.html 
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Since the collected dataset was so huge, it was unlikely that would feed into the models. 

Therefore, to iterate quickly we selected some specific categories of the product reviews for 

testing and debugging the model. As stated above, the selected categories were clothing, shoes 

and jewellery, cell phone and accessories, movies and TV, and food, and end up with some 

800,000 reviews. The dataset attributes are listed in Table 2 below. 

 

Table 2: Dataset Description 

 
 
 
 

 

 

 
 

 

5.3 Implementation Flow  

 
First of all, we collected the product reviews of the four categories as mentioned earlier. The 

reviews which were in JSON format parsed into the Python Jupyter notebook using the Json 

library and converted into a pandas4 data frame. A sample of 200,000 rows was considered for 

each product reviews and ended up with a total of 800,000 reviews which further used for 

preprocessing. The Dataframe consists of various attributes mentioned in Table 1, and the 

necessary columns 'ReviewText' and 'Summary' fields were selected from the data frame for 

further manipulation. From here, rows with missing values were dropped from the data frame 

and resulted in approximately 783,000 rows for preprocessing. Following this preprocessing 

task such as text cleaning by removing duplicate reviews, stop words, special characters, 

punctuations, HTML tags and numbers were removed using the Python NLTK library, 

Beautiful soup, and Regex libraries. Also, performed a contraction mapping to convert 

abbreviated words to their base form and the resulting text are converted into the lower case 

using the lower() function from NLTK library5.  

After cleaning the data, the next step was to extract relevant features from it. In this 

case, the tf-idf vectors were extracted for the reviews. It extracted the words that were relevant 

to the subject matter in the reviews and assigns a hash value to these words. After that, the 

extracted features were converted into an adjacency matrix and later transformed into a 

normalized tf-idf vector. All these process steps were achieved by using the tf-idfVectorizer 

and CountVexctorizer classes from the Scikit learn library. These vectors were further 

converted into a graph whereby word vectors (sentences of the summary) were nodes and the 

relationship between these vectors were the edges. From the resulting graph, we implemented 

the TextRank algorithm which selects top ranking sentences for the extractive summary. 

Finally, the extractive summaries resulted in about 80,000 rows, because while creating the 

 
4 https://pandas.pydata.org 
5 https://www.nltk.org 

Attributes Description 

ID Row numbers 

Overall Ratings of the Customer reviews 

ReviewTime Time of Review 

ReviewID Unique Customers ID 

ReviewerName Customer Name 

ReviewText Product Review or comment 

Summary Reference summary 
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graph, the threshold was set to pick reviews that were longer than 25 words in length. Following 

this, the extractive summary from the TextRank was concatenated with the ReviewText and 

reference summary in the data set and converted into a data frame, this marks the end of step 1 

of the implementation process. 

Table 3: Hyper Parameters 

 

 

 

In step 2, the abstractive summarization was implemented using the proposed RNN-

LSTM framework. The resulting data frame from step 1 consists of an extractive summary and 

the reference summary and ReviewText, which would be used to train the neural network. The 

cleaning process in step 1 was repeated, in this case, inconsistences and irregularities were 

removed from the summaries and every word converted to lower case. We then fix the length 

of the extractive summary and the reference summary based on the maximum length of the 

sequence, the length varies. Thus, the time step can be made to be equal to the length of the 

longest summary in the data frame with shorter summaries padded with zeros. START and 

END special tokens were also inserted at the beginning and at the end of the summary to help 

determine where the sequence starts and finishes. Here, we chose sostok and eostok as START 

and END tokens. Also, words whose count is below 6 is considered as rare words and was also 

removed. The sentences are further tokenized into sequences to form the vocabularies and 

divided into the train, and test using the Keras preprocessing package. The model was built 

using the Keras library and TensorFlow backend, Table 3 above clearly outlines all the 

hyperparameters used for training.  

 

6 Experimentation and Evaluation 
 

This section discusses the experiments carried out in this work along with the inference and 

evaluation of the model result. The performance of the model described above was tested on 

the Amazon reviews dataset. Three experiments were performed, the first being the baseline 

Parameters Description Value 

Neural Layer(s)  Three-stacked LSTM encoder, and a single layer 

LSTM decoder 

3 encoder, 1 

decoder 

Hidden-Layers All layers between the output and input   4 

Seq_lenght_x Length of sequence in Encoder 300 

Seq_lenght_y Length of sequence in the decoder 26 

Embedding 
Dimension 

The dimension of embedding in encoder and decoder 200 

Attention To remember the lengthy sequence and what the 

decoder will focus on when receiving text sequences 

Bahdanau’s 

Attention 

Learning Rate How quickly model will adapt to the problem  0.01 

Optimizer The algorithm that minimizes the loss function rmsprop 

Loss Function Each text output in the decoder are mutually exclusive 

and converted to a one-hot vector 

sparse 

categorical 

crossentropy 

Drop_out Reduces overfitting and improves performance only  0.4 

Activation Defines the output of each node given a text or 

sequences of text 

SoftMax 
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approach which follows a triple-layered LSTM encoder and a single Layer LSTM decoder, the 

second experiment maintained the first approach with an addition of the attention mechanism 

to the hidden layer. And the third experiment was a bidirectional LSTM for both encoder and 

decoder. After the implementation of the models, there was a need to measure how well it 

performs, to this end the ROUGE metrics were considered for evaluation metrics. This 

particular method considered as standard metrics for measuring the performance of NLP 

models. It works by direct comparison between the model generated summary and the 

reference summary (Human summary), so the ROUGE values were computed from the number 

of overlapping words between these summaries. There were different variations of the ROUGE 

scores such as ROUGE-N, ROUGE-S, ROUGE-L and ROUGE-W. The ROUGE-N and 

ROUGE-L have been implemented in this work as it was used in most of the state-of-the-art 

papers (Zhou et al., 2018), (Han et al., 2019). 

The ROUGE-N measures unigram, bigram, trigram and higher-order n-gram overlap, thus 

we measure ROUGE-1 and ROUGE-2 which captures the unigram and bi-gram overlap 

between summaries. While ROUGE-L measures the longest matching sequence of words. 

6.1 Experiment 1 
 

In this experiment, the baseline approach performed in (Monalisa and Dipanka, 2020) was 

implemented by maintaining the encoder at three layers of LSTM encoder and a single layer 

decoder. This is concerning the research question discussed earlier, the additional layers in the 

baseline model would help in capturing enough salient representation from the input text (in 

this case the extracted summaries). To achieve this, the hyperparameters presented in Table 4 

were followed excluding the attention mechanism. We also need to iterate over the full dataset 

several times to get the best result, thus the epoch number was set to 100, however, early 

stopping was used to measure the model performance while training to avoid overfitting. After 

building the model, it was subsequently compiled and fit using the Keras module. The dataset 

was divided into 90% training and 10% testing. For every 35 runs of epochs, the model 

performance was measured and the ROUGE score captured, this we used to measure the 

improvement of the model and to see how well it performs during the training.  

 

Table 4: Experiment 1 ROUGE scores 

 

 

 

 

 

 

It is evident from Table 4 that the ROUGE-1 score at 100 epochs achieved the best result. This 

could be due to the overlapping of unigrams words between the machine-generated summaries 

and the human reference summary. We also note that the model could not focus on important 

words from the input text rather produces a grammatically incorrect summary. In the 

subsequent section, the second experiment is presented which shows an improvement to this 

baseline model and helps to fix the problem in experiment 1.  

Epochs ROUGE-1 ROUGE-2 ROUGE-L 

35 6.1125 1.8853 6.3194 

70 7.0041 1.9201 6.8814 

100 7.1413 1.9866 6.8019 
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6.2 Experiment 2 

 
In this experiment, we consider the addition of attention mechanism to the previous experiment, 

so that the model could focus on the important part of the input sequences before producing 

the output. The same hyperparameters displayed in Table 4 were used. Early stopping was used 

to stop training the neural network at the right time by monitoring the validation loss. Table 5 

below depicts the ROUGE result for this experiment.  

Table 5: Experiment 2 ROUGE scores 

 

 

 

 
 
 
It is evident from Table 5 that the model learnt well and shows improvement over the baseline 

model as shown in Table 4. It can be seen from Table 5 that the model learned as the number 

of epochs increases but the difference is not significantly large. The ROUGE-2 score is low 

because it captures bi-grams words. This means that in most cases the machine summary does 

not overlap with the human-generated summary when it comes to comparing two words at a 

time. This experiment captures the salient information from the input sequence and produces a 

better result than the previous experiment. A notable result worth mentioning in this experiment 

is that even though the model could summarize the reviews there are still repetitions in the 

summary result. This could be possible because the model could not handle uncommon words 

that means whenever an uncommon word exist the model replaces it with a common word.  

6.3 Experiment 3 

 
This experiment is an improvement to the second experiment. In this case, the encoder was a 

Bidirectional LSTM (Bi-LSTM) and the decoder was also Bi-LSTM to capture the sequences 

of words from both sides of the neural layer. For every single LSTM layer, there was another 

LSTM layer in the reverse direction and then both are combined to form a single bi-directional 

LSTM. Thus, this experiment was a complete Bi-LSTM layer for encoder and decoder with an 

attention mechanism. The hyperparameters in Table 4 still applies and the model result is 

shown in Table 6 below. 

 

Table 6: Experiment 3 ROUGE scores 

 

 

 

 

 

From Table 6, looking at the values it is evident that this experiment, however, shows a little 

improvement over the second experiment. In this case, the model was unable to capture the 

Epochs ROUGE-1 ROUGE-2 ROUGE-L 

35 12.1138 4.6229 11.0021 

70 13.0881 4.8324 12.0001 

100 14.5211 4.8481 12.8821 

Epochs ROUGE-1 ROUGE-2 ROUGE-L 

35 13.4941 4.5213 12.0431 

70 14.821 5.6119 12.9934 

100 15.931 6.5530 13.8833 
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uncommon words and fix them in the right position. However, it was also noticed in some 

instances the model failed to capture uncommon words. Overall this model performs better 

than the other two experiments performed earlier. This clearly shows that the inclusion of the 

Bi-LSTM improves the model and was able to accurately capture salient information from the 

input sequence.  

6.4 Discussion 
 
In this particular work, different summarization techniques were implemented on the Amazon 

reviews dataset to obtain a concise summary which in return intended to saves reading time for 

online shoppers. This model comes in handy and provides a gist of the product reviews to the 

users when they want to purchase on the website without having to read through long reviews. 

The data summarization method demonstrated in this particular work, not only applicable to 

the Amazon dataset, it can also be tested on other online retail websites, news articles, and 

research papers to obtain a concise summary. While summarizing the reviews, the objective of 

this research was to achieve an excellent representation of the reviews before training, this 

helps the model to generate factual and grammatically correct summaries. The first experiment 

implemented was to capture salient sentences from the input sequence as it was done in 

(Monalisa and Dipankar, 2020), however, this model fails to produce grammatically correct 

summaries in most occurrences. Even though the model was able to identify salient information 

from the input sequence, the poor performance was as a result of the model’s inability to 

generate long output sequence. To resolve this, the second experiment was extended with 

attention mechanism which was capable of focusing on only the important sentences from the 

input document and solving the problem of long sequences of words that will be passed to the 

decoding layer. In this case, the model learned to a significant level and could able to fit the 

uncommon words in the right places. However, this experiment was producing repetitive 

summaries. Hence, as a result, the third experiment was embedded with a Bi-LSTM model to 

resolve this issue. It performed better and achieved the best ROUGE scores.  

 

Figure 5 clearly shows the distribution of the ROUGE scores for each experiment. It is evident 

from the bar graphs that the third experiment has the highest Rouge-1, Rouge-2 and Rouge-L 

scores. Even though the difference is not significantly large in numbers, the third experiment 

with the Bi-LSTM obtained the best summary result. This is concerning the research objectives 

set earlier, we have successfully explored the state-of-the-art methods in text summarization 

and was able to achieve a summary model that will capture salient information from the input 

text to produce a coherent non-repetitive summary. 
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Figure 4: ROUGE scores Overview 

Apart from quantitative analysis, we also performed a qualitative analysis by employing five 

different people to rate the summary generated by the best model. A random sample of 20 was 

selected from each of the product reviews. Then compared the ReviewText with the machine-

generated summary and human summary based on coherence, grammatical correctness, 

repetitions, informative, and conciseness. The summaries were rated as good, moderate, and 

poor. The results show that nearly 80 per cent of the summaries were rated good while the 

remaining 20% was rated moderate, and poor. The results from the human evaluation show 

that the combination of the extractive and abstractive approach can generate a more informative 

and concise summary. A detailed summary of the machine-generated and human-generated 

summers for five example cases are presented in Table 7 which is self-explanatory. 
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Table 7: Qualitative Analysis 

1 Review Text:  So I purchased these on a whim. They are very quick to prepare (under 2 minutes). T

his makes it a perfect quick, filling meal. These have a good amount of weight to them. The noodles 

are thick and flavorful. The sauce is very tasty as well. Little bit of a tang, slightly hot, but very flav

orful. The crushed peanuts included is a nice touch and definitely make it more filling... Also worth 

noting is, you do not need a microwave to make these. It sure does make things easier, but you can p

repare the noodles with just hot water as well by covering and letting sit for a few. 

Overall very satisfied, it tasted much better than the 2 minutes of preparation would have me expect. 

I see myself purchasing more of these and trying other Annie Chun foods. I recommend these. 

Original summary: Very tasty and filling 

Predicted summary:  Easily prepared great taste (Good) 

2 ReviewText: This has always been one of my favorites.  It is down to Earth, sad, but not extremely 

harsh or overly scary to children like other similar movies, and heart-warming.  To me and my famil

y, this is and always will be one of our favorites of the holiday. 

Original summary: One of my favorite holiday movies! 

Predicted summary: Great movie (Good) 

3 ReviewText: The color is dark Hot pink and the gems don't come down as far as shown on the pictu

re!!!Then its all scratched! And broken. The gems fell off. It looks like they are glued on with Elmer

's glue. I totally do NOT recommend!!!! 

Original summary: Horrible!! 

Predicted summary: Not recommend (Good) 

 

4 ReviewText: I rarely leave reviews but this dress is so perfect for me and I was very unsure about 

buying it so hopefully I can help others. I'm a size 18 plus and the XL fits me well. It is so 

comfortable, flattering, and easy to nurse in! It's easy to dress up or down. I'm so excited I found this 

dress! As soon as I tried it on I ordered it in another color. I may even get a third because it's just so 

perfect. 

Original Summary: I rarely leave reviews but this dress is so perfect for me and I was very unsure 

about buying ... 

Predicted summary: Great dress (Good) 

5 ReviewText: The shipping was over the date shown on the shipping days.  I waited over a month fo

r this case to come. And when it did come the quality was very bad, I pay the same price for a simila

r case and it came with a bubble wrap and glue and no scratch!!! This case is Not worth the buy.  Th

e case look Cheap and turtle shipping. :( 

Original summary: Not happy 

Predicted summary: Great case (Poor) 
 
 
 

7 Conclusion and Future Work 
 

The problem of abstractive summarization of generating a concise and non-repetitive summary 

a seldom investigated challenge in the recent literature was addressed in this particular work. 

Majority of the existing research work focused on solving the problem of generating a summary 

lesser than the length of the initial document but omit the point of generating factual, 

meaningful, non-repetitive summaries. Thus, a novel combination was built on the merits of 

extractive and abstractive text summarization models and subjected to rigorous testing and 

demonstrated its capabilities on a huge amount of real-time data. The current model based on 

strong theory effectively selects the salient information from the input document (i.e. Amazon 

reviews) in the first part its model whereas in the second stage it employs the deep learning 

approach to generate a concise non-repetitive summary.  
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It was found that the baseline model effectively summarized the customer reviews, however, 

failed to capture the factual details from the review comments. To improvise the results a 

second experiment was embedded with an attention mechanism to improve the ROUGE scores 

which however produced a summary that captured the factual meaning in the customer's 

comments. Finally, a Bi-LSTM was implemented to further improve the output, which resulted 

in effectively capturing salient information present in the reviews and it also outperformed the 

baseline model with its attention mechanism and achieved best ROUGE score. Though the 

present model performed to a significant level, still there is a room for improvement on the 

final experiment. One way is to embed it with a beam search decoder instead of the greedy 

search and in another way is to train on more data so the model can learn well on the dataset 

which is a subject of the future work. 
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