

Configuration Manual

MSc Research Project MSc Data Analytics

Adebola Abdullahi-Attah Student ID: X19119283

School of Computing National College of Ireland

Supervisors: Dr Paul Stynes & Dr Pramod Pathak

National College of Ireland MSc Project Submission Sheet School of Computing

Student Name:	Adebola Abdullahi-Attah		
	X19119283		
Student ID:	MSc Data Analytics		2020
Programme:	MSc Research Project	Year:	
Module:	Dr Paul Stynes & Dr Pramod Pathak		
Lecturer:	17th August 2020		
Due Date:	17* August 2020		
Project Title:	A Novel Feature Based Ensemble Approach	n to Bank	ruptcy Detection
	1215 1	4	
Word Count:	Page Count:		

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

	AAA
Signature:	
	15 th August 2020
Date:	

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Adebola Abdullahi-Attah Student ID: X19119283

1 Introduction

This manual shows the hardware and software requirements, Also the steps taken to accomplish the implementation of the research thesis on "A novel feature selection based ensemble approach to bankruptcy detection".

2 Hardware and Software Requirements

2.1 Hardware Description

The research implementation was carried out on a Hewlett-Packard (HP) laptop having this description.

- Operating system: Window 10 Home (2019)
- Processor: Intel [®] Core [™] i7-8565U CPU [@] 1.80ghz
- System Type: 64-bit operating System, x64-based processor
- Installed Memory (RAM): 8.00 GB

2.2 Software Description

The following software enabled the implementation

- Microsoft office: Excel, Word
- Web browser: Google Chrome, Microsoft Edge
- Programming Tool: Python version 3, Google Colaboratory (Cloud based Jupyter notebook environment)
- Drawing tool: Lucidchart

3 Methodology & Implementation

3.1 Data Collection and Preparation

Step 1

The first step is getting the Polish company bankruptcy dataset from the university of California Irvine (UCI) data repository as shown in figure 1.

	1	2	U		
				About Citation Policy Donate a Data	Set Contact
					Search
Contraction -				Repository Web	Google
Machine Learning Repository				View ALL	Data Sets
Center for Machine Learning and Intelligent Systems					
Polish companies bankruptcy	data Data Set	t			
Download: Data Folder, Data Set Description					

Abstract: The dataset is about bankruptcy prediction of Polish companies. The bankrupt companies were analyzed in the period 2000-2012, while the still operating companies were evaluated from 2007 to

Data Set Characteristics:	Multivariate	Number of Instances:	10503	Area:	Business
Attribute Characteristics:	Real	Number of Attributes:	64	Date Donated	2016-04-11
Associated Tasks:	Classification	Missing Values?	Yes	Number of Web Hits:	106064

Figure 1: Dataset from UCI

The dataset contains five files which is downloaded in a folder named data as shown in figure 2.

🌆 data ('	1).zip (evalua	ition cop	y)								_	\times
File Com	mands Too	ls Favor	ites Opti	ons Help								
Add	Extract To	Test	View	Delete	Find	Wizard	(1) Info	() VirusScan	Comment	SFX		
个 🗱	data (1).zip -	ZIP arch	nive, unpa	cked size 21	,319,380) bytes						~
Name	^		Size	Packed	Туре		Mod	dified	CRC32			
Ш.					File fol	der						
🕝 1year.a	rff	3,43	2,892	1,421,768	ARFF D	ata File	11/0	04/2016 16:	55B3257D)		
2year.a	rff	4,98	7,459	2,065,942	ARFF D	ata File	11/0	04/2016 16:	525A0212	2		
G 3year.a	rff	5,16	9,674	2,143,330	ARFF D	ata File	11/0	04/2016 16:	DB0CCB0A	A		
😋 4year.a	rff	4,82	9,865	2,001,507	ARFF D	ata File	11/0	04/2016 16:	BAAD65F7	7		
🔇 5year.a	arff	2,89	9,490	1,201,162	ARFF D	ata File	11/0	04/2016 16:	A0789316	5		
-									T . 101010			
									lotal 21,319	9,380 bytes in 5 files		

Figure 2: Dataset Files

Step 3

The folder is uploaded into an existing G-mail account drive (<u>adebolaaattah@gmail.com</u>) as shown in figure 3.

	Drive	Q Search in Drive			-	0	ŝ	***	A
+	New	My Drive 👻						í	31
• 🛆	My Drive	Folders				Name	\uparrow		Ø
() 2	Shared with me Recent	Colab Notebooks	data	personal rating					0
☆ ⊡	Starred Trash	Files							+
	Storage 1.7 GB of 15 GB used Buy storage	1year.arff	2year.arff	3year.arff	• 4	year.arff			

3.2 Google Colaboratory Environment Setup

The google colaboratory (colab) is set up for the smooth running of the python codes. An existing Google e-mail address is used as <u>adebolaaattah@gmail.com</u>. Figure 4 shows the setup environment.

Figure 4: Signing into Google Colaboratory.

Go to chrome browser and type in the address https://colab.research.google.com

Step 2

Go to file and open a new notebook to get started

Step 3

Mount google drive in colab Jupyter notebook and execute as shown in figure 5.

```
from google.colab import drive
drive.mount('/content/drive')
```

Figure 5: Mount google drive

Step 4

Click on the url as shown in figure 6

from google.colab import drive
drive.mount('/content/drive')

Go to this URL in a browser: https://accounts.googleusercontent.com Enter your authorization code:

Figure 6: Acessing authorization code

Step 5

Select the Google account to be used for the colab set up

G Sign in with Google

Google Drive File Stream wants to access your Google Account

A adebolaaattah@gmail.com

This will allow Google Drive File Stream to:

See, edit, create, and delete all of your Google (i) Drive files

Figure 7: Selecting google account

copy the authorization code and paste into the space provided on the notebook to enable the jupyter notebook access to the file location.

Figure 9: Drive mounted in Jupyter notebook

3.3 Importing Libraries

The libraries needed for the exploratory data analysis, imputation of missing values, graph plotting and statistical analysis, oversampling of the minority class, implementation of the particle swarm optimization which had to be installed as shown in the figure below.

3.4 Accessing Data and Storing into list

```
    ▲ ADE (1).ipynb ☆
    File Edit View Insert Runtime Tools Help Last saved at 3:05 PM
+ Code + Text
```

Store arff files into a list

```
[ ] # Loads the 5 raw .arff files into a list
    def load_data():
       N=5
        return [arff.loadarff("/content/drive/My Drive/" + str(i+1) + 'year.arff') for i in range(N)]
    # store raw .arff files into dataframes
    def real data():
        return [pd.DataFrame(data_i_year[0]) for data_i_year in load_data()]
    # BankDF is a list of 5 dataframes
    BankDf = real_data()
    # VIew the first 5 rows of the dataset 'vear1'
    BankDf[0].head()
0
          Attr1 Attr2 Attr3 Attr4 Attr5 Attr6 Attr7 Attr8 Attr9 Attr10 Attr11 Attr12
    0 0.200550 0.37951 0.39641 2.0472 32.3510 0.38825 0.249760 1.33050 1.1389 0.50494 0.249760 0.65980
     1 0.209120 0.49988 0.47225 1.9447 14.7860 0.00000 0.258340 0.99601 1.6996 0.49788 0.261140 0.51680
                              Figure 11: Loading data
```

3.5 Imputing missing values using MICE

The missing values were imputed using the IterativeImputer which was imported from fancyimpute package across the five years annual data.

```
🛆 ADE (1).ipynb 🗠
File Edit View Insert Runtime Tools Help Last saved at 3:05 PM
- Code + Text
[ ] from fancyimpute import IterativeImputer
     MICE_imputer = IterativeImputer()
     First_MICE = normalized_Firstdf.copy(deep=True)
     First_MICE.iloc[:, :] = MICE_imputer.fit_transform(First_MICE)
FirstYr_imp = First_MICE.iloc[:, :]
     FirstYr_imp.head()
     Second MICE = normalized Seconddf.copy(deep=True)
     Second_MICE.iloc[:, :] = MICE_imputer.fit_transform(Second_MICE)
     SecondYr_imp = Second_MICE.iloc[:, :]
     SecondYr_imp.head()
     Third MICE = normalized Thirddf.copv(deep=True)
     Third_MICE.iloc[:, :] = MICE_imputer.fit_transform(Third_MICE)
     ThirdYr_imp = Third_MICE.iloc[:, :]
     ThirdYr_imp.head()
     Fourth_MICE = normalized_Fourthdf.copy(deep=True)
     Fourth_MICE.iloc[:, :] = MICE_imputer.fit_transform(Fourth_MICE)
     FourthYr_imp = Fourth_MICE.iloc[:, :]
     FourthYr_imp.head()
```

Figure 14: Filling missing values using Multiple Imputation by Chained Equations

3.6 Executing Feature Selection Techniques

This section shows the execution of the six feature selection techniques for ease of replication of experiments.

The sklearn package enabled the implementation of the classifier based feature selection techniques after splitting the data in figure 16, libraries such as mutual_info_classif, mutual_info_regression, SelectKBest, SelectPercentile were imported for the mutual gain as

shown in figure 17, Also, from the sklearn.ensemble the GradientBoostingClassifier and the RandomForestClassifier is imported as shown in figure 19 and 20. The mlxtend.feature_selection enabled the importation of the ExhaustiveFeatureSelector as shown in figure 21. The features gotten from each technique is then ensemble through a voting technique of unanimous, minority, hard voting, and any vote. The features selected are shown in the appendix.

Figure 16: Data split for classifier-based feature selection.


```
🛆 ADE (1).ipynb 🛛 😭
 File Edit View Insert Runtime Tools Help Last saved at 3:05 PM
+ Code + Text
 [ ] from sklearn.ensemble import GradientBoostingClassifier
      def gbt_importance(X_train,y_train,max_depth=10,top_n=31,n_estimators=50,
                        random_state=0):
          model = GradientBoostingClassifier(n_estimators=n_estimators,
                                             max_depth=max_depth,
                                             random_state=random_state)
         model.fit(X_train, y_train)
          importances = model.feature_importances_
          indices = np.argsort(importances)[::-1]
          feat_labels = X_train.columns
          std = np.std([tree[0].feature_importances_ for tree in model.estimators_],
                      axis=0) # inter-trees variability.
          for f in range(X_train.shape[1]):
             print(feat_labels[indices[f]])
          return model
      gbt_importance(X_train,y_train)
 8
     X27
      X29
      X9
```

X9 X55 X56 VE®

Figure 18: Execution of Gradient Boosting Classifier for feature selection and importance.

ADE (1).ipynb ☆ File Edit View Insert Runtime Tools Help Last saved at 3:05 + Code + Text	<u>; PM</u>
<pre>[] #Recursive Feature Elimination (RFE) from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_auc_score</pre>	
<pre>def recursive_feature_elimination_rf(X_train,y_train</pre>	,X_test,y_test, epth=None, ne, mators=50,random_state=0):
<pre>features_to_remove = [] count = 1 # initial model using all the features model_all_features = RandomForestClassifier(n_es max_</pre>	timators=n_estimators, depth=max_depth,

Figure 19: Execution of Recursive elimination feature selection technique

I

🝐 ADE (1).ipynb 🛛 🕁

File Edit View Insert Runtime Tools Help Last saved at 3:05 PM

+ Code + Text

Figure 20: Execution of feature shuffle method

Figure 21: Execution of Exhaustive search method

3.7 Modelling

This section shows the steps taken to build the models that would enable the prediction of bankruptcy.

Step 1

The voting table is loaded unto the jupyter notebook shown in figure 22

```
#Load voting table from Excel
VotingTable = pd.read_csv("/content/drive/My Drive/VotingTableA.csv")
VotingTable.head()
```

Figure 22: Loading Voting Table

Step 2

SMOTE is implemented on the data using imblearn library as shown in figure 23.

```
🛆 ADE (1).ipynb 🛛 ☆
     File Edit View Insert Runtime Tools Help Last saved at 3:05 PM
+ Code + Text
     #SMOTE split data
                    from imblearn.over_sampling import SMOTE
                    sm = SMOTE(random_state = 101)
                   X_smoteALL, y_smoteALL = sm.fit_sample(X_trainALL, y_trainALL.ravel())
                   X_smote5, y_smote5 = sm.fit_sample(X_train5, y_train5.ravel())
                   X_smote4, y_smote4 = sm.fit_sample(X_train4, y_train4.ravel())
                   X_smote1, y_smote1 = sm.fit_sample(X_train1, y_train1.ravel())
                   X_train5_sm, X_test5_sm, y_train5_sm, y_test5_sm = train_test_split(X_smote5, y_smote5,
                                                                                                                                                                                                                                        test size=0.3, random st
                   X_trainALL_sm, X_testALL_sm, y_trainALL_sm, y_testALL_sm = train_test_split(X_smoteALL, y_smoteALL, y_
                                                                                                                                                                                                                                        test_size=0.3, random_st
                   X_train4_sm, X_test4_sm, y_train4_sm, y_test4_sm = train_test_split(X_smote4, y_smote4,
                                                                                                                                                                                                                                         test size=0.3, random st
                   X_train1_sm, X_test1_sm, y_train1_sm, y_test1_sm = train_test_split(X_smote1, y_smote1,
                                                                                                                                                                                                                                          test_size=0.3, random_s
```

Figure 23: Execution of balanced data

Step 3

ANN Execution

For the execution of the ANN execution the Pyswarm library is used from python. Figure 24 & 25 shows the execution of the PSO-ANN model. The number of hidden layers is built using the 2/3 number of inputs with the addition of the number of outputs rule system.

Figure 24: Execution of PSO-ANN model

Figure 25: Execution of ANN Architecture

Figure 26: Results of PSO-ANN on balanced data.

Step 4

Random Forest model Execution

The libraries needed for the implementation is imported as shown below in figure 27. The random.seed is also set to enable different outputs for each iteration of the experiment.

Figure 27: Libraries imported for random forest model

XGboost model Execution

+ Code + Text

The libraries needed for the implementation is imported as shown below in figure 28. The random.seed is also set to enable different outputs for each experiment.

🛆 ADE (1).ipynb 🛛 ☆

File Edit View Insert Runtime Tools Help All changes saved

Figure 28: Libraries imported XGboost model

Step 6

The library needed for the execution of SVC is imported from sklearn library shown in figure 26.

```
ADE (1).ipynb
```

```
Code + Text
```

Figure 26: Libraries imported for the ensemble model of SVC-RF-XGboost

4 Appendix

4.1 Feature selection table

Features	Exhaustive feature	Random shuffling	Recursive feature elimination	Gradient boosting	Information gain	Correlation	Count
X1	*	*		*	*	*	5
X2	*	*	*	*	*	*	6
X3	*						1
X4	*	*		*	*	*	5
X5 X6							5
X0 X7	*	*		*	*	*	5
X8	*	*	*	*	*	*	6
X9	*	*	*	*	*	*	6
X10							0
X11	*						1
X12	*	*	*	*	*	*	6
X13	*	*		*	*	*	5
X14							0
X15	*	*	*	*	*	*	6
X16							0
X17							0
X18							0
X19 X20	*	*		*	*	*	5
X20 X21	*	*	*	*	*	*	5
X21 X22							0
X23							0
X24							0
X25							0
X26							0
X27	*	*	*	*	*	*	6
X28	*	*		*	*	*	5
X29	*	*	*	*	*	*	6
X30	*		*	*	*	*	5
X31							0
X32	*	*	*	*	*	*	6
X33	*	*	*	*	*	*	6
X34							0
X35 V26							0
x30 X37		*	*	*	*	*	5
X38							0
X39	*	*	*	*	*	*	6
X40							0
X41	*	*	*	*	*	*	6
X42	*	*	*	*	*	*	6
X43	*	*	*	*	*	*	6
X44							0
X45	*						1
X46							0
X47	*	*	•	•	*	*	6
X48 X40							0
749 X20							U A
X51							0 N
X52							0
X53	*	*	*	*	*	*	6
X54							0
X55	*	*	*	*	*	*	6
X56		*	*	*	*	*	5
X57	*	*	*	*	*	*	6
X58	*	*	*	*	*	*	6
X59			*	*	*	*	4
X60							0
X61	*	*	*	*	*	*	6
X62							0
X63							0
Х64							0

References

Son, H., Hyun, C., Phan, D. and Hwang, H.J. (2019) 'Data analytic approach for bankruptcy prediction', *Expert Systems with Applications*, 138, p. 112816, ScienceDirect. doi: 10.1016/j.eswa.2019.07.033

Zięba, M., Tomczak, S.K. and Tomczak, J.M. (2016) 'Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction', *Expert Systems with Applications*, 58, pp. 93-101, ScienceDirect. doi: 10.1016/j.eswa.2016.04.001