

Configuration Manual of Classification models for Improving Identification of heart diseases

MSc Research Project MSc. in Data Analytics

Omkar Terdal Ramesh Student ID: x16104439

School of Computing National College of Ireland

Supervisor: Dr.Catherine Mulwa

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Omkar Terdal Ramesh
Student ID:	x16104439
Programme:	MSc. in Data Analytics
Year:	2020
Module:	MSc Research Project
Supervisor:	Dr.Catherine Mulwa
Submission Due Date:	17/08/2020
Project Title:	Configuration Manual of Classification models for Improving
	Identification of heart diseases
Word Count:	XXX
Page Count:	17

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	
Date:	17th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).	
Attach a Moodle submission receipt of the online project submission, to	
each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for	
your own reference and in case a project is lost or mislaid. It is not sufficient to keep	
a copy on computer.	

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual of Classification models for Improving Identification of heart diseases

Omkar Terdal Ramesh x16104439

1 Introduction

Our Project "Classification Models for Improving Identification of Heart Diseases in Healthcare Industry : Eastern Europe" is about creating model for improving identification of heart diseases using data collected from a repository and showcase its severity level using Machine learning algorithms and Artificial Neural network over a train and test dataset. This configuration manual accompanies the Project report and helps in understanding the configuration process for the duration of the project.

2 Environment configuration

We have used python through jupyter notebook to execute our project. As the data was collected in a .csv file, we stored the data onto the system as the jupyter notebook can access files directly on the system and can the software on the system itself. We are using Anaconda v2.2019.10.

2.1 Anaconda

Here are the steps to download Anaconda v2.2019.10.We can access the installer from the following link https://docs.anaconda.com/anaconda/install/hashes/win-2-64/ and we can select the version we want to download.

Figure 1: Anaconda Download site

2.2 Local system specifications

We used the local system to make a remote connection to the jupyter notebook. The laptop used is a Asus GL702VM and its specifications are shown below in Figure 2

Figure 2: Local system specifications

2.3 Python Libraries

We have installed the enlisted python libraries with corresponding versions as shown below in the Table.

Libraries	Versions
numpy (numpy, 2020)	1.18.2
Pandas (Pands, 2020)	1.0.3
Matplotlib (matplotlib, 2020)	3.2.1
cv2	4.1.2
sklearn	(scikit, 2020)
1.8.0	
tensorflow (tensorflow, 2020)	2.2.0-rc3

3 Data Collection

Shown Below is a part of our dataset which is stored locally on the system. The dataset has 16 attributes and over 4000 rows. They are sufficient enough to run this project. In the the below shown Figure 3 you can see the dataset.

А	В	С	D	E	F	G	Н	1	J	К	L	М	N	0	Р
gender	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	diabetes	totChol	sysBP	diaBP	BMI	heartRate	glucose	Label
1	3	9 4	L C	0	0	0	0	0	195	106	70	26.97	80	77	0
0) 4	6 2	2 0	0	0	0	0	0	250	121	81	28.73	95	76	0
1	4	8 1	L 1	. 20	0	0	0	0	245	127.5	80	25.34	75	70	0
0	6	1 3	8 1	. 30	0	0	1	0	225	150	95	28.58	65	103	1
0) 4	6 3	3 1	. 23	0	0	0	C	285	130	84	23.1	85	85	0
0) 4	3 2	2 0	0	0	0	1	C	228	180	110	30.3	77	99	0
C) 6	3 1	L C	0	0	0	0	0	205	138	71	33.11	60	85	1
C) 4	5 2	2 1	. 20	0	0	0	0	313	100	71	21.68	79	78	0
1	5	2 1	L C	0	0	0	1	0	260	141.5	89	26.36	76	79	0
1	4	3 1	L 1	. 30	0	0	1	0	225	162	107	23.61	93	88	0
() 5	0 1	L C	0	0	0	0	0	254	133	76	22.91	75	76	0
0) 4	3 2	2 0	0	0	0	0	0	247	131	88	27.64	72	61	0
1	4	6 1	1 1	. 15	0	0	1	0	294	142	94	26.31	98	64	0
0) 4	1 3	s C	0	1	0	1	0	332	124	88	31.31	65	84	0
C) 3	9 2	2 1	. 9	0	0	0	0	226	114	64	22.35	85	NA	0
C) з	8 2	2 1	. 20	0	0	1	0	221	140	90	21.35	95	70	1
1	4	8 3	1	. 10	0	0	1	0	232	138	90	22.37	64	72	0
0) 4	6 2	2 1	. 20	0	0	0	0	291	112	78	23.38	80	89	1
0) 3	8 2	2 1	. 5	0	0	0	C	195	122	84.5	23.24	75	78	0
1	4	1 2	2 0	0	0	0	0	0	195	139	88	26.88	85	65	0
0) 4	2 2	2 1	. 30	0	0	0	0	190	108	70.5	21.59	72	85	0
0) 4	3 1	L C	0	0	0	0	0	185	123.5	77.5	29.89	70	NA	0
0) 5	2 1	L C	0	0	0	0	0	234	148	78	34.17	70	113	0
C) 5	2 3	8 1	. 20	0	0	0	0	215	132	82	25.11	71	75	0
1	4	4 2	2 1	. 30	0	0	1	0	270	137.5	90	21.96	75	83	0
1	4	7 4	l 1	. 20	0	0	0	0	294	102	68	24.18	62	66	1
C) 6	0 1	L C	0	0	0	0	0	260	110	72.5	26.59	65	NA	0
1	. 3	5 2	2 1	. 20	0	0	1	0	225	132	91	26.09	73	83	0
0) 6	1 3	; с	0	0	0	1	0	272	182	121	32.8	85	65	1
0) 6	0 1	L C	0	0	0	0	0	247	130	88	30.36	72	74	0
1	3	6 4	L 1	. 35	0	0	0	0	295	102	68	28.15	60	63	0
1	4	3 4	L 1	43	0	0	0	0	226	115	85.5	27.57	75	75	0
0) 5	9 1	L C	0	0	0	1	0	209	150	85	20.77	90	88	1
1	ι 6	1 NA	1	. 5	0	0	0	0	175	134	82.5	18.59	72	75	1
1	1 5	4 1	L 1	. 20	0	0	1	0	214	147	74	24.71	96	87	0
1	1 3	7 2	2 0	0	0	0	1	0	225	124.5	92.5	38.53	95	83	0
1	. 5	6 NA	C	0	0	0	0	C	257	153.5	102	28.09	72	75	0

3.1 Data Storage

Shown in Figure 4 below is the path where the collected data is stored for the project. The data is stored in the datasets folder to access the data through the Jupyter notebook. This the installation folder for Anaconda.

Name	Date modified	Туре	Size
.ipynb_checkpoints	15-08-2020 15:13	File folder	
Datasets	12-06-2020 11:14	File folder	
nodel	12-06-2020 11:14	File folder	
test_sample	12-06-2020 11:14	File folder	
Traning_Testing	12-06-2020 11:14	File folder	
🚳 Anaconda.bat	05-08-2020 11:41	Windows Batch File	1 KB
Anaconda.txt	05-08-2020 11:40	Text Document	1 KB
Heart_Disease_Using_ML.ipynb	14-08-2020 20:36	IPYNB File	175 KB
Heart_Disease_Using_ML-Copy1.ipynb	16-08-2020 11:43	IPYNB File	184 KB
Heart_Disease_Using_ML-Copy2.ipynb	15-08-2020 15:13	IPYNB File	183 KB
Test.ipynb	31-07-2020 11:28	IPYNB File	14 KB

4 Jupyter notebook

In this section we will run jupyter notebook with the help of anaconda. The below Figure shows that in order to run jupyter notebook, we need to first launch the command prompt from the same directory. And the run the anaconda batch file to load the required libraries into jupyter notebook.

Na	me	Date modified	Туре	Size
	.ipynb_checkpoints	15-08-2020 15:13	File folder	
	Datasets	12-06-2020 11:14	File folder	
	model	12-06-2020 11:14	File folder	
	test_sample	12-06-2020 11:14	File folder	
	Traning_Testing	12-06-2020 11:14	File folder	
6	Anaconda.bat	05-08-2020 11:41	Windows Batch File	1 KB
	Anaconda.txt	05-08-2020 11:40	Text Document	1 KB
	Heart_Disease_Using_ML.ipynb	14-08-2020 20:36	IPYNB File	175 KB
	Heart_Disease_Using_ML-Copy1.ipynb	16-08-2020 11:43	IPYNB File	184 KB
	Heart_Disease_Using_ML-Copy2.ipynb	15-08-2020 15:13	IPYNB File	183 KB
	Test.ipynb	31-07-2020 11:28	IPYNB File	14 KB
	CANVia davia Santara 223 and av			
<u>C:</u>	C:\windows\System32\cmd.exe			
c) 2019 Microsoft Corporation.	All rights rese	rved.	
D:	\Project essentials\Heart_Dise	ease_Using_ANN_S	VM_RF>	

Figure 5: Command prompt

We then lat	unch jupyter	notebook	after	the	libraries	have	been	loaded.
-------------	--------------	----------	-------	-----	-----------	------	------	---------

warne			
	Date modified	зуре	ize
.ipynb_checkpoints	15-08-2020 15:13	File folder	
📙 Datasets	12-06-2020 11:14	File folder	
📙 model	12-06-2020 11:14	File folder	
kest_sample	12-06-2020 11:14	File folder	
	12-06-2020 11:14	File folder	
💿 Anaconda.bat	05-08-2020 11:41	Windows Batch File	1 KB
Anaconda.txt	05-08-2020 11:40	Text Document	1 KB
Heart_Disease_Using_ML.ipynb	14-08-2020 20:36	IPYNB File	175 KB
Heart_Disease_Using_ML-Copy1.ipynb	16-08-2020 11:43	IPYNB File	184 KB
Heart_Disease_Using_ML-Copy2.ipynb	15-08-2020 15:13	IPYNB File	183 KB
Test.ipynb	31-07-2020 11:28	IPYNB File	14 KB
D:\Project essentials\Heart_Dis	ease_osing_ann_st	/M_RESanaconda.bat	
):\Project essentials\Heart_Dis D:\Project essentials\Heart_Dis D:\Project essentials\Heart_Dis	ease_Using_ANN_SN ease_Using_ANN_SN ease_Using_ANN_SN	/M_RF>cd C:\Users\Om /M_RF>cd C:\Users\Om /M_RF>C:	kar\Anac
):\Project essentials\Heart_Dis D:\Project essentials\Heart_Dis D:\Project essentials\Heart_Dis ::\Users\Omkar\Anaconda3\Script	ease_Using_ANN_S\ ease_Using_ANN_S\ ease_Using_ANN_S\ s>activate	/M_RF>cd C:\Users\Om /M_RF>cd C:\Users\Om /M_RF>C:	kar\Anac
):\Project essentials\Heart_Dis D:\Project essentials\Heart_Dis D:\Project essentials\Heart_Dis C:\Users\Omkar\Anaconda3\Script base) C:\Users\Omkar\Anaconda3	ease_Using_ANN_S\ ease_Using_ANN_S\ ease_Using_ANN_S\ s>activate \Scripts>	/M_RF>cd C:\Users\Om /M_RF>cd C:\Users\Om	kar\Anac

Figure 6: Launching Jupyter notebook

 \times

_

After the Jupyter notebook is lauched it establishes a connection to the directory and opens in the default web browser with the files from the directory.

Nar	ne	Date modified	Туре	Size
	.ipynb_checkpoints	15-08-2020 15:13	File folder	
	Datasets	12-06-2020 11:14	File folder	
	model	12-06-2020 11:14	File folder	
	test_sample	12-06-2020 11:14	File folder	
	Traning_Testing	12-06-2020 11:14	File folder	
6	Anaconda.bat	05-08-2020 11:41	Windows Batch File	1 KB
	Anaconda.txt	05-08-2020 11:40	Text Document	1 KB
	Heart_Disease_Using_ML.ipynb	14-08-2020 20:36	IPYNB File	175 KB
	Heart_Disease_Using_ML-Copy1.ipynb	16-08-2020 11:43	IPYNB File	184 KB
	Heart_Disease_Using_ML-Copy2.ipynb	15-08-2020 15:13	IPYNB File	183 KB
	Test.ipynb	31-07-2020 11:28	IPYNB File	14 KB
-	C:\Windows\System32\cmd.eve			
1001. 1111	c., windows/Systemsz/cmulexe	10262 10161		
M1C (c)	2019 Microsoft Corporation.	18362.1016j All rights rese	rved.	
(-)	2019 Altrosoft corporation.	AII TIghts Tesel	vea.	
D:\	Project essentials\Heart_Dise	ase_Using_ANN_S	VM_RF≻anaconda.bat	
D:\	Project essentials\Heart_Dise	ase_Using_ANN_S	VM_RF>cd C:\Users\	Omkar\Anac
D:\	Project essentials\Heart_Dise	ase_Using_ANN_S	VM_RF>C:	
c:\	Users\Omkar\Anaconda3\Scripts	>activate		
(ba	se) C:\Users\Omkar\Anaconda3\	Scripts>D:		
(ha	so) Di\Dmoiest essentials\Hee	nt Discosso Usin	a ANN SVM RESimput	an natabaa
(ва	se) D:\Project essentials\Hea	rt_Disease_Using	g_ANN_SVM_RF>JUPYt	er noteboo

Figure 7: Loading Jupyter notebook

5 Implementation

We go ahead and import all the necessary libraries required for our project. The Figure 9 below shows the libraries imported.

We go ahead and load the data into the Jupyter notebook by using the read command. The Figure 10 shows how.

C:\Windows\System32\cmd.exe - jupyter notebook	-		×
(c) 2019 Microsoft Corporation. All rights reserved.			^
D:\Project essentials\Heart_Disease_Using_ANN_SVM_RF>anaconda.bat			
D:\Project essentials\Heart_Disease_Using_ANN_SVM_RF>cd C:\Users\Omkar\Anaconda3\Scripts			
D:\Project essentials\Heart_Disease_Using_ANN_SVM_RF>C:			
C:\Users\Omkar\Anaconda3\Scripts>activate			
(base) C:\Users\Omkar\Anaconda3\Scripts>D:			
(base) D:\Project essentials\Heart_Disease_Using_ANN_SVM_RF>jupyter notebook [I 02:30:40.234 NotebookApp] The port 8888 is already in use, trying another port. [I 02:30:40.365 NotebookApp] JupyterLab extension loaded from C:\Users\Omkar\Anaconda3\lib\site-packages\ju [I 02:30:40.365 NotebookApp] JupyterLab application directory is C:\Users\Omkar\Anaconda3\share\jupyter\lab [I 02:30:40.369 NotebookApp] Serving notebooks from local directory: D:\Project essentials\Heart_Disease_U	upyter D sing_A	lab NN_SVM	M_R
F [I 02:30:40.369 NotebookApp] The Jupyter Notebook is running at: [I 02:30:40.369 NotebookApp] http://localhost:8889/?token=5c1d4505739736c40a9d9a06a14a3043ee250c0475188436 [I 02:30:40.369 NotebookApp] or http://127.0.0.1:8889/?token=5c1d4505739736c40a9d9a06a14a3043ee250c0475188 [I 02:30:40.370 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip cor [C 02:30:40.469 NotebookApp]	3436 nfirma	tion).	
To access the notebook, open this file in a browser: file:///C:/Users/Omkar/AppData/Roaming/jupyter/runtime/nbserver-12964-open.html Or copy and paste one of these URLs: http://localhost:8889/?token=5c1d4505739736c40a9d9a06a14a3043ee250c0475188436 or http://127.0.0.1:8889/?token=5c1d4505739736c40a9d9a06a14a3043ee250c0475188436			~

Figure 8: Jupyter Notebook

Jupyte	r Heart_Disease_Using_ML-Copy1 Last Checkpoint: 08/05/2020 (autosaved)	ę	Logout
File Edit	View Insert Cell Kernel Widgets Help	Trusted	Python 3 O
• *			
	Success of 12		
In [1]:	import IID		
In [1]:	import numpy as np import itertools		
In [1]:	<pre>import niD import pandas as pd import numpy as np import itertools from sklearn import preprocessing</pre>		
In [1]:	<pre>import niD import pandas as pd import numpy as np import itertools from sklearn import preprocessing from sklearn.model_selection import train_test_split import mathematicality.mynot as plt</pre>		
In [1]:	<pre>import IID import pandas as pd import numpy as np import itertools from sklearn import preprocessing from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import matplotlib.pyplot as ns</pre>		

Figure 9: Jupyter Libraries

5.1 Implementation of ANN

We will first divide the data into training data and test data. This is ensure that the models can perform and hope to achieve the maximum efficiency. Figure 11

5.1.1 Data preprocessing

We preprocess the data as required by the ANN model by using keras and converting the data into arrays of data. The following figure 12 demonstrates it.

5.1.2 Building and training ANN

We will build a sequential model, compile the model and Fit the model to run through epochs. This model runs successfully through a 100 epochs and yields a result of 85.61 accuracy.

load data

In [2]:	df	<pre>if = pd.read_csv('Datasets/Heart_Data.csv')</pre>															
In [3]:	df	.head()															
Out[3]:		gender	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	diabetes	totChol	sysBP	diaBP	BMI	heartRate	glucose	La
	0	1	39	4.0	0	0.0	0.0	0	0	0	195.0	106.0	70.0	26.97	80.0	77.0	
	1	0	46	2.0	0	0.0	0.0	0	0	0	250.0	121.0	81.0	28.73	95.0	76.0	
	2	1	48	1.0	1	20.0	0.0	0	0	0	245.0	127.5	80.0	25.34	75.0	70.0	
	3	0	61	3.0	1	30.0	0.0	0	1	0	225.0	150.0	95.0	28.58	65.0	103.0	
	4	0	46	3.0	1	23.0	0.0	0	0	0	285.0	130.0	84.0	23.10	85.0	85.0	
	<																>
In [4]:	df	.columr	15														
Out[4]:	<pre>df.columns Index(['gender', 'age', 'education', 'currentSmoker', 'cigsPerDay', 'BPMeds', 'prevalentStroke', 'prevalentHyp', 'diabetes', 'totChol', 'sysBP',</pre>																

Figure 10: Loading Data into Jupyter notebook

ANN

In [5]:	df.dropna(axis=0,inplace=True)
In [6]:	dataset = df.values
In [7]:	dataset
Out[7]:	array([[1., 39., 4.,, 80., 77., 0.], [0., 46., 2.,, 95., 76., 0.], [1., 48., 1.,, 75., 70., 0.], , [0., 52., 2.,, 80., 107., 0.], [1., 40., 3.,, 67., 72., 0.], [0., 39., 3.,, 85., 80., 0.]])
In [8]:	<pre>X = dataset[:,0:15] print(X) Y = dataset[:,15]</pre>
	[0. 46. 2 28.73 95. 76.]
	[1. 48. 1 25.34 /5. /0.]
	[0. 52. 2 21.47 80. 107.]
	[1. 40. 3 25.6 67. 72.]
	[0. 39. 3 20.91 85. 80.]]

Figure 11: Data Distribution to training and test data

5.1.3 Visualization

The Following plot graph shows the loss during epochs (Figure 15). And followed by that we can see the Accuracy graph of the model displayed with the help of the plot command (Figure 16)

5.1.4 Conclusion

The following figure 17 shows the accuracy, precision, recall, f1-score and support of the ANN model.

preprocessing

```
In [9]: from keras.models import Sequential
from keras.layers import Dense, InputLayer, Flatten, BatchNormalization
         Using TensorFlow backend.
In [10]: min_max_scaler = preprocessing.MinMaxScaler()
          X_scale = min_max_scaler.fit_transform(X)
In [11]: X_scale
Out[11]: array([[1. , 0.18421053, 1. 0.10451977],
                                                      , ..., 0.27702375, 0.36363636,
                  0. , 0.36842105, 0.33333333, ..., 0.31968008, 0.51515152, 0.10169492],
                  [0.
                  , 0.42105263, 0.
0.08474576],
                                                    , ..., 0.23751818, 0.31313131,
                   ...
                              , 0.52631579, 0.33333333, ..., 0.14372273, 0.36363636,
                  10.
                  0.189265541,
                  0.18926554],
1. , 0.21052632, 0.666666667, ..., 0.24381968, 0.23232323,
0.09039548],
                  [1.
                               0.18421053, 0.666666667, ..., 0.13015027, 0.41414141,
                  0.1129943511)
In [12]: X_train, X_val_and_test, Y_train, Y_val_and_test = train_test_split(X_scale, Y, test_size=0.3)
          X val, X test, Y val, Y test = train test split(X val and test, Y val and test, test size=0.5)
          print(X_train.shape, X_val.shape, X_test.shape, Y_train.shape, Y_val.shape, Y_test.shape)
          (2560, 15) (549, 15) (549, 15) (2560,) (549,) (549,)
```

Figure 12: Data preprocessing for ANN

5.2 Implementation of Random Forest and SVM Models

5.2.1 Data preprocessing

We need to preprocess the data again in a different way to feed it to both the random forest and SVM models. These are machine learnig algorithms and hence need to be preprocessed differently compared to Artificial Neural networks. Figure 18

We go ahead and plot the attributes of the dataset. This provides and idea on how to approach the Models for increased performance and accuracy. Figure 19

We consider the gender attribute to be labelled and plotted to see the number of entries they have and how we can make use of it. Figure 20

We then plot the gender compared to age to see calculate the age group for the most affected are. This figure 21 shows us that the most case received are between the ages of 39-48.

Keeping age groups and gender as our two main attributes for the models we will further train the data into training set and test set. As shown in the Figure 22.

5.2.2 Random Forest Model

We train the random forest model and input the training and test data. As shown in Figure 23. The Random Forest model yielded an accuracy of 85.06. With the precision being 0.85, recall being 1.00 and f1-score being 0.92. as shown in figure 24.

Building and Training Our Artifcial Neural Network

Figure 13: Training ANN

5.2.3 SVM Model

We train and fit the SVM model with the training and test data. The following Figure 25 shows how. The SVM model yielded an accuracy of 84.79. The precision 0.85, recall is 1.0, and f1-score is 0.92. As shown in Figure 26.

6 Comparison

Once we aquired all the accuracy from the models we ran, we felt the need to compare the results just to see how close or how far apart the artificial neural network techniques is from the machine learning techniques. The highest accuracy was yielded by ANN. Though the ANN technique's accuracy was a bit higher than other techniques, we can conclude that in the case of disease identification every small amount is considered and can come to great help. The following plot will show the differnce in the accuracies. Figure 27

7 Section 6

Your sixth section. Change the header and label to something appropriate.

References

In [15]:	<pre>hist = model.fit(X_train, Y_train,</pre>
	WARNING:tensorflow:From C:\Users\Omkar\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py:986: The name tf.a ssign_add is deprecated. Flease use tf.compat.vl.assign_add instead.
	Train on 2560 samples, validate on 549 samples Epoch 1/100
	2360/2360 [
	2560/2560 [====================================
	2560/2560 [====================================
	2560/2560 [====================================
	2560/2560 [===============================] - 0s 34us/step - loss: 0.4475 - acc: 0.8422 - val_loss: 0.4095 - val_acc: 0.86
In [16]:	<pre>model.evaluate(X_test, Y_test)[1]</pre>

- 549/549 [====] 0s 60us/step Out[16]: 0.8561020037515568
 - Figure 14: Building ANN

Visualizing Loss and Accuracy

Figure 16: Accuracy for ANN

In [22]:	Y_pred = mode Y_pred = np.r	el.predict(X_ cound(Y_pred.	test) flatten())										
Tp [23].	accuracy - ac	CURREN SCORE	/V +ae+	V pred)										
11 [20].	<pre>print("Accuracy: %.2f%%" % (accuracy*100))</pre>													
	Accuracy: 85.	25%												
In [24]:]: print(classification_report(Y_test, Y_pred))													
	princ(crassi	repo	fr(i_cest	, i_pred))										
	princ(orabbit	precision	recall	f1-score	support									
	0.0	precision 0.85	recall 1.00	f1-score 0.92	support 468									
	0.0	precision 0.85 0.50	recall 1.00 0.01	f1-score 0.92 0.02	support 468 81									
	0.0 1.0 accuracy	precision 0.85 0.50	recall 1.00 0.01	f1-score 0.92 0.02 0.85	support 468 81 549									
	0.0 1.0 accuracy macro avg	precision 0.85 0.50 0.68	recall 1.00 0.01 0.51	f1-score 0.92 0.02 0.85 0.47	support 468 81 549 549									

Figure 17: Conclusion for ANN

Figure 18: Data preprocessing for ML Methods

Figure 19: Plotting Attributes

Figure 20: Gender plot

Figure 21: Age group plot

:	gender	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	diabetes	totChol	sysBP	diaBP	BMI	heartRate	glucose
1111	0	52	2.0	0	0.0	0.0	0	1	1	600.0	159.5	94.0	28.27	78.0	140.0
3938	0	49	3.0	1	4.0	0.0	0	1	0	227.0	150.0	91.0	24.30	88.0	83.0
2469	1	48	4.0	1	20.0	0.0	0	1	0	259.0	135.0	90.0	20.72	102.0	81.0
221	0	38	2.0	1	9.0	0.0	0	0	0	180.0	124.0	66.0	29.29	85.0	68.0
2916	0	45	1.0	0	0.0	0.0	0	0	0	210.0	120.0	72.0	22.01	75.0	93.0
2416	1	56	2.0	1	20.0	0.0	0	1	0	205.0	210.0	130.0	25.49	95.0	127.0
2225	1	38	4.0	0	0.0	0.0	0	0	0	240.0	122.5	80.0	23.97	60.0	43.0
875	1	39	2.0	1	30.0	0.0	0	0	0	225.0	128.0	86.5	25.13	74.0	100.0
3042	0	38	4.0	1	3.0	0.0	0	0	0	177.0	126.0	80.0	23.84	90.0	79.0
1653	1	39	3.0	1	20.0	0.0	0	0	0	148.0	101.0	62.0	24.47	70.0	81.0
print	(x_trai	.n.sh	ape, x_te	est.shape, y	_train.sha	pe, y_te	est.shape)								
(2560, 15) (1098, 15) (2560,) (1098,)															

Figure 22: Training the Data

Figure 23: Training Random Forest

Predictions and Evaluation of RF Model

In	[42]:	predictio	ons_rf	= rfc.pred	lict(x_tes	st)									
In	[43]:	<pre>acc_rf = accuracy_score(y_true=y_test, y_pred= predictions_rf) print("Overall accuracy of ADA model using test-set is : %f" %(acc_rf*100))</pre>													
		Overall a	ccura	cy of ADA m	odel usin	ig test-set	is : 85.0	63752							
In	[44]:	<pre>print(classification_report(y_test, predictions_rf))</pre>													
			1	precision	recall	f1-score	support								
			0	0.85	1 00	0 92	931								
			1	0.64	0.04	0.08	167								
		accur	acy			0.85	1098								
		macro	avg	0.74	0.52	0.50	1098								
		weighted	avg	0.82	0.85	0.79	1098								
In	[45]:	print (con	nfusio	n_matrix(y_	test, pred	lictions_rf))								
		[[927 4 [160 7	1] 7]]												
In	[46]:	filename= pickle.du	='mode ump(rf	l/rf_model. c,open(file	sav' name, 'wh)))									
						Figure	e 24: E	valuation of RF							

Training the SVM model

In [47]:	from sklearn.svm import SVC
In [48]:	<pre>model_svm = SVC()</pre>
In [49]:	<pre>model_svm.fit(x_train, y_train)</pre>
	C:\Users\Omkar\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: FutureWarning: The default value of gamma will change f rom 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning. "avoid this warning.", FutureWarning)
Out[49]:	<pre>SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma='auto_deprecated', kernel='rbf', max_iter=-1, probability=False, random_state=None, abrinking=True, tol=0.001, verbose=False)</pre>

Figure 25: Training SVM Model

	Predictio	ons and	Evalu	ation							
In [45]:	<pre>predictions_svm = model_svm.predict(x_test)</pre>										
In [46]:	acc_svm = accuracy_score(y_true=y_test, y_pred= predictions_svm) print("Overall accuracy of SVM model using test-set is : %f" %(acc_svm*100))										
	Overall accuracy of SVM model using test-set is : 84.790528										
In [48]:	print (classif	ication_repo	rt(y_test	,predictio	ns_svm))						
		precision	recall	f1-score	support						
	0 1	0.85	1.00 0.00	0.92 0.00	931 167						
	accuracy macro avg weighted avg	0.42	0.50 0.85	0.85 0.46 0.78	1098 1098 1098						
In [48]:	print (confusi	lon_matrix(y_	test, pred	lictions_sv	n))						
	[[931 0] [167 0]]										
In [49]:	filename='moo pickle.dump(m	del/svm_model nodel_svm,ope	.sav' n(filenam	ue, 'wb'))							

Figure 26: Evaluation of SVM

Comparation

ANN

RF

svм

Figure 27: Comparison of ANN, RF and SVM