

Classification of Deep Space Objects using

Deep Learning Techniques

Configuration Manual
MSc in Data Analytics

Cillín Ó Foghlú
Student ID: 18186751

School of Computing

National College of Ireland

Supervisor: Dr Catherine Mulwa

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Cillín Ó Foghlú

Student ID:

18186751

Programme:

MSc in Data Analytics

Year:

2020

Module:

Research Project

Supervisor:

Dr Catherine Mulwa

Submission
Due Date:

August 2020

Project Title:

Classification of Deep Space Objects using Deep Learning

Techniques

Word Count:

……………9063………… Page Count…………56……….……..

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

………………………Cillín Ó Foghlú…………………………………………………
Date: ………………………16/08/2020.……………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Cillín Ó Foghlú

Student ID: 18186751

2

1 Introduction
This report forms part of the submission by student Cillín Ó Foghlú as the configuration

manual which describes how to implement that Classification of Deep Space Objects using

Deep Learning Techniques submission for M. Sc in Data Analytics.

Section 2 covers additional details on the research project which complement the Research

Report paper submitted. Section 3 details the hardware used while section 4 describes how to

install the relevant software. Section 5 details the process to select and download the images

used. Section 6 describes the python code used to acquire and pro-process the SDSS images.

Section 7 covers the extraction of images form STScI. Section 8 describes the models

training and section 9 covers the results from the training.

.

2 Supplementary Details from Technical Report
The following are additional details which were identified or investigated as part of the

research project, however due to constraints in the documentation, were not inserted into the

final report, however are detailed below for information and supplementary details in support

of the research.

2.1 Research Methodology

TensorFlow is a machine learning system that operates at large scale and in heterogeneous

environments. TensorFlow uses dataflow graphs to represent computation, shared state, and

the operations that mutate that state. It maps the nodes of a dataflow graph across many

machines in a cluster, and within a machine across multiple computational devices, including

multicore CPUs, general purpose GPUs, and custom-designed ASICs known as Tensor

Processing Units (TPUs). This architecture gives flexibility to the application developer:

whereas in previous “parameter server” designs the management of shared state is built into

the system. TensorFlow enables developers to experiment with novel optimizations and

training algorithms. TensorFlow supports a variety of applications, with a focus on training

and inference on deep neural networks.

Several of Googles’ services use TensorFlow in production, and it has been released as an

open-source project and it has become widely used for machine learning research. In this

paper, the TensorFlow dataflow model is described and demonstrated. The compelling

performance that TensorFlow achieves for several real-world applications. (Abadi et al., n.d.)

(Chapman, et al., 2000) was identified as the best suited to this research problem

2.2 Learning Approach

As all the outcomes for the classifications were known in advance, the data mining fell into

the class of supervised training methodology (Post Grad Programme in Data Analytics,

2019). The images were presented to the ANN using TensorFlow objects and the Keras

method. This is a computer vision and image classification method which is widely regarded

as industry standard currently. A CNN is a class of deep learning neural networks which are

commonly used for image analysis as they do not require complex methods such as

“momentum, weight decay, structure- dependent learning rates, averaging layers, tangent

prop, or even finely-tuning the architecture” (Simard, et al., 2013)

CNN’s layers are randomly seeded with values initially and these values get modified by the

model as it “leans” through the process of back-propagation as it computes the loss function

3

and gradient (Goodfellow, et al., 2016). Features are not defined initially, they are “learnt”,

and the network used adjusts these values based on the outcomes of each image used and the

known outcome.

2.3 Convolutional Neural Networks

An artificial neural network is a computer system whose design is based on the structure of

biological neural networks and is designed to perform “human like” tasks, such as image or

handwriting recognition. The concept dates back to early 1960’s when (Hubel & Wiesel,

1962) introduced what many considered as the first convolutional neural network. While is

lacked the advancements od recent years, such as back-propagation which was proposed

(LeCun, et al., 1989) in applying recognition to handwritten zip codes. Back propagation is

used to compute the gradient of the loss function so that the model can adjust weights and

biases.

2.4 Design for Data Acquisition

Once the URL’s were known, then a locally executed “wget” command was called using an

input text file with just the URL’s as a parameter. This triggered the download of the

associated fits files to the local hard drive. It is important to restate that the goal of this

project was to validate the ability of local processing to complete the work as much as

possible to allow home users support the professional community.

FITS files were downloaded from https://dr12.sdss.org/sas/dr12/boss/photoObj/frames/301/

SDSS JPEG files were available at: http://skyserver.sdss.org/dr16/SkyServerWS/ImgCutout/

And STScI jpeg files at: http://skyserver.sdss.org/dr16/SkyServerWS/ImgCutout/getjpeg?

followed by the ra, dec, and size of the required images.

2.5 Design for Processing and Modelling of Data

Once the data was retrieved in fits format, it was then processed to reduce both size and to

convert to an image format for later processing. This processing along with the remainder of

the model design, training and testing was completed locally. FITS files were downloaded

and saved into sub-directories, one per class. Then the images were extracted into a plot from

each FITS image and saving out as a PNG before closing the image and moving on to the

next image in the directory. This process was coded in Python and full details on the

hardware and software used are in the Configuration Manual submitted with this report.

For SDSS JPEG images this was again using a ‘wget’ command and the files were also saved

into subdirectories, one per class. Python was used to rename all images to *.jpg to allow for

future processing as images input to the models. For STScI jpeg images, the same CAS

results were used and ‘wget’ commands used to download these images to subdirectories, one

per class.

2.6 Data Selection and extraction

The data source in this case is the Slone Deep Space Survey archive servers. The data used is

held on the dr12.sdss.org servers. In this case dr12 related to the 12th data release of data

from the survey’s results and is described, by the SDSS press release as : “ Data Release 12

(DR12) is the final data release of the SDSS-III, containing all SDSS observations through

July 2014. It includes the complete dataset of the BOSS and APOGEE surveys, and also

newly includes stellar radial velocity measurements from MARVELS”. All data has already

been pre-processed and digital noise or “bad” images removed. Images impacted by poor

https://dr12.sdss.org/sas/dr12/boss/photoObj/frames/301/
http://skyserver.sdss.org/dr16/SkyServerWS/ImgCutout/
http://skyserver.sdss.org/dr16/SkyServerWS/ImgCutout/getjpeg

4

weather conditions or unfavourable atmospherically conditions were also removed prior to

the data release.

2.7 Data Transformation – possible cut and move to config

Generally, data transformation refers, with the computing sphere, process of converting data

from one format to another. In this case there are multiple steps in the process, and these are

detailed below.

2.7.1 Extracting Images from FITS format to PNG

Using Python, the fits files were opened, and the images plotted before being saved out as

“png” files. Astronomical data is generally held in fits files which contain more data than

was necessary for this CNN – the fits file sizes made utilisation of them too cumbersome and

memory / CPU intensive. This reduces the size of the files from between 2 and 4 MB to

approximately 120k. It also reduced the image size from 1409x2048 to 576x432. The file

names were used minus the “.fits.bz2” as the new names for the images. A leading character

was added, “s” for Stat files, “g” for Galaxy files and “q” for quasar files. he images files

were also written to individual folders, based on their classification, for future processing.

Figure 1 – Sample images from SDSS across all filters post stage 2 processing shows a

sample of the images extracted from the “fits” files. Local processing allowed for approx. 40

fits files to be converted to smaller “.png” files at the rate of 40 per minute.

Further transformation was carried out by using Python to combine the visible light filters

into a 2 channel RGB format and saving the files as colour files, see Figure 1. This was also

used as training input to the CNN and the results are discussed in Section 8.4

frame-g-000109-6-0065.png

frame-1-000109-6-0065.png

frame-r-000109-6-0065.png

frame-i-000109-5-0013.png

No Z Frame exists for this image in

SDSS Archives

frame-z-000109-5-0013.png

RGB Composite of 000109-6-0064

Figure 1 – Sample images from SDSS across all filters post stage 2 processing

This process had the double advantage of both reducing the size of files, in the example of

start fits from 150GB per filter to under 10GB and also only having images to be processed,

all superfluous data was not brough forward into the next stage of the process – the neural

network. It was noted that images, examples in Figure 2, had more than just one object in

them and that this was a potential issue for later processing.

5

qframe-i-002126-1-0263

sframe-g-000307-3-0162

gframe-z-002964-4-0243

Figure 2 - Samples of all categories with more miltiple objects in a single image

For images extracted from STScI another Python script was used, a modification to the script

published in the STScI’s GitHub pages. The modification took an input text file in 3 columns

and generated a call to the STScI’s servers, and the returned jpeg was saved to a working

directory locally. A sample of the imagery from STSci is in Figure 3

Figure 3 : Sample of 9 jpg Images from STScI with category indices

2.8 CNN Model

CNN models are made up of input layers, a number of hidden layers and an output layer.

The number of hidden layers used is not an exact science, research conducted by (Ma, et al.,

2014) on using hidden layers in language processing tended for a trial and error approach,

that there was no fixed rules in selecting the correct number of layers at each stage within a

deep learning model. Other reasons to limit the depth of the ANN was degradation and

vanishing/exploding gradient problems. These factors were factored into the design of the

modifications to the models used.

6

2.8.1 Activation Functions within TensorFlow

Deep Learning models make use of several different types of activation functions,

optimisation functions as well as metrics to evaluate the output. Tensor has many options for

each, and the ones used in this project are listed below along with the rational for their use.

2.8.2 Adam Optimiser

The Adaptive moment estimation or Adam optimisation is a stochastic gradient descent

method that is based the Root Mean Square Propagation (RMSprop) optimiser and

momentum. Momentum takes past gradients as input to smooth the gradient steps in the

model. According to (Diederik P. Kingma, 2015) the method is "computationally efficient,

has little memory requirement, invariant to diagonal rescaling of gradients, and is well suited

for problems that are large in terms of data/parameters" It offers a straightforward

implementation which is computationally efficient and has little memory requirements. It is

well suited for problems with large data or parameters. In choosing which optimizer to select

out of the various options, research by (Ruder, 2016) and (Kingma & Lei Ba, 2015) guided

the selection. Figure 4 : Comparison of Adam to other Optimization Algorithms taken from

(Ruder, 2016) report titles “An overview of gradient descent optimization algorithms”

Figure 4 : Comparison of Adam to other Optimization Algorithms

2.8.2.1Relu Activation

The Rectified Linear Unit (ReLU) function, Figure 5, within CNN’s, is used to increase the

non-linearity in the images presented to the CNN. Its purpose is to increase the non-linearity

of the images. It is used to transform the summed weighted input from a node into the

activation of the nodes output for that input (Brownlee, 2019) Based on researching a

number of different CNN’s it was noted that this was the de facto standard used in many

7

NN’s as Brownlee said “because a model that uses it is easier to train and often achieves

better performance”.

Figure 5 : ReLU Activation Function

2.8.2.2Softmax () Activation

Softmax() is a function, Equation 1, used to set the outcome into a set of probabilities. In this

case the outcomes were a probability of an image being of a star, galaxy or a quasar. Using

softmax() the outcome with the highest probability became the category of the image.

(Wikepedia, n.d.) describes softmax() as a “generalization of the logistic function that

"squashes" a K-dimensional vector of arbitrary real values to a K-dimensional vector of real

values in the range [0, 1] that add up to 1.

Equation 1 - Softmax Function

2.9 The ResNet50

The degradation problem was overcome by the introduction of residual networks. ResNet50

stacks residual blocks stacked into 50 layers. A sample of this design, Figure 6 is in below.

Figure 6 : Basic block in ResNet 50

8

3 Hardware Configuration

PC: Custom Build PC

Processor Intel i7-3770 @3.40 GHz 8 cores

RAM 24Gb DDR3

OS Windows 10 Pro 64 bit edition

Graphics Card NVIDIA GForce GT640 2Gb DDR3 128Bit Bus

 This was replaced with NVIDIA GForce GTX1660 Ti ,6GB DDR6

4 Software Used and Installation Process
This section lists all installed applications required to run the project along with the detailed

installation process and screen shots.

4.1 Microsoft Applications

No installation instructions are provided for the standard Microsoft Office and Operating

system used in this research. Any additional components are listed which were used.

Microsoft Word

 Add-In for Zotero

Microsoft Excel

Microsoft PowerPoint

Microsoft Snipping Tool

4.2 Anaconda 3 IDE & Spyder Python

Both applications are contained in a single install package which is detailed below

1) Download from https://www.anaconda.com/distribution/

2) Chose 64-bit Graphical Installer and save file as per Figure 7

Figure 7 : Chose version of Python

https://www.anaconda.com/distribution/

9

3) Open Installation package from downloaded directory as per Figure 8

Figure 8 : Select where to install Python

4) Select Next to start the installation on

Figure 9 : Anaconda Installation Welcome Screen

10

5) Accept the Licencing Agreement and select Next as in Figure 10

Figure 10 : Anaconda Licence Screen

6) Chose Installation Type - in this case the recommended option was chosen and select

Next as in Figure 11

Figure 11 : Anaconda Select Installation Type

11

7) Chose Installation Directory and select Next as described in Figure 12

Figure 12 : Anaconda Install Folder

8) Register Anaconda Python as default Python installation and select Next to include

Python in the Windows Path as shown in Figure 13

Figure 13 - Add Python to PATH in Windows

12

9) The installation process will commence as per Figure 14

Figure 14 - Python starting installation process

10) Installation Completed. Select Next to complete as per Figure 15

Figure 15 - Completion of Installation Notification

13

11) Select Next to complete the installation process and see available support site as per

Figure 16

Figure 16 - Link to PyCharm site

12) And finally click the Finish button as per Figure 17

Figure 17 - Final Installation Notification

14

13) Optional installation of Kite was chosen. Kite is an autocompletion tool within the

Anaconda framework which helps by suggesting remaining test to be written – Figure

18

Figure 18 - Add Kite to installation

14) Spyder Python comes as part of this installation and the version being used is 4.0.1

see Figure 19

Figure 19 - Anaconda Package Installer

15

4.3 Install “wget” for windows

The required file can be downloaded from:

https://medium.com/@medasuryatej/install-tensorflow-gpu-2-0-f4e215438199

Installation only required a copy of the downloaded file to the required directory. This file

was used to download the image files from the SDSS archive servers.

4.4 CUDA 9.0

In order to utilise the GPU, Nividai CUAD was required and is available at

https://developer.nvidia.com/cuda-90-

downloadarchive?target_os=Windows&target_arch=x86_64

Select the appropriate version for your computer as be Figure 20

Figure 20 : Download CUDA Toolkit

Once downloaded this package was installed. By clicking the package as downloaded. No

configuration is required.

4.5 CUDNN v7.6.5

The Nividia support toolkit for Neural Networks is available at:

https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html

there is an ethics agreement required when logging in first time. This is to ensure that the

toolkit is not used for rational or genttic profiling and in accordance with Nidivia’s ethical

statement. You must agree to this before downloading the package. Once downloaded the

files are extreacted from a zip folder and the pocess to install is detailed in Figure 21 and

Figure 22

https://medium.com/@medasuryatej/install-tensorflow-gpu-2-0-f4e215438199
https://developer.nvidia.com/cuda-90-downloadarchive?target_os=Windows&target_arch=x86_64
https://developer.nvidia.com/cuda-90-downloadarchive?target_os=Windows&target_arch=x86_64
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html

16

Figure 21 : CUDNN Installation Process Stage 1

17

Figure 22 : CUDNN Installation Process Stage 2

Both packages are required to utilize the advances TensorFlow has made in GUP support.

4.6 Using Anaconda Navigator

Anaconda Navigator was used to install some of the required packages. Others were directly

installed using the PIP command. Installation of opencv for python is detailed in Figure 23

18

Figure 23 : Using Anaconda Navigator to install packages

This was to support the cv2 library required to work with images in python. And resulted in

additional dependencies, see Figure 24, being updated.

Figure 24 : Packages installed via Anaconda Navigator

19

4.7 Packages installed using PIP

Httplib was installed using the Python PIP command as detailed in Figure 25:

Figure 25 : Screen Shot of HTTPLIB installation

Tensorflow Nightly Update to get latest support for the libraries being used

 Pip install tf-nightly

The version of Tensorflow installed for this project was 2.3 and a nightly dev version which

had stable support for GPU and other packages used in this project is detailed in Figure 26

Figure 26 : Print version of TensorFlow

PIP install tf-nighly-gpu

To get the latest GPU support – this allowed for faster processing by moving some of the

processing from the CPU to the GPU’s in the graphics card.

The following Python libraries were installed using “pip install” followed by the package

name:

• matplotlib

• PLI

• Pillow

• Install aspropy in order to be able to manage FITS files as in Figure 27.

20

• Figure 27 : Installation of astropy

5 How to download project images
Images were downloaded from SDSS and Kepler archive servers. In both cases the format of

the queries was dictated by the site in question. For SDSS it was a simple wget command as

outlines below in Section 5.1 to below.

 The query from Kepler was designed by the STSCI.EDU and a modification to their script

allowed for it to take an input file and work through lines in the input file to process more

than a single image at a time.

5.1 SQL to SDSS Catalogue Archive Servers
The command below, as per Figure 28 was run on the SDSS CAS servers, which are found

at: http://skyserver.sdss.org/dr9/en/tools/search/sql.asp

. The command to extract the details of the required images is per Figure 28, Figure 29

Figure 28 - SQL Command to extract catalogue from SDSS Catalogue Servers

The extracted excel file is included in the accompanying pack and it called

Skyserver_SQO4_6_2020 1_30_47 PM (version 4).xls

http://skyserver.sdss.org/dr9/en/tools/search/sql.asp

21

This returned 10000 records which listed the fields which later were used to create the input

files for “wget” to extract the images from the sites. The pattern for SDSS and STScI were

different, however the data returned by the SDSS CAS servers allowed both request formats

to be generated.

The SQL returned a CSV file, Figure 29, which was taken into Excel and the two extraction

formats for images were generated using a combination of concatenation of returned fields

and text.

Figure 29 : CSV output from SDSS CAS Servers opened in Excel

5.2 SDSS Image Download – FITS files

Complete documentation on how to download the images from SDSS was described at

https://dr12.sdss.org/documentation as is in Figure 30

Figure 30 : Instructions from SDSS on how to generate URL to download images

By following th eformat as perscribed by SDSS and adding in new fields to make up the

desired enteries to the output from the CAS Excel file,Figure 31, a subsequent concatanation

function was run to complete the formatting and allow for extraction of the data into text files

for further processing

https://dr12.sdss.org/documentation

22

Figure 31 : Excel fields used to generate URL

The contatanation to build the final URL required is in Figure 32:

Figure 32 : concatenation function to generate URL

The output is below in Figure 33

Figure 33 : Example of format required for SDSS files to be downloaded

Using wget and the concatenation from above as an input file the following commands were

used to download the required images from the SDSS servers

Wget -i input.txt where input.txt is a text file listing the fits files in the format as per Figure

34

This proceeded to call the SDSS servers and download the fits files as per the input.txt file.

|n example of the flow is shown in Figure 34 which shows the “starts” files being

downloaded.

23

Figure 34 : Fits files downloading

5.3 Structure of FITS files

The following section shows the structure of the FITS files extracted from the SDSS CAS

servers. Is detailed in Figure 35, Figure 36, Figure 37,.

24

Figure 35 : General structure of SDSS FITS file

Figure 36 :Details of FITS Header - 1

25

Figure 37 : Details of FITS Header - 2

6 SDSS Images
The images from SDSS used fel into 2 categories, either filter images across the 5 bands or

RGB which were a combination of the R, G, B bands of the filters from category 1.

6.1 Extracting Images from FITS files

This file sets the working directory to whichever of the folder the images were downloaded.

In this case it was d:\project\masters\fits and then either the galaxy, starts or quasar folders.

It then recursively goes through the images and extracts a plot for each image and saves to

the same folder. The request is all plots are extracted for each of the image types in one of

three folders corresponding to their classification. See Figure 38 for details.

The plot is shown on the console as well as the image name to show the progress through the

images, as well as a count to ensure that progress is monitored.

26

Figure 38 : Code to extract plot from FITS file

The images were extracted, and a sample is in Figure 39

27

Figure 39 - This is a galaxy plot extracted from a FITS file.

The images were saved to separate folders for each category, this later became the input

folders for the different datasets and working folders parameters.

6.2 Creating RGB from FITS filter images

This Python file opens the filter images from SDSS based on their “G” band and then

combines the R and B bands along with the G band to make a single image which is then

saved as a PNG to the working directory. This provided a second image format for training

and testing by the ANN and the process is in Figure 40 with a sample output in Figure 41

28

Figure 40 : Code to Combine RBG filters to a single file

The directory used here is for “v2” which refers to the RGB Images from SDSS. Other

directories were used referring to the filters and jpg images from the data sources – see

section 8.3 later in this document for more details.

29

Figure 41 : Sample Star image below is a combination of RGB B&W filters as be the script above.

6.3 Extracting RGB images directly form SDSS

Details of how to extract cut-out jpg images form the FITS images produced is documented

at http://skyserver.sdss.org/dr16/en/help/docs/api.aspx#imgcutout

This was built using the same output from SQL CAS request excel file and a concatenation

function to generate the URL’s which were extracted using a wget command. As per Figure

42 with a sample of the output in Figure 43 - Sample of a Quasar JPG from SDSS Archive

Servers

Figure 42 : Concatenation function to generate SDSS RGB Image

http://skyserver.sdss.org/dr16/en/help/docs/api.aspx#imgcutout

30

Figure 43 - Sample of a Quasar JPG from SDSS Archive Servers

7 STScI Images
Most of the code used below is provided by the STScI support team to allow for the

extraction of jpg images from the site is outlined in Figure 44 : Code to extract JPG from

STScI site - part 1Figure 44 and Figure 45

31

Figure 44 : Code to extract JPG from STScI site - part 1

32

Figure 45 : Code to extract JPG from STScI site - part 2

By changing the code to recursivally go through an input file the code was modified to take

an input and extract, download all required images in one process. The input fiole tool the

format as per Figure 46 : Input to GetImagesfromKepler.py. The data for these images was

also taken form the excel file “Skysaver_SQL4_6_2020 1_3-+47 PM (version4).xls which is

submitted as part if the ICT solution pack. These fields refer to the RA and DEC and

classifiation of the object in question.

33

Figure 46 : Input to GetImagesfromKepler.py

The images downloaded with no extension so a simple Python code was developed to rename

the files. All images started with “getjpeg” and this was used as key to find image files and

append a jpg to the filename. See Figure 47 for the code and Figure 48 for a sample of the

putput.

34

Figure 47 : code to rename STScI download images as JPG files

Figure 48 - Sample quasar from STScI Kepler servers

8 Models and Training Code
All models used for training the various datasets are included in the accompanying pack. The

models covered in this project utilised MobileNet, ResNet50, VGG16, and Xception. Each

35

model followed the same format, however the trained weights from the model as it was

trained using Image Net images was downloaded on the initial run for each model – see

Figure 49.

Figure 49 : example of weights being downloaded

The code used comes in 4 parts – the initial addition of required python libraries, the

inclusion of the ImageNet trained model, the importing of the dataset for training and testing,

followed by the training, testing and output of results. The results for all models will be

covered in Section 8.4

8.1 Inclusion of required Python Libraries and environmental variables

The same libraries were included in all models and the code is as per Figure 50:

Figure 50 : standard Python libraries included in all CNN programs

36

This also set the parameters to utilise the GPU to perform the training. Also, the version of

Tensorflow was printed to confirm that all models were run using the same version.

The number of Epochs was set to 10 which was increased to 50 for the best performing

models.

The working directory and the input folders were also set at this stage. The folders path was

changed to correspond to each dataset., see Figure 51 With the following order:

1 – SDSS Fits Plots

2 – RGB from FITS Filters

3 – STScI JPG Images

4 – SDSS Jpg Images

Figure 51 : set working directory and path to test / train images

By changing the os.chdir, train_path and test_path variables, it is easy to repoint the models

at new datasets and ensure that the model processed the required images.

8.2 Base Model and modification to it

Each model was imported using the following code – the name of each model was changes

and by changing the variable “model_name” to the relevant model name. This was used to

output the models name as part of the final trained model with weights.

The base model was imported, the final layer was not. The models were then set to

untraonable to locl the already trained layers – these could already extract features from

images. 5 additional layers were added to the models and set to be trainable. As per Figure

51

37

Figure 52 : Import base models and add new layers.

The last layer of the pre-trained model was not imported and this version of the model was

set to be untrainable. This then allowed for the addition of 5 more layers to be added to the

model and these layers were allowed to be adjusted in line with the models loss function and

training later. The layers were displayed and the model summery was also displayed.

8.3 Identification of Data for training and testing

The images were imported and split into training and testing data. The functions used

allowed the import based on the directory structure for each image set. An example of the

folder structure for one set of test images is below in .

Figure 53 : Sample folder structure for all datasets

Using the following code, the images were imported, and the model compiled. All models

were compiled with the same optimiser function.

38

Figure 54 : code to select images and compile models

The models were run, using the model.fit() function

Figure 55 : code to make use of GPU for running models

Once the models had completed their training and testing the model plotted out its results and

also saved the model to disk as per Figure 56:

39

Figure 56 : code to save results and plots as well as resulting models

8.4 Results

The following are the detailed results which were not put in the Project Report. Each model

was run, and the model’s accuracy was used as a measure of its performance.

8.5 MobileNet Models Results

STScI JPG Images Training Epoch Results -

Accuracy

Validation Epochs Results -

Accuracy

Epoch #1 0.8365 0.8801

Epoch #2 0.8657 0.8798

Epoch #3 0.8798 0.8830

Epoch #4 0.8750 0.8827

Epoch #5 0.8826 0.8829

Epoch #6 0.8874 0.8864

Epoch #7 0.8918 0.8873

Epoch #8 0.8955 0.8874

Epoch #9 0.8980 0.8863

Epoch #10 0.9002 0.8715

40

SDSS JPG Images Training Epoch Results -

Accuracy

Validation Epochs Results -

Accuracy

Epoch #1 0.8055 0.8437

Epoch #2 0.8311 0.8197

Epoch #3 0.8397 0.8440

Epoch #4 0.8417 0.8380

Epoch #5 0.8466 0.8583

Epoch #6 0.8455 0.8641

Epoch #7 0.8471 0.8382

Epoch #8 0.8507 0.8206

Epoch #9 0.8505 0.8549

Epoch #10 0.8527 0.8607

SDSS Filters Images Training Epoch Results -

Accuracy
Validation Epochs Results -
Accuracy

Epoch #1 0.4281 0.3272

Epoch #2 0.4437 0.3496

Epoch #3 0.4512 0.3347

Epoch #4 0.4562 0.3502

Epoch #5 0.4575 0.3497

Epoch #6 0.4588 0.3430

Epoch #7 0.4621 0.3582

Epoch #8 0.4635 0.3483

Epoch #9 0.4658 0.3248

Epoch #10 0.4712 0.3223

SDSS RBG Images Training Epoch Results -

Accuracy
Validation Epochs Results -
Accuracy

Epoch #1 0.4184 0.4675

Epoch #2 0.4499 0.4892

Epoch #3 0.4532 0.4572

Epoch #4 0.4647 0.4631

Epoch #5 0.4680 0.4825

Epoch #6 0.4691 0.4630

Epoch #7 0.4703 0.5020

Epoch #8 0.4765 0.4914

Epoch #9 0.4818 0.5099

Epoch #10 0.4806 0.4822

8.6 Resnet50 Models Results

STScI JPG Images Training Epoch Results -

Accuracy

Validation Epochs Results -

Accuracy

Epoch #1 0.3703 0.3650

Epoch #2 0.3769 0.3650

Epoch #3 0.3769 0.3650

Epoch #4 0.3769 0.3650

Epoch #5 0.3769 0.3650

Epoch #6 0.3769 0.3650

41

Epoch #7 0.3769 0.3650

Epoch #8 0.3769 0.3650

Epoch #9 0.3769 0.3650

Epoch #10 0.3769 0.3650

Obvious that learning stopped very early in this model and no further improvements were

made from epoch 2 onwards.

SDSS JPG Images Training Epoch Results -

Accuracy

Validation Epochs Results -

Accuracy

Epoch #1 0.7490 0.8460

Epoch #2 0.8258 0.8642

Epoch #3 0.8459 0.8644

Epoch #4 0.8566 0.8628

Epoch #5 0.8650 0.8774

Epoch #6 0.8745 0.8700

Epoch #7 0.8783 0.9015

Epoch #8 0.8802 0.9067

Epoch #9 0.8847 0.8751

Epoch #10 0.8838 0.8906

SDSS Filters Images Training Epoch Results -

Accuracy
Validation Epochs Results -
Accuracy

Epoch #1 0.3959 0.3540

Epoch #2 0.3970 0.3514

Epoch #3 0.4023 0.3583

Epoch #4 0.4067 0.3577

Epoch #5 0.4240 0.3702

Epoch #6 0.4343 0.3497

Epoch #7 0.4448 0.3242

Epoch #8 0.4479 0.3594

Epoch #9 0.4508 0.3443

Epoch #10 0.4511 0.3579

SDSS RGB Images Training Epoch Results -

Accuracy

Validation Epochs Results -

Accuracy

Epoch #1 0.3703 0.3650

Epoch #2 0.3769 0.3650

Epoch #3 0.3769 0.3650

Epoch #4 0.3769 0.3650

Epoch #5 0.3769 0.3650

Epoch #6 0.3769 0.3650

Epoch #7 0.3769 0.3650

Epoch #8 0.3769 0.3650

Epoch #9 0.3769 0.3650

Epoch #10 0.3769 0.3650

42

8.7 VGG16 Model Results

STScI JPG Images Training Epoch Results -

Accuracy

Validation Epochs Results -

Accuracy

Epoch #1 0.7389 0.7605

Epoch #2 0.8095 0.8046

Epoch #3 0.8189 0.8483

Epoch #4 0.8249 0.7390

Epoch #5 0.8307 0.8492

Epoch #6 0.8351 0.8536

Epoch #7 0.8337 0.8593

Epoch #8 0.8366 0.8579

Epoch #9 0.8416 0.8630

Epoch #10 0.8453 0.8393

SDSS JPG Images Training Epoch Results -

Accuracy
Validation Epochs Results -
Accuracy

Epoch #1 0.68771 0.7516

Epoch #2 0.74634 0.7665

Epoch #3 0.76061 0.7358

Epoch #4 0.76901 0.7781

Epoch #5 0.78214 0.7391

Epoch #6 0.78006 0.7807

Epoch #7 0.78214 0.7795

Epoch #8 0.78506 0.7893

Epoch #9 0.78616 0.7863

Epoch #10 0.78933 0.7951

SDSS Filter Images Training Epoch Results -

Accuracy
Validation Epochs Results -
Accuracy

Epoch #1 0.4155 0.3219

Epoch #2 0.4336 0.3169

Epoch #3 0.4403 0.3343

Epoch #4 0.4381 0.3343

Epoch #5 0.4458 0.3516

Epoch #6 0.4458 0.3570

Epoch #7 0.4469 0.3584

Epoch #8 0.4481 0.3520

Epoch #9 0.4495 0.3575

Epoch #10 0.4503 0.3520

SDSS RGB Images Training Epoch Results -

Accuracy

Validation Epochs Results -

Accuracy

Epoch #1 0.4052 0.4389

Epoch #2 0.4497 0.4577

Epoch #3 0.4500 0.4577

Epoch #4 0.4526 0.4730

Epoch #5 0.4503 0.5106

Epoch #6 0.4527 0.4965

Epoch #7 0.4569 0.5093

Epoch #8 0.4583 0.4679

Epoch #9 0.4562 0.5161

Epoch #10 0.4604 0.5235

43

8.8 Xception Model Results

STScI JPG Images Training Epoch Results -

Accuracy

Validation Epochs Results -

Accuracy

Epoch #1 0.7614 0.8227

Epoch #2 0.7961 0.8204

Epoch #3 0.8038 0.8184

Epoch #4 0.8104 0.8267

Epoch #5 0.8177 0.8418

Epoch #6 0.8215 0.8097

Epoch #7 0.8254 0.8461

Epoch #8 0.8289 0.8406

Epoch #9 0.8302 0.8434

Epoch #10 0.8316 0.8380

SDSS JPG Images Training Epoch Results -

Accuracy
Validation Epochs Results -
Accuracy

Epoch #1 0.7732 0.7982

Epoch #2 0.8046 0.8140

Epoch #3 0.8154 0.8184

Epoch #4 0.8237 0.8145

Epoch #5 0.8285 0.8062

Epoch #6 0.8347 0.8247

Epoch #7 0.8391 0.8029

Epoch #8 0.8448 0.8072

Epoch #9 0.8474 0.8113

Epoch #10 0.8520 0.8222

SDSS Filter Images Training Epoch Results -

Accuracy

Validation Epochs Results -

Accuracy

Epoch #1 0.4091 0.3823

Epoch #2 0.4277 0.4608

Epoch #3 0.4329 0.3996

Epoch #4 0.4369 0.4307

Epoch #5 0.4381 0.4077

Epoch #6 0.4396 0.4701

Epoch #7 0.4438 0.4588

Epoch #8 0.4465 0.4807

Epoch #9 0.4523 0.4560

Epoch #10 0.4532 0.4545

SDSS RGB Images Training Epoch Results -

Accuracy

Validation Epochs Results -

Accuracy

Epoch #1 0.40928 0.4549

Epoch #2 0.42760 0.4656

Epoch #3 0.43486 0.4576

Epoch #4 0.43968 0.4151

Epoch #5 0.43834 0.4031

Epoch #6 0.44124 0.4556

Epoch #7 0.44552 0.4596

44

Epoch #8 0.44249 0.4598

Epoch #9 0.44806 0.4791

Epoch #10 0.45114 0.4656

8.9 MobileNet 50 Epoch with SDSS Jpg Images

Epoch 1/50

1874/1874 [==============================] - 1866s 996ms/step - loss: 0.4744 -

accuracy: 0.8050 - val_loss: 0.3848 - val_accuracy: 0.8527

Epoch 2/50

1874/1874 [==============================] - 175s 94ms/step - loss: 0.4111 -

accuracy: 0.8325 - val_loss: 0.3907 - val_accuracy: 0.8459

Epoch 3/50

1874/1874 [==============================] - 176s 94ms/step - loss: 0.3975 -

accuracy: 0.8386 - val_loss: 0.4456 - val_accuracy: 0.8160

Epoch 4/50

45

1874/1874 [==============================] - 175s 93ms/step - loss: 0.3886 -

accuracy: 0.8425 - val_loss: 0.3707 - val_accuracy: 0.8547

Epoch 5/50

1874/1874 [==============================] - 173s 92ms/step - loss: 0.3811 -

accuracy: 0.8453 - val_loss: 0.3494 - val_accuracy: 0.8609

Epoch 6/50

1874/1874 [==============================] - 173s 92ms/step - loss: 0.3773 -

accuracy: 0.8460 - val_loss: 0.4373 - val_accuracy: 0.8055

Epoch 7/50

1874/1874 [==============================] - 173s 92ms/step - loss: 0.3708 -

accuracy: 0.8482 - val_loss: 0.3556 - val_accuracy: 0.8603

Epoch 8/50

1874/1874 [==============================] - 172s 92ms/step - loss: 0.3670 -

accuracy: 0.8497 - val_loss: 0.3544 - val_accuracy: 0.8597

Epoch 9/50

1874/1874 [==============================] - 411s 219ms/step - loss: 0.3625 -

accuracy: 0.8521 - val_loss: 0.3832 - val_accuracy: 0.8442

Epoch 10/50

1874/1874 [==============================] - 265s 141ms/step - loss: 0.3561 -

accuracy: 0.8547 - val_loss: 0.3574 - val_accuracy: 0.8555

Epoch 11/50

1874/1874 [==============================] - 174s 93ms/step - loss: 0.3557 -

accuracy: 0.8542 - val_loss: 0.3466 - val_accuracy: 0.8656

Epoch 12/50

1874/1874 [==============================] - 178s 95ms/step - loss: 0.3506 -

accuracy: 0.8565 - val_loss: 0.3713 - val_accuracy: 0.8533

Epoch 13/50

1874/1874 [==============================] - 173s 92ms/step - loss: 0.3453 -

accuracy: 0.8586 - val_loss: 0.4091 - val_accuracy: 0.8323

Epoch 14/50

1874/1874 [==============================] - 174s 93ms/step - loss: 0.3426 -

accuracy: 0.8608 - val_loss: 0.3440 - val_accuracy: 0.8671

Epoch 15/50

1874/1874 [==============================] - 173s 92ms/step - loss: 0.3378 -

accuracy: 0.8620 - val_loss: 0.3660 - val_accuracy: 0.8603

Epoch 16/50

1874/1874 [==============================] - 172s 92ms/step - loss: 0.3344 -

accuracy: 0.8647 - val_loss: 0.3883 - val_accuracy: 0.8493

Epoch 17/50

1874/1874 [==============================] - 176s 94ms/step - loss: 0.3314 -

accuracy: 0.8660 - val_loss: 0.3695 - val_accuracy: 0.8593

Epoch 18/50

1874/1874 [==============================] - 176s 94ms/step - loss: 0.3302 -

accuracy: 0.8649 - val_loss: 0.4274 - val_accuracy: 0.8369

Epoch 19/50

1874/1874 [==============================] - 173s 92ms/step - loss: 0.3262 -

accuracy: 0.8700 - val_loss: 0.3387 - val_accuracy: 0.8704

Epoch 20/50

1874/1874 [==============================] - 174s 93ms/step - loss: 0.3231 -

accuracy: 0.8690 - val_loss: 0.3798 - val_accuracy: 0.8557

Epoch 21/50

46

1874/1874 [==============================] - 172s 92ms/step - loss: 0.3207 -

accuracy: 0.8707 - val_loss: 0.3571 - val_accuracy: 0.8651

Epoch 22/50

1874/1874 [==============================] - 172s 92ms/step - loss: 0.3175 -

accuracy: 0.8709 - val_loss: 0.3487 - val_accuracy: 0.8643

Epoch 23/50

1874/1874 [==============================] - 172s 92ms/step - loss: 0.3169 -

accuracy: 0.8724 - val_loss: 0.3658 - val_accuracy: 0.8593

Epoch 24/50

1874/1874 [==============================] - 172s 92ms/step - loss: 0.3142 -

accuracy: 0.8717 - val_loss: 0.3569 - val_accuracy: 0.8643

Epoch 25/50

1874/1874 [==============================] - 172s 92ms/step - loss: 0.3130 -

accuracy: 0.8738 - val_loss: 0.3868 - val_accuracy: 0.8597

Epoch 26/50

1874/1874 [==============================] - 172s 92ms/step - loss: 0.3086 -

accuracy: 0.8749 - val_loss: 0.3679 - val_accuracy: 0.8634

Epoch 27/50

1874/1874 [==============================] - 172s 92ms/step - loss: 0.3088 -

accuracy: 0.8751 - val_loss: 0.3583 - val_accuracy: 0.8621

Epoch 28/50

1874/1874 [==============================] - 174s 93ms/step - loss: 0.3080 -

accuracy: 0.8734 - val_loss: 0.3858 - val_accuracy: 0.8545

Epoch 29/50

1874/1874 [==============================] - 173s 93ms/step - loss: 0.3034 -

accuracy: 0.8760 - val_loss: 0.3936 - val_accuracy: 0.8619

Epoch 30/50

1874/1874 [==============================] - 173s 92ms/step - loss: 0.3033 -

accuracy: 0.8774 - val_loss: 0.3592 - val_accuracy: 0.8723

Epoch 31/50

1874/1874 [==============================] - 174s 93ms/step - loss: 0.2994 -

accuracy: 0.8781 - val_loss: 0.3633 - val_accuracy: 0.8711

Epoch 32/50

1874/1874 [==============================] - 175s 93ms/step - loss: 0.2980 -

accuracy: 0.8788 - val_loss: 0.3720 - val_accuracy: 0.8671

Epoch 33/50

1874/1874 [==============================] - 173s 92ms/step - loss: 0.2964 -

accuracy: 0.8788 - val_loss: 0.4058 - val_accuracy: 0.8492

Epoch 34/50

1874/1874 [==============================] - 174s 93ms/step - loss: 0.2969 -

accuracy: 0.8791 - val_loss: 0.4165 - val_accuracy: 0.8563

Epoch 35/50

1874/1874 [==============================] - 174s 93ms/step - loss: 0.2932 -

accuracy: 0.8817 - val_loss: 0.3857 - val_accuracy: 0.8576

Epoch 36/50

1874/1874 [==============================] - 173s 92ms/step - loss: 0.2913 -

accuracy: 0.8829 - val_loss: 0.3862 - val_accuracy: 0.8619

Epoch 37/50

1874/1874 [==============================] - 173s 93ms/step - loss: 0.2884 -

accuracy: 0.8824 - val_loss: 0.4008 - val_accuracy: 0.8583

Epoch 38/50

47

1874/1874 [==============================] - 173s 93ms/step - loss: 0.2871 -

accuracy: 0.8830 - val_loss: 0.3981 - val_accuracy: 0.8632

Epoch 39/50

1874/1874 [==============================] - 173s 92ms/step - loss: 0.2866 -

accuracy: 0.8838 - val_loss: 0.3854 - val_accuracy: 0.8663

Epoch 40/50

1874/1874 [==============================] - 173s 92ms/step - loss: 0.2850 -

accuracy: 0.8841 - val_loss: 0.3913 - val_accuracy: 0.8630

Epoch 41/50

1874/1874 [==============================] - 172s 92ms/step - loss: 0.2840 -

accuracy: 0.8843 - val_loss: 0.3861 - val_accuracy: 0.8636

Epoch 42/50

1874/1874 [==============================] - 173s 92ms/step - loss: 0.2833 -

accuracy: 0.8844 - val_loss: 0.4546 - val_accuracy: 0.8402

Epoch 43/50

1874/1874 [==============================] - 173s 92ms/step - loss: 0.2789 -

accuracy: 0.8863 - val_loss: 0.4266 - val_accuracy: 0.8485

Epoch 44/50

1874/1874 [==============================] - 172s 92ms/step - loss: 0.2798 -

accuracy: 0.8867 - val_loss: 0.4292 - val_accuracy: 0.8541

Epoch 45/50

1874/1874 [==============================] - 173s 92ms/step - loss: 0.2780 -

accuracy: 0.8870 - val_loss: 0.4267 - val_accuracy: 0.8657

Epoch 46/50

1874/1874 [==============================] - 172s 92ms/step - loss: 0.2751 -

accuracy: 0.8875 - val_loss: 0.4183 - val_accuracy: 0.8659

Epoch 47/50

1874/1874 [==============================] - 173s 92ms/step - loss: 0.2741 -

accuracy: 0.8877 - val_loss: 0.4065 - val_accuracy: 0.8697

Epoch 48/50

1874/1874 [==============================] - 172s 92ms/step - loss: 0.2729 -

accuracy: 0.8891 - val_loss: 0.4392 - val_accuracy: 0.8347

Epoch 49/50

1874/1874 [==============================] - 175s 94ms/step - loss: 0.2720 -

accuracy: 0.8890 - val_loss: 0.4514 - val_accuracy: 0.8617

Epoch 50/50

1874/1874 [==============================] - 176s 94ms/step - loss: 0.2694 -

accuracy: 0.8903 - val_loss: 0.4567 - val_accuracy: 0.8605

8.10 MobileNet SDSS JPG Images - 50 Epochs

48

Total params: 5,854,403

Trainable params: 2,625,539

Non-trainable params: 3,228,864

Found 60000 images belonging to 3 classes.

Found 15000 images belonging to 3 classes.

20200703-12:35

Epoch 1/50

1875/1875 [==============================] - 1998s 1s/step - loss: 0.4280 -

accuracy: 0.8350 - val_loss: 0.3429 - val_accuracy: 0.8741

Epoch 2/50

1875/1875 [==============================] - 197s 105ms/step - loss: 0.3537 -

accuracy: 0.8656 - val_loss: 0.3361 - val_accuracy: 0.8758

Epoch 3/50

1875/1875 [==============================] - 190s 101ms/step - loss: 0.3331 -

accuracy: 0.8746 - val_loss: 0.3498 - val_accuracy: 0.8649

Epoch 4/50

49

1875/1875 [==============================] - 188s 100ms/step - loss: 0.3199 -

accuracy: 0.8803 - val_loss: 0.3148 - val_accuracy: 0.8845

Epoch 5/50

1875/1875 [==============================] - 183s 98ms/step - loss: 0.3063 -

accuracy: 0.8847 - val_loss: 0.3082 - val_accuracy: 0.8860

Epoch 6/50

1875/1875 [==============================] - 184s 98ms/step - loss: 0.2975 -

accuracy: 0.8881 - val_loss: 0.3188 - val_accuracy: 0.8780

Epoch 7/50

1875/1875 [==============================] - 184s 98ms/step - loss: 0.2880 -

accuracy: 0.8924 - val_loss: 0.3078 - val_accuracy: 0.8846

Epoch 8/50

1875/1875 [==============================] - 184s 98ms/step - loss: 0.2828 -

accuracy: 0.8955 - val_loss: 0.3119 - val_accuracy: 0.8855

Epoch 9/50

1875/1875 [==============================] - 184s 98ms/step - loss: 0.2741 -

accuracy: 0.8968 - val_loss: 0.3172 - val_accuracy: 0.8842

Epoch 10/50

1875/1875 [==============================] - 184s 98ms/step - loss: 0.2683 -

accuracy: 0.8988 - val_loss: 0.3101 - val_accuracy: 0.8891

Epoch 11/50

1875/1875 [==============================] - 189s 101ms/step - loss: 0.2602 -

accuracy: 0.9026 - val_loss: 0.3129 - val_accuracy: 0.8864

Epoch 12/50

1875/1875 [==============================] - 189s 101ms/step - loss: 0.2531 -

accuracy: 0.9055 - val_loss: 0.3170 - val_accuracy: 0.8849

Epoch 13/50

1875/1875 [==============================] - 193s 103ms/step - loss: 0.2498 -

accuracy: 0.9063 - val_loss: 0.3021 - val_accuracy: 0.8902

Epoch 14/50

1875/1875 [==============================] - 192s 102ms/step - loss: 0.2441 -

accuracy: 0.9073 - val_loss: 0.3213 - val_accuracy: 0.8885

Epoch 15/50

1875/1875 [==============================] - 191s 102ms/step - loss: 0.2371 -

accuracy: 0.9119 - val_loss: 0.3150 - val_accuracy: 0.8883

Epoch 16/50

1875/1875 [==============================] - 191s 102ms/step - loss: 0.2316 -

accuracy: 0.9146 - val_loss: 0.3149 - val_accuracy: 0.8899

Epoch 17/50

1875/1875 [==============================] - 192s 103ms/step - loss: 0.2248 -

accuracy: 0.9165 - val_loss: 0.3247 - val_accuracy: 0.8855

Epoch 18/50

1875/1875 [==============================] - 192s 102ms/step - loss: 0.2182 -

accuracy: 0.9184 - val_loss: 0.3637 - val_accuracy: 0.8795

Epoch 19/50

1875/1875 [==============================] - 192s 103ms/step - loss: 0.2142 -

accuracy: 0.9202 - val_loss: 0.3301 - val_accuracy: 0.8906

Epoch 20/50

1875/1875 [==============================] - 195s 104ms/step - loss: 0.2077 -

accuracy: 0.9227 - val_loss: 0.3949 - val_accuracy: 0.8863

Epoch 21/50

50

1875/1875 [==============================] - 196s 105ms/step - loss: 0.2026 -

accuracy: 0.9243 - val_loss: 0.3630 - val_accuracy: 0.8857

Epoch 22/50

1875/1875 [==============================] - 190s 101ms/step - loss: 0.1962 -

accuracy: 0.9270 - val_loss: 0.3981 - val_accuracy: 0.8783

Epoch 23/50

1875/1875 [==============================] - 193s 103ms/step - loss: 0.1946 -

accuracy: 0.9267 - val_loss: 0.3710 - val_accuracy: 0.8867

Epoch 24/50

1875/1875 [==============================] - 194s 104ms/step - loss: 0.1900 -

accuracy: 0.9291 - val_loss: 0.4065 - val_accuracy: 0.8764

Epoch 25/50

1875/1875 [==============================] - 194s 103ms/step - loss: 0.1817 -

accuracy: 0.9319 - val_loss: 0.3975 - val_accuracy: 0.8827

Epoch 26/50

1875/1875 [==============================] - 194s 103ms/step - loss: 0.1775 -

accuracy: 0.9348 - val_loss: 0.3904 - val_accuracy: 0.8819

Epoch 27/50

1875/1875 [==============================] - 193s 103ms/step - loss: 0.1746 -

accuracy: 0.9349 - val_loss: 0.4152 - val_accuracy: 0.8848

Epoch 28/50

1875/1875 [==============================] - 194s 104ms/step - loss: 0.1676 -

accuracy: 0.9371 - val_loss: 0.4369 - val_accuracy: 0.8839

Epoch 29/50

1875/1875 [==============================] - 194s 104ms/step - loss: 0.1664 -

accuracy: 0.9369 - val_loss: 0.4656 - val_accuracy: 0.8753

Epoch 30/50

1875/1875 [==============================] - 195s 104ms/step - loss: 0.1602 -

accuracy: 0.9397 - val_loss: 0.4868 - val_accuracy: 0.8801

Epoch 31/50

1875/1875 [==============================] - 194s 103ms/step - loss: 0.1534 -

accuracy: 0.9428 - val_loss: 0.4699 - val_accuracy: 0.8771

Epoch 32/50

1875/1875 [==============================] - 192s 102ms/step - loss: 0.1496 -

accuracy: 0.9437 - val_loss: 0.4728 - val_accuracy: 0.8862

Epoch 33/50

1875/1875 [==============================] - 191s 102ms/step - loss: 0.1484 -

accuracy: 0.9450 - val_loss: 0.4823 - val_accuracy: 0.8785

Epoch 34/50

1875/1875 [==============================] - 193s 103ms/step - loss: 0.1443 -

accuracy: 0.9446 - val_loss: 0.4790 - val_accuracy: 0.8827

Epoch 35/50

1875/1875 [==============================] - 193s 103ms/step - loss: 0.1391 -

accuracy: 0.9480 - val_loss: 0.4969 - val_accuracy: 0.8764

Epoch 36/50

1875/1875 [==============================] - 196s 105ms/step - loss: 0.1379 -

accuracy: 0.9483 - val_loss: 0.4924 - val_accuracy: 0.8807

Epoch 37/50

1875/1875 [==============================] - 197s 105ms/step - loss: 0.1339 -

accuracy: 0.9486 - val_loss: 0.5504 - val_accuracy: 0.8778

Epoch 38/50

51

1875/1875 [==============================] - 198s 106ms/step - loss: 0.1267 -

accuracy: 0.9528 - val_loss: 0.5283 - val_accuracy: 0.8788

Epoch 39/50

1875/1875 [==============================] - 197s 105ms/step - loss: 0.1266 -

accuracy: 0.9518 - val_loss: 0.5447 - val_accuracy: 0.8771

Epoch 40/50

1875/1875 [==============================] - 196s 105ms/step - loss: 0.1212 -

accuracy: 0.9544 - val_loss: 0.6066 - val_accuracy: 0.8754

Epoch 41/50

1875/1875 [==============================] - 187s 100ms/step - loss: 0.1217 -

accuracy: 0.9540 - val_loss: 0.5701 - val_accuracy: 0.8777

Epoch 42/50

1875/1875 [==============================] - 190s 101ms/step - loss: 0.1131 -

accuracy: 0.9566 - val_loss: 0.5961 - val_accuracy: 0.8744

Epoch 43/50

1875/1875 [==============================] - 186s 99ms/step - loss: 0.1136 -

accuracy: 0.9569 - val_loss: 0.6159 - val_accuracy: 0.8771

Epoch 44/50

1875/1875 [==============================] - 187s 100ms/step - loss: 0.1090 -

accuracy: 0.9589 - val_loss: 0.6672 - val_accuracy: 0.8711

Epoch 45/50

1875/1875 [==============================] - 186s 99ms/step - loss: 0.1058 -

accuracy: 0.9600 - val_loss: 0.7415 - val_accuracy: 0.8649

Epoch 46/50

1875/1875 [==============================] - 190s 101ms/step - loss: 0.1067 -

accuracy: 0.9599 - val_loss: 0.6303 - val_accuracy: 0.8791

Epoch 47/50

1875/1875 [==============================] - 192s 103ms/step - loss: 0.0998 -

accuracy: 0.9617 - val_loss: 0.6955 - val_accuracy: 0.8789

Epoch 48/50

1875/1875 [==============================] - 192s 103ms/step - loss: 0.1014 -

accuracy: 0.9620 - val_loss: 0.7429 - val_accuracy: 0.8701

Epoch 49/50

1875/1875 [==============================] - 188s 100ms/step - loss: 0.0973 -

accuracy: 0.9628 - val_loss: 0.8140 - val_accuracy: 0.8695

Epoch 50/50

1875/1875 [==============================] - 187s 100ms/step - loss: 0.0981 -

accuracy: 0.9630 - val_loss: 0.7039 - val_accuracy: 0.8707

20200703-15:45

52

9 ICT Files and purpose
This section lists the files which were submitted along with the configuration manual and

which are required to run the application. The purpose and manes of all files are below.

To process downloaded images FITS Images the following files are required:

 ProcessGalaxiesFITS.py

 ProcessquasarsFITS.py

 ProcessStartFITS.py

 These files use the working directory as set in the parameters section and crawl down

the folders as per the parameters set.

To download images from STScI use the following file

 GetImagesfromKepler.py

 This file takes an input.txt file which lists all the images required in the tab delimited

file with the format of RA DEC Classification, one per line.

To rename files from STScI after downloading

 RemaneFilesG.py for Galaxy folder

 RemaneFilesQ.py for the Quasar folder

 RemaneFilesS.py for the Star folder

To combine files to make RGB files

 RGBImages.py

Training for models - set working directory first

 Training_for_MobileNet.py

 Training_for_ResNet.py

 Training_for_VG16.py

 Training_for_Xception.py

Images Catalogue and URL are found in

 Skysaver_SQL4_6_2020_1_30_47 PM (version4).xls

From this file take the required URL’s and put in txt file.

For SDSS use “wget -I input.txt” syntax to get FITS files from site, where input.txt is a test

file with the url for the FITS files to be downloaded. FITS files range in size from 2.5MB to

3.5MB.

Bibliography
A, V., & K. Lenc, K. (2015). Matconvnet: Convolutional neural networksfor matlab.

Proceedings of the 23rd ACM international conferenceon Multimedia.

Azevedo, A. I. (2008). KDD, SEMMA and CRISP-DM: a parallel overview. IADIS

European Conf. Data Mining.

Azhar, K., Murtaza, F., Yousaf , H., & Habib, H. a. (2016). Computer vision based detection

and localization of potholes in asphalt pavement images. Vancouver: IEEE.

Ball, N., Brunner, R., Myers, A., & Tcheng, D. (2006). Robust Machine Learning Applied to

Astronomical Data Sets. I. Star‐Galaxy Classification of the Sloan Digital Sky Survey DR3

Using Decision Trees. The Astrophysical Journal, 605(1), 497-509.

53

Barik, D., & Mondal, M. (2010). Object Identification For Computer Vision using Image

Segmentation. IEEE Xplore.

Bhattacharyya, D. K. (2006). Research Methodology (2nd ed.). New Delhi: Excel Books.

Brownlee, J. (2019). A Gentle Introduction to the Rectified Linear Unit (ReLU). Retrieved 06

2020, from https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-

learning-neural-networks/

Chapman, P. C. (2000). CRISP-DM 1.0 Step-by-step data mining guide. SPSS.

Clark-Carter, D. (2010). The Complete Student's Comapnion (3 ed.). Hove, East Susses:

Psychology Press.

Diederik P. Kingma, J. B. (2015). Adam: A Method for Stochastic Optimization. San Diego:

Published as a conference paper at the 3rd International Conference for Learning

Representations.

du Buisson, L., Sivanandam, N., Bassett, B. A., & Smith, M. (2015). Machine learning

classification of SDSS transient survey images. Monthly Notices of the Royal Astronomical

Society, 454(2), 2026-2038.

Eisenstein D.J., W. D. (2011). SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF

THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY

SYSTEMS. The Astronomical Journal, 142(3).

Flemsteed, J. (1725). Catalogus Britannicus. London.

González, R. E., Muñoz, P. M., & Hernández, C. (2018). Galaxy detection and identification

using deep learning and data augmentation. Astronomy and Computing, 25, 103-109.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Back-Propagation and Other

Differentiation Algorithms. MIT Press.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning (Adaptive Computation

and Machine Learning series). Cambridge, Ma: The MIT Press.

Graff, P., Feroz, M., Hobson, M., & Lasenby, A. (2014). SkyNet: an efficient and robust

neural network training tool for machine learning in astronomy. Monthly Notices of the Royal

Astronomical Society, 441(2), 1741-1759.

He, K. Z. (2016). Deep residual learning for image recognition. IEEE.

Hubel, D., & Wiesel, T. (1962). Receptive fields, binocular interaction and functional

architecture in the cat’s visual cortex. The Journal of physiology, 160(1), 106-154.

Jansky, C. M. (1958). The Discovery and Identification by Karl Guthe Jansky of

Electromagnetic Radiation of Extraterrestrial Origin in the Radio Spectrum. Proceedings of

the IRE, 46(1), 13 - 15.

Kheirdastan, S., & Bazarghan, M. (2016). SDSS-DR12 bulk stellar spectral classification:

Artificial neural networks approach. Astrophysics and Space Science, 361(9), 304.

Kingma, D., & Lei Ba, J. (2015). ADAM: A METHOD FOR STOCHASTIC

OPTIMIZATION. San Diego: International Conference on Learning Representations.

Kremer, J., Stensbo-Smidt, K., Gieseke, F., Pedersen, K., & Igel, C. (2017). Big Universe,

Big Data: Machine Learning and Image Analysis for Astronomy. IEEE Intelligent Systems,

32(2), 16-22.

Large Synoptic Survey Telescope. (n.d.). Legacy Survey of Space and Time. Retrieved March

03, 2020, from https://www.lsst.org/

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel,

L. D. (1989). Backpropagation Applied to Handwritten Zip Code Recognition. Neural

Computation, 1(4), 541–551.

Li, X., & Shi, Y. (2018). Computer Vision Imaging Based on Artificial Intelligence. IEEE

Xplore.

Lintott, C. J., Schawinski, K., Slosar, A., Land, L., & Steven Bamford, D. T. (2008). Galaxy

Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky

Survey. Monthly Notices of the Royal Astronomical Society, 389(3), 1179-1189.

54

M. Abd Elfattah, N. E.-S. (2014). Galaxies image classification using empirical mode

decomposition and machine learning techniques. Ciaro: 2014.

Ma, Y., Dang, J., & Li, W. (2014). Research on deep neural network's hidden layers in

phoneme recognition. Singapore: IEEE.

Martín Abadi, P. B. (2016, Nov). TensorFlow: A System for Large-Scale Machine Learning.

12th {USENIX} Symposium on Operating Systems Design and Implementation, pp. 265--283.

Mattmann, C., & Zhang, Z. (2019). Deep Facial Recognition using Tensorflow. Denvor:

IEEE.

Murray, R. (2006). How to write a Thesis (2nd ed.). Maidenhead: Open UIniversity Press.

Nkwentsha, X., Hounkanrin, A., & Nicolls, F. (2020). Automatic classification of medical X-

ray images with convolutional neural networks. IEEE.

P.H.Barchiab, Carvalhocd, R., R.R.Rosaa, R.A.Sauttera, M.Soares-Santosb,

B.A.D.Marquese, . . . T.C.Mourag. (2019). Machine and Deep Learning applied to galaxy

morphology - A comparative study. Astronomy and Computing, 30(100334).

Pasquet-Itam, J., & Pasquet, J. (2018). Deep learning approach for classifying, detecting and

predicting photometric redshifts of quasars in the Sloan Digital Sky Survey stripe 82.

Astronomy & Astrophysics, 611, A97.

Pelka O, N. F. (2018, 11 12). Annotation of enhanced radiographs for medical image retrieval

with deep convolutional neural networks. PLoS One.

Philip Graff, F. F. (2014). SkyNet: an efficient and robust neural network training tool for

machine learning in astronomy. Monthly Notices of the Royal Astronomical Society, 441(2),

1741–1759.

Post Grad Programme in Data Analytics. (2019). Intro to Data Mining - slide 25. Dublin:

National College of Ireland.

Reber, G. &. (1947). Radio-frequency investigations of astronomical interest. The

Observatory, 67, 15-26.

Romina Ahumada, C. A.-R. (2019, Dec 19). The Sixteenth Data Release of the Sloan Digital

Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS

Spectra. Retrieved from Cornell University: https://arxiv.org/abs/1912.02905

Ruder, S. (2016). An overview of gradient descent optimization algorithms. NUI Galway,

Insight Centre for Data Analytics. Galway: Aylien Ltd, Dublin. Retrieved from

https://arxiv.org/pdf/1609.04747.pdf

Simard, P. Y., Steinkraus, D., & Platt, J. C. (2013). Best Practices for Convolutional Neural

Networks. Redmond: Microsoft Research.

Szegedy, C. L. (2016). Going deeper with convolutions. In: The IEEE Conference on

Computer Vision and Pattern Recognition. IEEE.

US Department of Energy Office of Science. (2018). The Dark Energy Spectroscopic

Instrument (DESI). Retrieved March 02, 2020, from https://www.desi.lbl.gov/

Usama Fayyad, Gregory , P.-S., & Padhraic , S. (1996). The KDD process for extracting

useful knowledge from volumes of data. Communications of the ACM(11), 27-34.

Wikepedia. (n.d.). Softmax function. Retrieved 06 2020, from

https://en.wikipedia.org/wiki/Softmax_function

Wray, J., & Gunn, J. (2008). A New Technique for Galaxy Photometric Redshifts in the

Sloan Digital Sky Survey. The Astrophysical Journal, 678(1), 144-153.

Yang, X., Mo, H., Bosch, F., Pasquali, A., Li, C., & Barden, M. (2007). Galaxy Groups in the

SDSS DR4. I. The Catalog and Basic Properties. The Astrophysical Journal, 671(1), 153-

170.

Yongheng Zhao, Y. Z. (2008). Comparison of decision tree methods. Advances in Space

Research, 41(12), 1955-1959.

55

Zare, M. R., Mueen, A., Awedh, M., & Seng, W. C. (2013, July 5). Automatic classification

of medical X-ray images: hybrid generative-discriminative approach. The Institution of

Engineering and Technology, pp. 523-532.

