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Transiting Planet Search in the Kepler Pipeline Using
Automated Machine Learning

Martin Mohan
X18191339

Abstract

Over 2,300 confirmed planets have been found outside the solar system by the
Kepler mission and although data collection finished in May 2013 data cleaning
and updating has continued and new exoplanets are still being discovered using
this data.
This paper applied the automated machine learning tool TPOT to the most recent
Kepler data release DR25. Models were trained using the K epler Object of I nterest
(KOI) table which contained 8,198 cases. These models were then used to search
the T ransit C rossing Event table (TCE), containing 34,032 cases for exoplanets.
Using models generated by TPOT nearly one quarter of CANDIDATES from the
KOI table were predicted to be confirmed planets and several new Planetary Can-
didates (PCs) were uncovered from the TCE table. These PCs were ordered by
probability and can be used to prioritize planets for follow-up investigations.

1 Introduction

The first exoplanet discovered is considered to be 51 Pegasi b Mayor and Queloz (1995)
which was detected using Radial Velocity see Figure 1. For this discovery Michel Mayor
and Didier Queloz, shared the 2019 Nobel Prize in Physics. Since this discovery over
4,000 exoplanets have been discovered 1, of which over 2.300 are attributed to Kepler.
The primary Kepler mission was operational from 2 May 2009 until 11 May 2013 Kun-
imoto et al. (2020). The spacecraft stared at 200,000 stars in a 100 sq. degree patch of
sky near Cygnus in order to measure the brightness variations using transit method. In
this method exoplanet detection occurs when a planet passes in front of its sun causing
a slight dimming Figure 1.

Initially PCs were found manually by astronomers using the series of steps illustrated
in the Kepler Pipeline 2.1.1. As the list of planets grew, the focus of the community
shifted toward population-level studies and astronomers tried to produce a more uniform
exoplanet catalogue to facilitate this Shallue and Vanderburg (2018). The first machine
learning was performed by McCauliff et al. (2015) who compared three different methods
and found Random Forest to be the best. Following this several methods were applied
which were a mixture of expert systems and machine learning (Coughlin (2017);Kunimoto
et al. (2020);Shallue and Vanderburg (2018)).

1https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html accessed 30 March
2020
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(a) Transit : Measures dimming effect caused
when planet passes in front of it’s sun
Accounts for 76.2% off all planets detected

(b) Radial Velocity: Measures wobble of the
planet’s sun caused by gravitational pull.
Accounts for 19.3% off all planets detected

Figure 1: Kepler has discovered over half of all known planets using Transit method

Humans have been replaced by a combination of machine learning, expert systems
and human vetting. This report examined four different methods which have emerged
to automate exoplanet detection , the robovetter 2.1.1, Kunimoto 2.1.2, autovetter 2.2.1
and Astronet 2.2.2. The report expanded on the autovetter 2.2.1 but the most recent
data (DR25) was used and automated machine learning package TPOT Olson and Moore
(2019).

1.1 Motivation and Background

The Kepler mission was the most prolific discoverer of exoplanets. Various methods
have been applied to refine the process of exoplanet detection as described in section
2. Machine learning has been tried with older versions of Kepler data 2.2.1 and on
smaller subsets of the data 2.2.2. This report uses automated machine learning methods
to improve PC detection on a large section of the most recent Kepler data which has
already been identified by NASA as being the most promising candidates. The accurate
qualification of PCs allow researchers to prioritize follow-up investigations.

1.2 Project Requirement Specifications

This research contributed to the astronomical community by determining an effective
machine learning method to find PCs and prioritize these PCs in order of probability.
The latest tools and the most recent data from the Kepler mission were used. The
research question and objectives are as follows . . .

1.2.1 Research Question

RQ: Can automated machine learning be used to improve exoplanet prediction using the
latest Kepler data

Sub-RQ: How well would this methodology work on other transit missions such as K2
and TESS
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1.3 Research Project Objectives

The research project objectives listed in Table 1 are specified as a solution to aforemen-
tioned research question.

Table 1: List of research objectives

Description
1 Merge TCE and KOI tables from NASA to create a single table containing

multiple IV’s and a single DV
2 Cleanup table checking for multicollinearity and outliers in order to find the

best table for predicting exoplanets
3 Use the TPOT automated machine learning tool to find and tune

the best models. Some of the models generated by TPOT are
. . . DecisionTreeClassifier, RandomForestClassifier, GradientBoostingClassi-
fier, LogisticRegression, BernoulliNB, KNeighborsClassifier and GaussianNB

4 Evaluate the performance of the models generated and select the best.
5 Use the best models to recover new planets from the TCE table. Order new

and previous candidates by probability of being a confirmed planet.
6 Discussion of application to similar missions

1.4 Research Contribution

This paper evaluated machine learning models for identifying exoplanets using the latest
Kepler data and is based on the gaps shown in the literary review 2.5. The research is a
follow up of the paper McCauliff et al. (2015) 2.2.1 on the classification of Kepler transit
candidates and the contribution to research is. . .

• Multiple models were generated by TPOT of which four were investigated further,
which were based on Gradient Boost, Random Forest, Linear Regression and De-
cision Trees.

• Multiple new PCs were uncovered in the Kepler Data.

• A list of all PCs ordered by probability was created.

• An automated pipeline was produced which could also be applied to other projects.

In order to answer the proposed research question, the project followed the SEMMA
methodology. The rest of this technical report is framed as follows:. . .
Chapter 2 describes related work on machine learning and expert systems for exoplanet
detection from 2015 to 2020. The results of the work are compared and gaps identified.
Chapter 3 describes the SEMMA methodology used and provides a detailed design for
detecting exoplanets. Chapter 4 describes the implementation of the design. Chapter 5
evaluates the performance of models retrieved by TPOT and describes the results when
these models were applied to TCE data. Chapter 6 discusses the results obtained. Finally
chapter 7 presents conclusion and talks about future work.

3



2 Related Work on Exoplanet Detection Using the

Transit Method (2015-2020)

The primary Kepler mission was retired in May 2013 but over the years the Kepler data
has been revised and the planetary catalogues subsequently updated but these exoplanet
catalogues are never totally correct as not every planet is found and not every planet is
a true planet Bryson et al. (2020). Even following release of all four years of Kepler data
more planets have been uncovered by independent authors such as Shallue and Vander-
burg (2018) and Kunimoto et al. (2020).
Two types of system are used to derive the list of PCs from Kepler’s 200,000 light curves.
Expert systems 2.1 are rule based systems where the full knowledge of the expert is
digitized, and is used in the decision making while machine learning 2.2 are based on
statistical modelling of data.
After reviewing the main Kepler Pipeline 2.1.1 the review will also investigate other auto-
mated solutions which have been used successfully to discover exoplanets using Kepler
data 2.1.2, 2.2.2 and will look at solutions produced for other transit missions 2.3. An
attempt was made to compare the results 2.4 and finally sections 2.5 and 2.6 explained
the gaps which this paper will attempt to address.

2.1 Expert Systems Used for Transit Detection on Kepler

The Kepler pipeline is an expert system. The pipeline is a series of modular software
linked together where each module performs a distinct task as illustrated in Figure 2.
A pipeline approach has the advantage of allowing users to replace or upgrade sections
independently of the other sections. Most exoplanets were discovered using the Kepler
pipeline 2.1.1 although more recently alternative pipelines have also uncovered exoplanets
using this data 2.1.2.

2.1.1 Kepler Pipeline (NASA)

At the start of Kepler pipeline shown in Figure 2 features were derived from the light
curves using a wavelet-based algorithm (TPS) Jenkins et al. (2010) followed by Data
Validation DV Wu et al. (2010). This transformed light curves into a series of tables. Di-
mensionality reduction was then performed using Locality Preserving Projections (LPP)
and K-NN (He and Niyogi (2003); Thompson et al. (2015)).
After light curves are identified the pipeline used two automated methods to detect
exoplanets the autovetter (‘machine learning’ approach) 2.2.1 and the robovetter (‘ex-
pert system’ approach) 2.1.1. The autovetter’s decision rules are ‘learned’ autonomously
from the data, while the robovetter operates with explicitly constructed decision rules
Catanzarite (2015). Both systems evolved in parallel and learnt from each other. For
example, early robovetter results indicated that the autovetter was initially misclassifying
some TCEs with secondary eclipses as planet candidates; by adding new attributes they
improved the autovetter’s ability to correctly classify secondary eclipses .In the other
direction, autovetter results showed that the robovetter was too strongly rejecting can-
didates, which allowed the robovetter to be tuned to mitigate that problem Catanzarite
(2015)
Kepler’s penultimate Data Release 24 (DR24) produced two different exoplanet cata-
logues one based on the autovetter Catanzarite (2015) and one on the robovetter which
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TCE (34,032)LC ( 200,000) KOI (8,054)

STATS

Transit e.g. Radial Velocity

T1 T2 T3 T4 T5a

T5b

Previously
Known
KOI’s

Input Output Treatment a

Light Curve
(LC)

- T1: wavelet-based, adaptive matched filter soft-
ware Transiting Planet Search (TPS) Jenkins
et al. (2010)

- - T2: Data validation (DV) Wu et al. (2010)
- Transit

Cross-
ing Event
(TCE)

T3: LPP and K-NN (He and Niyogi (2003);Jen-
kins et al. (2015))

Transit
Cross-
ing Event
(TCE)

Kepler
Object of
Interest
(KOI)

T4: Veto to exclude Non Transiting phenomena
(e.g. instrument noise) Thompson et al. (2018).

Kepler Ob-
ject of In-
terest (KOI)

Planet Can-
didate False
Positive

T5a: Veto to exclude signals from eclipsing bin-
aries or other more subtle machine noise Jenkins
et al. (2015).

Kepler Ob-
ject of In-
terest (KOI)

Planet Can-
didate False
Positive

T5b: follow-up observation Mullally et al. (2018)

Figure 2: The Kepler pipeline and associated Treatments
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differed slightly Coughlin et al. (2016). The final data release DR25 used the robovetter
but not the autovetter.

The Kepler robovetter uses an expert system technique Coughlin et al. (2016) which
operates with explicitly constructed decision rules Catanzarite (2015). The robovetter is
used to label each KOI as a Planetary Candidate (PC) or a False Positive (FP) and False
Positives are further divided into four categories. . .

• Not Transit-Like

• Significant Secondary

• Centroid Offset

• Ephemeris Match 2

It also produces a score ranging from 0.0 to 1.0 that indicates the robovetter’s dispos-
ition confidence, where 1.0 indicates strong confidence in PC, and 0.0 indicates strong
confidence in FP. Robovetter is available on github 3

2.1.2 Kepler Pipeline (Kunimoto)

A recent paper announced the discovery of 17 more planets using Kepler data Kunimoto
et al. (2020) and had a 98.8% recovery rate of already confirmed planets. They did this
by using their own independent pipeline and lowering the snr ratio. The main difference
between this and Kepler’s is their use of a Box-Least Squares (BLS) algorithm in contrast
to the wavelet-based algorithm at the level of light curves. Their approach is ”largely
inspired by the automated DR25 robovetter” 2.1.1 but with their own modifications. 4.

2.2 Machine Learning Solutions for Transit Detection

This section will look at the autovetter 2.2.1 which was the first attempt to use machine
learning on Kepler data. It will also examine an alternative machine learning method
called Astronet 2.2.2 and other methods applied to ground based transit detection.

2.2.1 Kepler Machine Learning - NASA autovetter

Autovetter McCauliff et al. (2015) was a machine learning method adopted by the Kepler
pipeline which was complementary to the robovetter 2.1.1. The data used for training
was taken from tables produced by the Kepler pipeline Figure 2 5. Different methods
were used to select the attributes including removing several highly correlated attributes.
The final training set Catanzarite (2015) labelled the data as follows. . .

• Planetary Candidate

2The ephereimis is the projected path of a celestial object
3https://github.com/nasa/kepler-robovetter/blob/master/README.md
4https://github.com/mkunimoto/Transit-Search-and-Vetting
5McCauliff et al. (2015) did not use the publicly available TCE table. His data contained 237 attributes

based on the wavelet matched filter used by TPS, transit model fitting, difference image centroids, and
some additional tests
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• Non Transiting Phenomena (NTP) - NTP could be instrument noise = False Pos-
itive

• Astrophysical False Positives (AFP) - AFP could be a non-transiting binary star =
False Positive

Three machine learning methods were tried on this Data Release DR24, Random Forest,
Näıve Bayes and K-NN. The results are shown in Table 2.

Critique When choosing the autovetter only three techniques were compared (one of
which was inconclusive) and although the autovetter was used on the DR24 exoplanet
catalogue investigations showed that it was not used on the DR25 catalogue which is
more complete 2.1.1. Although the performance was measured a list of prioritzed PCs
was not provided. This report will address these gaps 2.5.

2.2.2 Kepler Machine Learning - Astronet

Astronet Shallue and Vanderburg (2018) used deep learning to detect exoplanets. Convo-
lutional Neural Networks CNN were used to create training data directly using the Kepler
light curves. After excluding exoplanets already discovered and signals which may be due
to instrument noise or other scenarios they concluded statistically they had discovered 2
new exoplanets.Open source Astronet software was written on top of Tensorflow and is
available on github. 6.
Comparison of Astronet against autovetter 2.2.1 was not possible directly because it used
a different pipeline. Comparison of Astronet against the robovetter was tried but it was
necessary to make several assumptions.

Critique Shallue only searched 670 multi-planet systems, which are a rich source of
planets.

2.3 Other Transit Missions

The Astronet software 2.2.2 was modified and used in two other missions. After a mech-
anical failure on Kepler the satellite was re-configured and renamed the K2 mission
Howell et al. (2014). The Astronet-K2 software reported 98% accuracy Dattilo et al.
(2019) and uncovered two previously undiscovered exoplanets. The Astronet software
was also applied to the TESS Glidden (2019) satellite mission and an accuracy of 97.8%
was reported Yu et al. (2019).
The ground based Wide Angle Search for Planets (WASP) has found 160 exoplanets
using the transit method Schanche et al. (2019). Many machine learning methods were
tested including LinearSVC, SVC, Logistic Regression, KNN, Random Forest and CNN.
The data was not of good quality but they found best results were achieved using a com-
bination of different methods including Random Forest (RF) and Convolutional Neural
Networks (CNNs). Although CNN seemed to perform best alone, it did miss several
planets that the RF was able to recover and occasionally let in false signals that were
caught by RF or SVC, highlighting the importance of combined methods.

6https://github.com/google-research/exoplanet-ml/tree/master/exoplanet-ml/astronet
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2.4 Kepler Data Processing Comparison

The results reported in literature are shown in Table 2. The measurements are explained
in the caption . . .

Table 2:
AUC Area Under Curve
Accuracy=1-Error rate
Recovery The number of confirmed planets recovered.

AUC Accuracy Recovery Method(s) Notes
0.9991 0.9415 - Random

Forest
(autovet-
ter)

”We are able to achieve an overall
error rate of 5.85% and an error rate
for classifying exoplanets candidates
of 2.81%” McCauliff et al. (2015) .

0.9894 0.9727 - Näıve
Bayes
(autovet-
ter)

”The resulting error rates for K-
NN and naive Bayes are 3.15% and
2.73%, respectively” McCauliff et al.
(2015)

No
rank

0.9685 - K-NN
(k=1)
(autovet-
ter)

”optimal k (k = 1) does not produce
a ranking of predictions” McCauliff
et al. (2015)

- - 98.9% Kunimoto
Pipeline

Kunimoto et al. (2020) 2.1.2

0.974 - - Robovetter The robovetter is 98% reliable, al-
though for signals with low SNR ra-
tion this falls to 50.6%. Thompson
et al. (2018)

0.988 0.960 - Astronet Shallue and Vanderburg (2018) 2.2.2

2.5 Identified Gaps in Exoplanet Detection Techniques

All Kepler data originates from the same raw light curves but all the papers describe
different processing methods applied on different parts of the Kepler pipeline. A table of
results from previous papers was created Table 2 but comparison is difficult due to the
aforementioned problems.
There are also disputes about accuracy. The super-earth Kepler-452b was originally
confirmed with an accuracy of 99.87% Jenkins et al. (2015) but a subsequent paper
disputed the discovery as they calculated the most optimistic probability at only 92%
Mullally et al. (2018).
The first paper on machine learning McCauliff et al. (2015) was based on DR24 data
and was used to create the NASA autovetter 2.2.1 but this has since been superseded by
DR25. DR24 produced 18,407 TCE’s and DR25 produced 34,032 TCE’s and corrected
many mistakes such as misclassification of PCs Seader et al. (2015). The original work
done by McCauliff et al. (2015) only compared 3 methods (one of which was inconclusive)
on the older DR24 data and did not order PCs by probability. The other machine learning
system in section 2.2.2 only looked at 670 systems using the CNN method which works
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directly on the light curves. The other two Kepler systems described in sections 2.1.1
and 2.1.2 are expert systems rather than machine learning systems. A machine learning
evaluation of the latest kepler data is missing.

2.6 Conclusion

Several techniques have been used to detect exoplanets although comparison between
techniques is difficult due to differences in the way Kepler data was processed. Independ-
ent researchers have discovered new planets in the most recent Kepler data using deep
learning Shallue and Vanderburg (2018) and expert systems Kunimoto et al. (2020) but
there has been no investigation using automated machine learning on the most recent
TCE data which contains 34,032 TCE’s. A methodology to search for planets using
automated machine learning is described in the next section 3.

3 Methodology

3.1 Introduction

A pipeline approach is used in the this project based on the SEMMA approach see
Figure 3.

Sample Explore Modify Model Assess

Outliers
Correlation. . .

Model Tune
RF(ntree,mtry). . .

Figure 3: SEMMA (Sample,Explore,Modify,Model,Assess)
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3.2 Technical Design

Detailed design is described in Figure 4. It closely follows the SEMMA methodology
described in the previous section 3.1 as does the implementation described in the next
section 4.

ACCURACY

AUC

ROC

RECOVERY

Assess

Model
Modify (TK id)

Outliers
Correlation
. . .

Explore (TK)

KOI

TCE

Sample

T1 T2 T3 T4www

Input Output Treatment a

TCE.csv7

KOI.csv8

TK.csv T1: The TCE and KOI tables were downloaded
from the NASA website. They were then merged
and pre-processed to create a single table TK.csv
containing multiple IV’s and one DV.

TK.csv TK id.csv T2: After exploration TK.csv was modified by
removing correlation or outliers. These modific-
ations were identified using a unique id.

TK id.csv TK id.py T3: The file TK id was input to the TPOT soft-
ware Randal S. Olson and Jason H. Moore (2018)
which performs feature selection and tuning in
order to provide a python program with the best
prediction model.

TK id.py Performance
results

T4: The models created by TPOT were evalu-
ated against holdout data for Precision, Accur-
acy and AUC. They were also tested for overfit-
ting.

TK id.py Recovery
results

T5: The best models were run against the ori-
ginal TCE file to check if any new exoplanets
could be found

a Treatment refers to programs which modify or evaluate the data. T1 ,T2 ,T3 ,T4,T5

Figure 4: Treatment pipeline: Each T reatment has a defined input and output which
is usually a csv file
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4 Implementation

The pipeline design in Figure 4 was implemented and CSV files were used if possible to
store data at each stage of the pipeline allowing the use of standard packages such as
IBM-SPSS,Python and R.

4.1 Sample

Two csv files were downloaded from the NASA exoplanet archive: TCE.csv 7 and
KOI.csv 8. After downloading and exploration 4.2 some initial treatment was performed
using a python program Treat1.py see Figure 4 to produce a single csv file TK.csv con-
taining multiple IVs and one DV.
The initial treatment consisted of removing obsolete columns, replacing error values with
signal to noise (SNR) and the small amount of missing entries were imputed using ’most
frequent’ method. In addition nine cases marked by the tce rogue flag were also re-
moved.9.

4.2 Explore

The table generated in section 4.1 called TK.csv consisted of 126 IV’s and 8020 cases
consisting of continuous and categorical values. The value koi disposition which indicated
the status of the exoplanet was used as the DV see Table 3

Table 3: Distribution of koi disposition (The Dependent Variable (DV))

koi disposition Number of Cases
FALSE POSITIVE 3963
CONFIRMED 2286
CANDIDATE 1771

4.3 Modify

4.3.1 Missing values

A small amount of missing values were found. These were imputed using ”most frequent”
method using the program Treat1 see Figure 4.

4.3.2 Multicollinearity

Multicorrelation between independent variables (IVs) is not a good idea because they are
redundant and increase the size of error terms Barbara G. Tabachnick and Linda S. Fidell
(2014). Previous reports found a large number of IV’s with correlations were near unity
McCauliff et al. (2015). High mulitcollinearity among IV’s was reduced by iteratively

7 Threshold crossing event (TCE) table: https://exoplanetarchive.ipac.caltech.edu/cgi-bin/
TblView/nph-tblView?app=ExoTbls&config=tce last accessed 24/07/2020

8 Kepler Object of interest (KOI) Data: https://exoplanetarchive.ipac.caltech.edu/cgi-bin/
TblView/nph-tblView?app=ExoTbls&config=koiast accessed 09/05/2020

9tce rogue flag indicates rogue entries which should have been removed
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removing IV’s with Variance Inflation Factor (VIF) greater than 10 which reduced the
number of IV’s from 122 to 103 see Figure 5.
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Figure 5: Mulitcorrelation before and after removing IVs with VIF>10

4.3.3 Outliers

The outliers were capped using 3*(Inter Quartile Range) and data treated in this way
was identified by adding the id ” cap2”. The results are shown in Table 4 and the effects
on accuracy were inconclusive.

4.4 Model

Automated machine learning packages automatically choose the best algorithm by train-
ing and tuning data and then measuring the performance. It also performs feature se-
lection as shown in Figure 6. These packages can match or improve upon expert human
performance Waring et al. (2020). Benchmarking had identified auto-sklearn and TPOT
10 as the most promising automated machine learning packages Balaji and Allen (2018).
After download and evaluation TPOT was chosen as it was possible to export a model
to code allowing integration in the software pipeline. In addition auto-sklearn was found
to suffer from some bugs and dependency issues, although a pipeline using auto-sklearn
could be investigated in future.

TPOT uses 10-fold cross-validation when validating the data but before it was applied
the data was split into 90% train and 10% test data, which was mainly used to test for
overfitting.
Pipelines using Gradient Boost (GB) and Random Forest (RF) were selected as the best
models by TPOT using the default configuration but both were found to be overfitted.
Different configurations of TPOT were tried but many were either overfitted or were too
imprecise. The best models were produced using the ”TPOT light” configuration which
selected pipelines using Logistic Regression (LR) and Decision Tree (DT) as the best
models.
TPOT models were applied at each stage of data cleaning and a naming convention
was applied to distinguish which models had been treated for multicorrelation ( vif) or

10https://epistasislab.github.io/tpot/
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Figure 6: Automated Machine Learning

outliers ( cap2). These results were ordered by precision and are shown in Table 4. The
models highlighted GB vif, RF vif, LR and DT were chosen for further assessment see
section 5.

Table 4: List of models selected by TPOT in order of precision. LR and DT models had
the highest precison without being overfitted.
Name ( vif=Treated for multi-correlation 4.3.2), ( cap2=outliers capped 4.3.3)

Name Precision
CON-
FIRMED

Accuracy Python sklearn model

GB vif cap2 0.835 0.859 sklearn.ensemble.GradientBoostingClassifier
GB vif 0.830 0.859 sklearn.ensemble.GradientBoostingClassifier
RF vif 0.817 0.855 sklearn.ensemble.RandomForestClassifier
GB 0.816 0.855 sklearn.ensemble.GradientBoostingClassifier
RF vif cap2 0.811 0.859 sklearn.ensemble.RandomForestClassifier
RF 0.806 0.855 sklearn.ensemble.RandomForestClassifier
LR 0.804 0.85 sklearn.linear model.LogisticRegression
DT 0.793 0.844 sklearn.tree.DecisionTreeClassifier
LR vif cap2 0.791 0.834 sklearn.linear model.LogisticRegression
DT vif 0.769 0.809 sklearn.tree.DecisionTreeClassifier
BernoulliNB 0.441 0.555 sklearn.naive bayes.BernoulliNB
KNeighbors
Classifier

0.416 0.522 sklearn.neighbors.KNeighborsClassifier

GaussianNB 0.348 0.409 sklearn.naive bayes.GaussianNB

4.5 Conclusion

This implementation section looked at Sample, Explore, Modify and Model from the
SEMMA model. All the code is on githhub 11 .The next section 5 looks at Assessment
of the data.

11https://github.com/martinmohan9/statkep
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5 Assess

The four best models selected by TPOT (RF vif, GB vif, LR and DT) in section 4.4 were
assessed. The performance results are presented in section 5.1. The models were then
applied to recover planets and the results are in section 5.2. These are then discussed in
section 6.

5.1 Performance Evaluation

Random Forest and Gradient Boost were selected by TPOT using default setting and
showed similar performance. Running the model against the training data showed that
both were overfitted although the accuracy was still good see section 5.1.1.
Logistic Regression and Decision Tree classifiers were the models chosen using ”TPOT
light” which forces the selection of simple and fast-running pipelines and neither were
overfitted see section 5.1.2.

5.1.1 Performance of Random Forest(RF vif) and Gradient Boost (GB vif)

The RF vif performance results are shown in Figure 7. For RF vif 100% recovery was
obtained with training data indicating overfitting. GB vif results were very similar and
are in the accompanying configuration manual.
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Figure 7: Random Forest performance (RF vif):
Top Row: ROC Overfit test using 90% training data .
Bottom row: ROC using 10% test data
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5.1.2 Performance of Logistic Regression(LR) and Decision Tree (DT)

LR and DT had very similar results. LR results are shown in Figure 8 and DT results
are in the accompanying Configuration Manual.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate or (1 - Specificity)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
or

 (S
en

sit
iv

ity
)

Receiver Operating Characteristic

AUC: CONFIRMED vs REST (area = 0.97)
AUC: CANDIDATE vs REST (area = 0.91)
AUC: FALSE POSITIVE vs REST (area = 0.98)

CANDIDATE CONFIRMED FALSE POSITIVE
Predicted labels

CA
ND

ID
AT

E
CO

NF
IR

M
ED

FA
LS

E 
PO

SI
TI

VE
Tr

ue
 la

be
ls

977 366 258

161 1852 32

121 38 3413

Confusion Matrix

500

1000

1500

2000

2500

3000

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate or (1 - Specificity)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
or

 (S
en

sit
iv

ity
)

Receiver Operating Characteristic

AUC: CONFIRMED vs REST (area = 0.96)
AUC: CANDIDATE vs REST (area = 0.87)
AUC: FALSE POSITIVE vs REST (area = 0.97)

CANDIDATE CONFIRMED FALSE POSITIVE
Predicted labels

CA
ND

ID
AT

E
CO

NF
IR

M
ED

FA
LS

E 
PO

SI
TI

VE
Tr

ue
 la

be
ls

93 52 25

19 218 4

19 1 371

Confusion Matrix

50

100

150

200

250

300

350

f1-score precision recall support
CANDIDATE 0.618 0.71 0.547 170.0
CONFIRMED 0.852 0.804 0.905 241.0
FALSE POS-
ITIVE

0.938 0.927 0.949 391.0

accuracy 0.85 0.85 0.85 0.85
macro avg 0.803 0.814 0.8 802.0
weighted avg 0.844 0.844 0.85 802.0

Figure 8: Logistic Regression performance (LR):
Top Row: ROC Overfit test using 90% training data.
Middle row: ROC using 10% test data.
Bottom Row: Metrics for 10% test data
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5.2 Recovery

The models evaluated previously in sections 5.1.1 and 5.1.2 were run against the original
TCE file to find how many confirmed planets could be predicted and the results are shown
in sections 5.2.1 and 5.2.2. The planets predicted with highest probability (which were
previously not CONFIRMED) were then extracted and ordered in a table in section 5.2.3

5.2.1 Recovery with Random Forest(RF vif) and Gradient Boost (GB vif)

The RF vif and GB vif models were run against the TCE tables and used to predict
CONFIRMED planets. The number of planets predicted as CONFIRMED using model
RF vif are plotted in Figure 9 against probability. GB vif results, which are very similar,
are shown in the accompanying Configuration Manual.
Overfitting of these models meant CANDIDATES, FALSE POSTIVES and CONFIRMED
were predicted with 100% accuracy in the 90% training data. This left only the 10% test
data which could be reclassified. This was reflected in the low recovery rates for CAN-
DIDATES and FALSE POSITIVE and the high rates for CONFIRMED plants.
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Figure 9: Planets predicted as CONFIRMED using RF vif model
CONFIRMED: Labelled as CONFIRMED in KOI table
TCE: Unlabelled (only exists in TCE table not KOI table)
CANDIDATE: Labelled as CANDIDATE in KOI table
FALSE POS: Labelled as FALSE POSITIVE in KOI table
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5.2.2 Logistic Regression (LR) and Decision Tree (DT)

The LR and DT models were run against the TCE tables and used to predict CON-
FIRMED planets. The number of planets predicted as CONFIRMED using model LR
are plotted in Figure 10 against probability. DT results, which are very similar, are shown
in the accompanying Configuration Manual.
The models LR and DT see Figure 10 were not overfitted and nearly one quarter of
CANDIDATES were predicted to be confirmed planets.
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Figure 10: Planets predicted as CONFIRMED using LR model
CONFIRMED: Labelled as CONFIRMED in KOI table
TCE: Unlabelled (only exists in TCE table not KOI table)
CANDIDATE: Labelled as CANDIDATE in KOI table
FALSE POS: Labelled as FALSE POSITIVE in KOI table

5.2.3 Table of PCs with highest probability of being a confirmed planet

The four models (RF vif,GB vif,LR and DT) combined predicted 984 planets as confirmed
which had not been confirmed previously. For simplicity 213 of these cases in systems
with eclipsing binaries 12 (which can be mistaken for planets) were excluded leaving 771
confirmed planets.
An extract of the results is shown Table 5. The choice of cut-off probability was 0.916,
which is the lower of two probabilities used by Shallue and Vanderburg (2018) for declaring
confirmed planet. Many of the exoplanets predicted by Shallue and Vanderburg (2018)
were also predicted by LR and DT. Further detailed results are in the accompanying
Configuration Manual.

12http://archive.stsci.edu/kepler/eclipsing_binaries.html
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Table 5: Probability of being a confirmed planet sorted by Logistic Regression ≥0.916

kepid plnt
num

kname dispos LR DT GB vif RF vif

8456679 2 K00102.02 FP 0.972 0.951 - -
8480285 1 K00691.01 CAND 0.971 0.948 - 0.503
8804455 2 K02159.02 FP 0.963 0.986 - -
10788461 1 K03925.01 CAND 0.959 0.571 - -
8644365 1 K03384.01 CAND 0.948 0.943 - -
8804845 1 K02039.01 CAND 0.945 0.919 - -
3831053 1 K00388.01 CAND 0.944 0.966 - 0.642
12505076 1 K02154.01 CAND 0.944 0.971 - -
4149450 1 K01864.01 CAND 0.943 0.992 - -
2581316 2 K03681.02 CAND 0.942 0.932 1.0 0.952
5709725 2 K00555.02 CAND 0.937 0.919 - 0.516
5374854 2 K00645.02 CAND 0.93 0.94 - -
3247268 2 K01089.02 CAND 0.927 0.886 - -
11098013 1 K02712.01 CAND 0.924 0.939 - -
9411166 2 - - 0.921 0.684 0.974 0.979
3641726 1 K00804.01 CAND 0.917 0.847 - -
7938496 1 K00900.01 CAND 0.916 0.853 - -

6 Discussion

Two papers by independent researchers used the original kepler light curves to success-
fully confirm new planets. Using the original light curves has the advantage of allowing
the authors to lower the S/N threshold Shallue and Vanderburg (2018) or use different
algorithms Kunimoto et al. (2020) to obtain more data. A disadvantage of this approach
is that a large portion of the work is then concerned with vetting the PCs to insure they
were not the result of NTPs such as instrumental noise.
At NASA vetting was carried out over the years by the TCE review team McCauliff et al.
(2015) to produce TCE and KOI tables. The first machine learning paper by McCauliff
et al. (2015) used an older version of this data and found RF to be the best model with
an AUC of 0.9991 and accuracy of 0.945 see Table 2. TPOT also found the RF pipeline
to have a high accuracy (100%) but this was due to overfitting.
In contrast to McCauliff et al. (2015) who only published performance results this paper
includes an extract of the PCs with the highest probabilities of being a confirmed planet
see Table 5. The LR model and DT model were not overfitted and both broadly agreed
on 17 planets which had probability ≥0.916 of being a confirmed planet. If only vetted
CANDIDATES from the KOI are selected this reduces to 14 planets. The use of two
models (LR and DT) to confirm planets compares favorably with Shallue and Vander-
burg (2018) who confirmed two planets using a single model (CNN).
The contribution of GB vif and RF vif is less reliable due to overfitting but this may be
addressed in future work.
This paper contributes to knowledge in the field by helping prioritize PCs in the latest
kepler data most likely to be confirmed planets.
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7 Conclusion and Future Work

The TPOT automated machine learning tool was successfully applied to predict exoplan-
ets using the latest Kepler data. Data from the NASA exoplanet archive was downloaded
and four models were selected which predicted exoplanets with high probability.
Pipelines using Gradient Boost, Random Forest, Logistic Regression and Decision Trees
were generated. Performance tests revealed that models using Gradient Boost and Ran-
dom Forest were overfitted although they still had good accuracy. Logistic Regression
and Decision Tree were not overfitted and were able to predict a quarter of CANDID-
ATES as confirmed planets and some new candidates from the TCE table. These results
compared favourably with previous publications. The results were ordered by quality and
at least 14 candidates show high probability (≥0.916) of being a confirmed planet.

Future Work Most of the PCs recovered have already been well vetted (as they are in
the KOI table) but planetary confirmation would require more detailed investigation on
a case by case basis.
The software pipeline has a modular design split into 5 sections to allow for easy updating
and the following software updates are foreseen . . .
The software section which uses TPOT will be adapted to investigate whether other
machine learning tools such as auto-sklearn can be used to improve performance and
reduce overfitting.
With minor modifications the software will work on any file comprising of 1 DV and
multiple IVs. This would enable it to be used for other missions such as K2 and TESS.
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