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The Identification of Foot-Strike Patterns and
Prediction of Running Related Injuries -

Configuration Manual

Shane Gore
x18174175

1 Introduction

This configuration manual contains the detailed steps required to undertake the project
entitled; “The Identification of Foot-Strike Patterns and Prediction of Running Related
Injuries”. The remaining document is structured as follows:

• Section 2 gives an overview of the enviromental configuration. This includes the
hardware which was utilised for this project along with the software configurations
for the primary tools utilised. These include; Vicon Nexus, MATLAB and Python.

• Section 3 presents the ICT implementation for the pre-processing steps. This in-
cludes the motion capture pre-processing, the general pre-processing and waveform
screening.

• Section 4 presents the ICT implementation for the clustering solutions.

• Section 5 presents the ICT implementation for the predictive classification solutions.

• Section 6 presents addtional materal for the technical documentation. This includes
additional literature review, methodologies and results.

1



2 Environmental Configuration

This section includes the description and setup required for the hardware and software
utilised in this project.

2.1 Hardware Configuration

All data processing was tested on a Window 10 PC (Figure 1).

Figure 1: Windows PC device specification

2.2 Software Configurations

The primary softwares utilised in this project include Vicon Nexus (2.10, UK), MATLAB
(R2018B, USA) and Python (3.7). Additionally, Microsoft O�ce applications (16.01);
Word, Excel and PowerPoint were utilised along with TexWork 0.6.3 to produce the
project documentation and Mendeley (1.19.5) was utilised as a reference manager.

2.2.1 Vicon Nexus

Vicon Nexus is the software utilised to capture and process the motion capture data. The
following steps are required to install Nexus:

2



1. Navigate to the Vicon Website and locate the download section for Vicon Nexus
(https://www.vicon.com/software/nexus/?section=downloads). Enter your email
address and download the software (Figure 2).

Figure 2: Vicon Nexus download location

2. After downloading and unzipping the files, double click on the set up application
(Figure 3).

Figure 3: Launch set up wizard
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3. This will launch the set-up wizard. Press Next (Figure 4).

Figure 4: First step of set up

4. Agree to the terms of the licence to continue and press Next (Figure 5).

Figure 5: Licence agreement
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5. Press Install to finish the installation process (Figure 6).

Figure 6: Final installation step
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2.2.2 MATLAB

Within this project, MATLAB was utilised in extraction of the biomechanical data from
the C3D files created by the Vicon Nexus Software, event detection and stride segment-
ation. To install MATLAB, the following steps are required.

1. Navigate to the website (https://uk.mathworks.com/downloads/) and download the
installation of MATLAB. In this project, MATLAB (2018B) was utilised (Figure 7).

Figure 7: MATLAB download location

2. Once downloaded and unzipped, double click the setup and login with your Math-
Works Account or use an Installation Key (Figure 8).

Figure 8: First step of installation
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3. To continue with the installation, you will be required to accept the licence agree-
ment (Figure 9).

Figure 9: Licence agreement

4. Choose the installation location and press next to install (Figure 10).

Figure 10: InstallationlLocation
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2.2.3 Python

Within this project, Python was utilised for most of the ICT solution. This included, data
pre-processing, feature engineering, feature selection, data modelling and visualisation.
To install python, the following steps are required.

1. Python was installed with the Anaconda Distribution. Navigate to the Anaconda
website (https://www.anaconda.com/products/individual) and download the 3.6
Distribution for the OS required. Within this current project, python was down-
loaded Windows (Figure 11).

Figure 11: Python download location

2. Once downloaded, double click on the file to launch to the set up (Figure 12).

Figure 12: First step of installation
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3. Agree to the licence agreement to proceed (Figure 13).

Figure 13: Licence agreement

4. To finish installation, register Anaconda as the default Python (Figure 14).

Figure 14: Final step of installation
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3 ICT Implementation (Preprocesing)

This section details the preprocessing steps that were conducted as part of this project.
This includes:

• Motion capture pre-processing which involves the tracking, modelling and gap filling
of motion capture data using Vicon Nexus software.

• Data extraction and segmentation into stance phases.

• Waveform screening using a custom application.

• General data pre-processing which includes landmark registration, feature genera-
tion, screening for outliers and imputation.

3.1 Motion Capture Preprocessing

Motion capture data was preprocessed using Vicon Nexus software. After data capture,
marker trajectories taken from 16 cameras in a calibrated space are used to create a
three-dimensional representation of the marker position. A biomechanical model called
‘PlugIn Gait’ is then applied to this raw trajectory data, allowing the calculation of joint
centres and axes of rotation. However, before applying this model, it is essential to track
and fill gaps in the maker trajectories.

A screenshot of the main interface is provided below with some key buttons indicated
(Figure 15). For a full description on the use of Vicon NEXUS software, please see the
Vicon NEXUS manual available online 1.

1https://docs.vicon.com/display/Nexus29/Vicon+Nexus+User+Guide
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Figure 15: General layout of Vicon Nexus Software

3.1.1 Static trial processing

The first step involves processing the static trial. To do so, press F2 and double click the
static trial in the data managament tab (Figure 16).

Figure 16: Data managment tab
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Next, select the pipeline tab on the tools bar and run the reconstruct pipeline. This
will reconstruct the marker trajectories in 3D space (Figure 17).

(a) Pipeline tab where the reconstruct pipeline will be found

(b) Reconstructed markers in 3D space

Figure 17: Procedure to reconstruct the unlabelled maker trajectories
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Using the predefined markers associated with the ‘Plugin Gait’ model, label the the
figure (Figure 18). This involves, right clicking on an available marker and subsequently
right clicking on the unlabelled trajectory to assign it.

(a) Marker labels associated with the biomechanical model

(b) Static trial in the process of being labelled

Figure 18: Procedure to label the unlabelled maker trajectories
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Once the trajectories have been labelled, run the ‘Plug-in Gait Static’ pipeline in the
pipelines tab on the tools bar. This will model the data, and inform Nexus of the marker
positions (Figure 19).

(a) Static PugIn Gait pipeline

(b) Modelled Static Trial

Figure 19: Procedure to model the reconstructed and labelled maker trajectories
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3.1.2 Dynamic trial processing

After modelling the static trial, the dynamic trials can be processed. This involves using
pipelines to automaticallly reconstruct and label the marker trajectories, after which,
the data is screened and gaps are filled. To view a specific dynamic trial, press F2 and
double click on the trial to view the data. To produce tracker marker trajectories, press
the ‘Reconstruct and Label’ icon. This will reconstruct the positions of the markers in 3D
space from the 2D camera images and apply the model marker template to the marker
positions (Figure 20).

Figure 20: Reconstructed and labelled makers in 3D space

After reconstructing the marker trajectories, it is useful to be able to view the data
from multiple perspectives. Key controls for the 3D space are provided in Table 1.

Table 1: Key controls to manipulate the 3D perspective.

Outcome Required Action
Dolly/Zoom: Right-click and drag forward or backward.
Orbit: Left-click and drag left, right, forward, or backward.
Truck/Translate: Click right and left simultaneously and drag.
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To correct a mislabelled trajectory, select the trajectory at the first instant it becomes
mislabelled or begins an incorrect trajectory and manually re-label it by selecting the
appropriate marker label from the tools pane (Figure 21).

Figure 21: Manually relabel any mislabelled trajectories

If there are any gaps in a labelled trajectory, these will be listed by the marker name
the gap occurs in (LASI in this example) (Figure 22).

Figure 22: Indication of gaps in labelled trajectories
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Selecting the name of the trajectory in the list causes the workspace to zoom to the
area of the trajectory containing the gap (Figure 23).

Figure 23: Graphical representation of the gap in the labelled trajectory

There are five potential methods of gap-filling a trajectory in Vicon Nexus which are
presented in the labels tab of the tools bar (Figure 24). These are:

• Spline Fill: Extrapolates the missing trajectory based on the last known and first
reappearing coordinates.

• Pattern Fill: Uses the trajectory of another manually selected marker and fills
the gap on the assumption that the missing marker follows the same pattern of
movement as the selected source marker.

• Rigid Body Fill: Uses the trajectory of three other manually selected markers and
fills the gap on the assumption that the three source markers and the missing marker
are located on the same rigid body.

• Kinematic Fill: Approximates where a missing trajectory is on the assumption that
it is located on a particular segment selected from the Resources menu on the left
and defined su�ciently by other markers.

• Cyclic Fill: Used for cyclic actions such as running and fills the gap as the likely
position of the marker based on previous repeating cycles.
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Figure 24: Gap fill functions available in Nexus

Once the marker trajectories have been tracked and gap filled, the dynamic trials can
be modellled using the ‘PlugIn Gait’ model and exported to C3d file format for further
analysis.

(a) Dynamic PugIn Gait pipeline

(b) Modelled Dynamic Trial

Figure 25: Procedure to model the dynamic trials
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3.2 Data extraction and segmentation into stance phases

The data preprocessing begins from a script. After moving C3d files into a single folder,
and defining the raw file locations, the various properties of the primary class to extract
the data is defined in the configeration file (Figure 26). This latter process is usefull for
rapid testing of the code.

Figure 26: Script to set up data and prepare for further analysis
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An example excerpt for the config file is presented in Figure (27).

Figure 27: Excerpt from the config file defining the test, segments and metrics to extract
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The data is then extracted in the class DataExtract 3DMOCAP MSc with the properties
as defined by the config file (Figure 27) and exported for futher analysis in python (Figure
28).

Figure 28: Data is extracted from the C3d files and exported for further analysis
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The following sections will detail the ‘DataExtract 3DMOCAP MSc’ class utilsied to
extract the biomechanics data (Figure 29).

Figure 29: Class for extracting biomechanical data
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Before extracting data from the running trials, the static trials were analysed (see
section 3.2.1 for details on the function). When exploring the running triials, the first
steps essentially involve extracting information from the file names and controlling for
variations in the mocap format (Figure 30 and 31)

Figure 30: Extracting file information and controlling for format variations (1 of 2)
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Figure 31: Extracting file information and controlling for format variations (2 of 2)
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The data was then extracted from the C3d file using the biomechanics toolkit (Barre
and Armand; 2014) (Figure 32).

Figure 32: Extracting data from the C3d file

Afterwhich, the extracted data was then segmented by identifying the events of foot-
strike and toe-o↵ (Figure 33). For full details on the custom class utilised to identify
these events, please see section 3.2.2.

Figure 33: Identifying events for segementing into stance phases
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Given the variations possible in the naming of the motion capture data, the files were
classified using a combination of exact and fuzzy matching using Levenshtein distance
(Figure 34)

Figure 34: Classifying motion capture files using exact and fuzzy name matching
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Additional biomechanical metrics were then derived from the raw motion capture data
for the foot (Figure 35).

Figure 35: Deriving foot metrics
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This was also conducted for the remaining extracted segments which were then nor-
malised to 101 datapoints using a cubic spline to represent 100% of the stance phase
between the foot-strike and toe-o↵ events (Figure 36).

Figure 36: Deriving additional biomechanical metrics and normalising to 101 datapoints
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The final steps involved storing the data to export. The size of the data being ex-
amined in this project excluded the use heterogeneous data structures due increasing time
complexity. As such the numeric data and their string identifiers were stored separately
in homogeneous arrays (Figure 37) .

Figure 37: Storing data to export
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Similarly, given the time and memory cost of dynamically growing arrays, they were
excessively pre-allocated with NaNs. After the data had been stored in the structures, the
excess NaNs were removed and the structures were exported for further analysis (Figure
38) .

Figure 38: Removing excess rows in the data and exporting for analysis
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3.2.1 Static Trial Metrics

This section depicts the function to extract useful metrics from the static trial when the
subject is standing still (Figure 39 and 40). Theses include quiet standing force and
angle of the foot when in a neutral position. The later point is particularly important to
this project, as it is essential for calculating the angle of the foot while running (Altman
and Davis; 2012).

Figure 39: Function to extract useful metrics from the static trial (1 of 2)
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Figure 40: Function to extract useful metrics from the static trial (2 of 2)
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3.2.2 Event Detection

Within this project, data was collected, continiously over a one minute period. In order
to segment the biomechanical data into stance phases, the events of inital contact and
toe-o↵ had to be detected. Event detection was coded as a self contained class (Figure
41).

Figure 41: Event detection class

Initial foot contact was defined by firstly identifying a window in which the ankle
marker was within 10cm of its local minima (Figure 42).

Figure 42: Identifying a search window defined by the height of the ankle marker
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Heel contact was then subjsequently defined using the peak negative horizontal velo-
city of heel (Figure 43).

Figure 43: Identifying the first negative heel velocity
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This was then repeated for the toe, and the first occuring event was defined as inital
contact (Figure 44).

Figure 44: Identifying the first negative toe velocity, and definfing initial contact
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To identify toe o↵, a search window was again specified when the ankle marker was
within 10cm of its local minima (Figure 45).

Figure 45: Identifying a search window defined by the height of the ankle marker
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Toe o↵ was defined using the toe jerk maxima (3rd derivative of toe marker position)
following peak knee extension (Figure 46) as a combination of two previously published
algorithms (Handsaker et al.; 2016; Dingwell et al.; 2001).

Figure 46: Identifying toe o↵ event
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3.3 Waveform Screening

In order to assist with the initial screening of the biomechanical waveform data, a custom
written application was developed in MATLAB (R2018B). After collecting biomechan-
ical motion capture data, it can be challenging to identify when motion capture data
has been modelled inappropriately. To overcome this challenge, this application was
developed which enables the end user to rapidly visualise, interpret and delimit biomech-
anical waveforms for further investigation or correction via a graphical user interface
(Figure 47).
Amongst its functionalities:

• It allows the user to read in motion capture time series data.

• Plot a user defined number of curves at a time.

• Zoom in, zoom out and pan on plots.

• Cycle forward or backward in the plotting of the data.

• Select and remove user identified inappropriate waveforms for further investigation.

• Use statistical measures to delimit the data being screened.

Within this current project, the latter point was particularly important given the
large number of waveforms which had to be analysed.

Figure 47: Custom application designed to assist in the screening of biomechanical data

38



3.3.1 Method: LaunchGui

This is a function which initialises the application. The appearance of the application
is set and the various interactive features (e.g. push buttons) are created with callback
functions to the object’s other methods (Figure 48, Figure 49 and Figure 50).

Figure 48: Initialising the application, setting appearance and creating interactive fea-
tures (1 of 3)
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Figure 49: Initialising the application, setting appearance and creating interactive fea-
tures (2 of 3)
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Figure 50: Initialising the application, setting appearance and creating interactive fea-
tures (3 of 3)
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3.3.2 Method: LoadData

This method launches a dialogue box to allow the user to locate the data, which is
then loaded into the application. It allows three forms of loading, as stored (default),
randomised and ordered by the base identifier. This functionality was useful to visualise
the data in di↵erent ways. After reading in the data, it writes the file categories (as
determined by the MATLAB data structure) to a selection box (Figure 51 and Figure
52).

Figure 51: Method to load data (1 of 2)
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Figure 52: Method to load data (2 of 2)

3.3.3 Method: PlotData

This method plots user selected data stored in long or wide format (Figure 53). After
consulting the screen index file to determine if any of trials should be excluded, this
method plots user selected data. In order to provide some context to the data, a shaded
region is also plotted to represent the mean ± 2 * standard deviations of the whole data-
set. If the user has loaded the data by base identifier (participant), the number of plots
displayed will equal the all the trials by the first participant. If the user has loaded the
data as default or by randomised load, the number of trials displayed will be determined
by a user defined number entered in an interactive text box (or defaults to 20) (Figure 54).
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Figure 53: Method to plot data (1 of 2)
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Figure 54: Method to plot data (2 of 2)
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The data is plotted with a button-down call back function, which allows the user to
select any of the curves after they are plotted by clicking on a curve and excluding it
from the current session (Figure 55).

Figure 55: Callback function to store clicked curves

3.3.4 Method: Next data and Previous data

These methods allow the user to cycle forward or backwards through the data. Similar
to the plot data method (see section 3.3.3), the number of plots displayed depend on the
method of loading. As both the next data and previous data methods are very similar,
only the next data method is shown here (Figure 56 and Figure 57).

Figure 56: Method to cycle through data and plot curves (1 or 2)

46



Figure 57: Method to cycle through data and plot curves (2 or 2)
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3.3.5 Method: Exclude data and Screen data

These methods are called by pressing the exclude data or screen data buttons. These
methods write the identifiers associated with the selected curves to a file. As both meth-
ods are very similar only the exclude data method will be presented here (Figure 58).
An example of the output is also presented (Figure 59).

Figure 58: Method to write selected curve identifiers to file

Figure 59: Example outputed file after excluding curves
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3.3.6 Method: Auto Screen

This final method provides the option to automatically delimit the data based on stat-
istical tests, to identify extreme outliers in terms of amplitude and entropy (Figure 60
and Figure 61).

Figure 60: Method to auto screen data (1 of 2)
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Figure 61: Method to auto screen data (2 of 2)
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3.4 General Preprocessing

After extracting the data from the biomechanical files and normalising the stance phase
data to 101 data points in MATLAB, the data was ready for the general preprocessing
phase in python. Firstly, the required packages were loaded including the custom modules
(LandMarkReg and ACP). The data was read in, along with the injury status of the
participants. The data was then delimited to those participants who completed the
prospective arm of the study (Figure 62).
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Figure 62: Loading packages and data
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The biomechanical time series data was then aligned using landmark registration
Moudy et al. (2018) using the LandMarkReg class (Figure 63). Details of the Land-
MarkReg are presented in section 3.4.1.

Figure 63: Implementation of Landmark Registration
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Using the time aligned data, ‘Analysis of Characterising Phases’ (ACP) is conducted
100 times on random 70% subsamples (Figure 64). Only robust phases were then retained
defined as being identified more than 80% of the time (Richter et al.; 2019). For details
on the ACP class, please see section 3.4.2.

Figure 64: Implementation of Analysis of Characterising Phases
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Additional time series metrics are then calculated using the TSFresh python package
(Christ et al.; 2018) (Figure 65).

Figure 65: Engineering additional feature with TSFresh

Data was scaled to zero mean and unit variance. Outliers in the generated features
were detected using isolated forests and local outlier factor. Missing data was then
imputed using multivariate imputation by chained equations (MICE) and a Bayesian
ridge regression approach based on the twenty nearest features (Figure 66).

Figure 66: Scaling the data, identifying outliers and imputation with MICE
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In the final stage of the general preprocessing, near zero variance and highly correlated
features are removed. Injury status is added to the feature matrix and the data is
visualised as its first two PCs (Figure 67).

Figure 67: Removing near zero and high correlated feature before adding injury status

3.4.1 LandMark Registration

In order to remove unwanted temporal variations from the biomechanical waveforms, a
landmark registration algorithm as previously described (Moudy et al.; 2018), was em-
ployed using a custom writen python class (Figure 68) and a sub method to dynamically
warp the timing of the signals (Figure 69 and Figure 70). In comparison to the algorithm
proposed by Moudy et al. (2018), this current project used an akima spline rather than
a cubic spline and implemented a binary search approach to speed up convergence. This
latter point was important given the size of the dataset.
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Figure 68: Class to landmark register the biomechanical time series data
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Figure 69: Method of the LandMarkReg class to dynamically warp the timing of the
signals (1 of 2)
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Figure 70: Method of the LandMarkReg class to dynamically warp the timing of the
signals (2 of 2)

3.4.2 Analysis of Characterising Phases

In order to reduce the dimensionality of the data and extract key features, the concept
of ‘Analysis of Characterizing Phases’ (ACP) was used to generate participant scores
that represent the movement of each participant within key phases of variation using
VARIMAX rotated principal components (Richter et al.; 2014). Each score captures
the samples movement for each identified phase (k) as the summed di↵erence between a
participant’ s waveform (p) and the mean waveform (q) for each time point (i) between the
start (n) and end (m) of a phase. This was completed for each biomechanical waveform
(j) (Equation 1):

featurej,k =
mX

i =n

p (i)� q(i) (1)

The following figures (Figure 71 and Figure 72) depecit the class written based on
the paper by Richter et al. (2014).
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Figure 71: Class to calculate ACP phases (1 of 2)
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Figure 72: Class to calculate ACP phases (2 of 2)
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The figure below depicts the method to extract the key phases from the principle
component waveforms (Figure 73).

Figure 73: Method of the ACP class to extract phases from the principle component
waveforms

The identified principle component waveforms are then varimax rotated (Figure 74).

Figure 74: Method of the ACP class to varimax rotate principle components
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4 Implementation: Clustering

In order to identify the presence of naturally occurring foot-strike patterns, six clustering
algorithms (K-means, Hierarchical, Spectral, OPTICS, HDBSCAN, Mean Shift) were
implemented and assessed. The required modules were firstly loaded (Figure 75).

Figure 75: Loading the required modules
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The required data generated in the general implementation phase was then read in,
the data class was rebalanced with SMOTE and the data was visualised (Figure 76).

Figure 76: Loading the data, rebalancing the classes and visualisation
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Using the concept of spectral feature selection, the number of features to retain for
the clustering solution was determined by visual inspection of the spec scores (Zhao and
Liu; 2007), and the five retained features produced a Hopkins statistic of 0.96, suggesting
high clusterability of the data (Figure 77).

Figure 77: Spectral feature selection and statistical test for clusterability
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To test the clustering algorithms in a repeatable manner, the various clustering para-
meters were saved as dictionary structure in a dataframe which would then be passed to
a class for evaluation (Figure 78).

Figure 78: Feature Selection with spectral feature selection
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The clustering algorithms were then evaluated using the custom module (cluster val-
idation) and the traditional foot-strike classifications (Altman and Davis; 2012) were
calculated (Figure 79). For further details on the cluster validation module, please see
section 4.1

Figure 79: Inital Evaluation of the clustering approaches and classification of foot-strike
angle
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In the final evaluation of the clustering algorithms, 100 bootstrapped Adjusted Rand
Index (ARI) scores were calculated the four best clustering solutions along with the
traditional classification approach (Figure 80).

Figure 80: Evaluation of the best clustering solutions with boostrapped ARI
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The functions used to carry out this bootstrapped ARI testing are presented below
(Figure 81).

Figure 81: Functions used to calculate bootstrapped ARI scores
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The ARI scores were then visualised using rain cloud plots and statistically tested
using a one-way Welch’s ANOVA with Games-Howell post hoc follow up test. Finally,
to compare the ARI scores for each model with zero (random assignment) a series of
one sample welch t-tests with holm’s correction for multi-comparisons were conducted
(Figure 82).

Figure 82: Visualisation and statistical testing of the bootstrapped ARI scores

4.1 Cluster Validation

In order to validate the clustering solutions, a custom class was written to validate each
clustering algorithm in a repeatable manner (Figure 84 , Figure 85, Figure 86). The
class contains several methods which will be detailed in turn. The prediction strength
method (Tibshirani and Walther; 2005) will not be detailed here as within this current
project, it was superseded by the cluster validation approach (Rodŕıguez et al.; 2018)
which is based on the same concept of cluster stability. However, unlike the prediction
strength method, the cluster validation index is suitable for all clustering types, not just
does based on a distance metric (Rodŕıguez et al.; 2018).
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Figure 83: Class to evaluate clustering solutions (1 of 3)
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Figure 84: Class to evaluate clustering solutions (2 of 3)
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Figure 85: Class to evaluate clustering solutions (3 of 3)
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4.1.1 Method: Cluster Validation Index

This method is based on the cluster validation index outlined in Rodŕıguez (2018). This
method uses an ensemble of supervised learners and 5 fold cross validation to evaluate
the clustering solution (Figure 86). The basic premise is that a good clustering solution
should invoke a good classifier.

Figure 86: Method to calculate the cluster validation index
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4.1.2 Method: Silhouette Coe�cient

This is a wrapper method for the Scikit-learn evaluation metric Silhouette Coe�cient
(Rousseeuw; 1987). This approach evaluates clustering solutions by its within cluster
distance to between cluster distance (Figure 87).

Figure 87: Method to calculate the silhouette coe�cient

4.1.3 Method: Density Coe�cient

This approach is based on the method outlined in Moulavi et al. (2014). This approach
evaluates clustering solutions by its within cluster density to between cluster density
(Figure 88).

Figure 88: Method to calculate the density based validation index
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4.1.4 Method: Adjusted Rand Index

This is a wrapper method for the Scikit-learn Adjusted rand score evaluation metric.
This approach uses the adjusted rand index (Hubert and Arabie; 1985), to determine the
agreement between the know class label and the clustering solution (Figure 89).

Figure 89: Method to calculate the adjusted rand index

4.1.5 Method: Plot Clusters

This method plots the clustering solution labels over the first two prinicple components
of the data with the calculated metric overlayed (Figure 90 and Figure 91).

Figure 90: Method to plot the clustering solution (1 of 2)
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Figure 91: Method to plot the clustering solution (2 of 2)

An example clustering plot is provided in Figure 92.

Figure 92: Example plot of a clustering solution
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4.1.6 Method: Call Methods

The final method was utilised as a means of calling several of the above methods to
evaluate a single clustering solution simultaneously and plotting the final solution (Figure
93).

Figure 93: Example plot of a clustering solution
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5 Implementation: Classification

In order to determine if any of the biomechanics of the lower limb and trunk could
predict those who would go on to become injured, six classification models (Naive Bayes,
Elastic Net Logistic Regression, Bagged SVM, Random Forest, Adaboost and a weighted
Stacked Ensemble) were implemented and assessed. The required packages were firstly
loaded (Figure 94).

Figure 94: Loading the required modules

79



The required data generated in the general implementation phase was then read in
and split into train and test sets (Figure 95).

Figure 95: Loading the data and spliting into train and test sets
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A set of dictionaries were created to store the hyperparameter tuning grids for each
of the classification models and to store useful metrics when evaluating the algorithms
(Figure 96).

Figure 96: Storing the hyperparameters to be tested
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After initialising the models with an appropriate hyperparameter solution using a ran-
dom search of the hyperparameter grid, feature selection was conducted with a genetic
search algorithm followed by recursive feature elimination. In order to enhance gener-
alisability, the model with the smallest number of features within one standard error of
the best solution (maximised area under the receiver operator curve) was chosen (Fig-
ure 97). For the cross-validation procedures, the training folds were rebalanced using
synthetic minority oversampling technique.

Figure 97: Feature selection implementation
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Given that the scikit-learn recursive feature elimination approach cannot accommod-
ate every algorithm, a custom function was written (Figure 98).

Figure 98: Recursive feature elimination function
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The final models were then tuned with greedy grid search and Bayesian optimisation
(Figure 99).

Figure 99: Hyperparameter tuning
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After training the models, they were evaluated using 100 bootstrapped resamples of
the hold out validation set for accuracy, sensitivity and specificity (Figure 100). The
function used to calculate the evaluation metrics is presented in figure 101 while the
function used to carry out the bootstrap resampling is presented in figure 102 - 103.

Figure 100: Bootstrapped evaluation implementation

Figure 101: Function to calculate evaluation metrics
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Figure 102: Function to carry out bootstrapped resampling (1 of 2)
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Figure 103: Function to carry out bootstrapped resampling (2 of 2)
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The weighted stacked ensemble model was then calculated in a manner that took into
account the classifier vote, the average classifier performance and the classifier confidence
to optimise Youden’s J statistic (Figure 104). Full details on this algorithm are presented
in section 6.5.

Figure 104: Creating a weigthed stacked ensemble model
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The näıve classifier was then assessed (Figure 105).

Figure 105: Evaluating a naive majority classifier
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The performance of the models over the 100 bootstrapped resamples were then visu-
alised using raincloud plots (Figure 106)

Figure 106: Visualisation of the bootstrapped evaluation metrics.
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The results were then statistically tested using Welch’s one-way ANOVA followed by
Games Howell post hoc tests. For the accuracy results, a series of one sample welch
t-tests with holm’s correction were used to compare against a value of 50, representing
random classification (Figure 107).

Figure 107: Statistical testing of the bootstrapped evaluation metrics
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Finally, feature importance was determine using permutation tests and partial de-
pendency analysis (Figure 108).

Figure 108: Investigating feature importance for the random forest model

92



6 Additional Material for the Technical Report

6.1 Additional Related Work

6.1.1 Search criteria for foot-strike and injury

Sports Discus and Web of Science databases were searched to identify studies investig-
ating foot strike and running injuries from January 1960 to January 2020. The search
was restricted to studies that were in the English language and conducted with human
subjects. To avoid including potentially confounding factors, studies which included co-
horts from other sports were excluded. Finally reviews, commentaries, opinion articles,
case studies and conference proceedings were excluded from the primary review. The
following search terms were utilised: ‘’running” OR “runners” AND “injury” OR “injur-
ies” AND “rearfoot” OR “rear-foot” OR “midfoot” OR “mid-foot” OR “forefoot” OR
“fore-foot” OR “foot contact angle” OR “foot angle” OR “foot strike pattern” OR “foot
strike angle” OR “strike index”.

6.1.2 Prospective risk factors for running related injury

Within the literature there has been considerable interest in the biomechanical risk factors
for running related injuries (Pohl et al.; 2008; Taunton et al.; 2002). While the majority
of research to date has been retrospective in nature, this form of research is limited as it
is unclear if any biomechanical factors identified are causative in nature or a result of the
injury itself (Bahr; 2016). A more robust research design is prospective in nature, where
uninjured participants are tested and the biomechanical factors that were associated with
them becoming injured are assessed.

A total of 16 prospective cohort studies were identified in a recent systematic review
of risk factors for running injury (Ceyssens et al.; 2019). Overall, the risk factors for
running related injury appear to be inconsistent and may be related to the heterogeneity
in study populations and the injuries being studied. When synthesising the findings of
the research, it appears that the majority of risk factors are kinetic in nature (loading
related) (Stefanyshyn et al.; 2006; Dudley et al.; 2017; Brund et al.; 2017; Van Ginckel
et al.; 2009; Thijs et al.; 2008; Napier et al.; 2018; Bredeweg, Buist and Kluitenberg;
2013; Davis et al.; 2016; Bredeweg, Kluitenberg, Bessem and Buist; 2013). This would
make sense since injuries are caused by relative excessive loading. Of the kinematic
(movement) features identified, the foot was most commonly identified as a risk factor
for injury (Dudley et al.; 2017; Kuhman et al.; 2016; Hein et al.; 2014). Interestingly,
despite this, conflicting evidence was observed in ankle eversion velocity (Dudley et al.;
2017; Kuhman et al.; 2016) with inconsistent evidence that peak ankle, rearfoot eversion
and ankle eversion range of motion were related increased risk of running related injury
(Dudley et al.; 2017; Kuhman et al.; 2016; Noehren et al.; 2007; Messier et al.; 2018).
Similarly, limited evidence was presented for smaller ankle dorsiflexion in runners who
go on to develop Achilles tendinopathy (Hein et al.; 2014). Again, conflicting evidence
exists for the knee with one study identifying a smaller peak knee flexion angle as a risk
factor for injury (Hein et al.; 2014) while others reported no significant di↵erence (Messier
et al.; 2018). At the hip, limited evidence was identified for peak hip adduction in female
recreational runners as a risk factor for injury (Noehren et al.; 2007, 2013) Interestingly,
the one study that found opposing evidence was in a mixed sex population (Dudley et al.;
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2017) suggesting that there may be sex related risk factors for certain injuries. Of par-
ticular note is the fact that none of the research considered the trunk as a risk factor for
injury. This is surprising given that the thorax (including the arms and head) accounts
for up to 68% of the body mass (Winter; 2009) and can have considerable influence on
the loading experienced by the lower limbs (Blackburn and Padua; 2008).

Interestingly, when exploring the methodology of the 16 studies included in the sys-
tematic review, several methodological weaknesses were identified which were not high-
lighted by the author of the review (Ceyssens et al.; 2019). Firstly, six of the studies
investigated univariate risk factors for running injuries with no control for multiple com-
parisons which can lead to inflation of type 1 errors and ignores multivariate relationships
(Noehren et al.; 2007, 2013; Stefanyshyn et al.; 2006; Kuhman et al.; 2016; Hein et al.;
2014; Dudley et al.; 2017). Of the remaining 10 studies, which used logistic regression
(Luedke et al.; 2016; Ghani Zadeh Hesar et al.; 2009; Davis et al.; 2016; Messier et al.;
2018; Van Ginckel et al.; 2009; Thijs et al.; 2008), linear regression (Brund et al.; 2017),
and Cox proportional hazard models (Napier et al.; 2018; Bredeweg, Buist and Kluiten-
berg; 2013; Bredeweg, Kluitenberg, Bessem and Buist; 2013), 5 studies (Messier et al.;
2018; Van Ginckel et al.; 2009; Thijs et al.; 2008; Bredeweg, Buist and Kluitenberg; 2013;
Bredeweg, Kluitenberg, Bessem and Buist; 2013) exclusively utilised univariate feature
selection, which risks excluding potentially important features that can act as covariates
in the final model. In addition, all 10 studies that conducted some form of multivariate
modelling, failed to use any form of out of sample testing and only explored a single
model. This can lead to poor generalisability of the studies’ findings, and as per the no
free lunch theorem (Wolpert; 1996), runs the risk of utilising a non-optimal model for
the data being examined. Finally, all sixteen studies explored in the systematic review
considered discrete biomechanical features which can lead to discarding potentially im-
portant features contained in the whole waveform (Pataky; 2012).

In summary, several prospective risk factors have been identified in the literature, but
with inconsistent findings. While the cause of this inconsistency is unclear, it may be
related to some of the statistical limitations identified in this review.

6.2 Methodology

6.2.1 Biomechanical Waveforms

All biomechanical waveform plots extracted from the motion capture data are presented
below. The plots present the mean ± standard deviations for the nomalised stance phase.
The robust key phases identified using the concept of ‘Analysis of Characterising Phases’
are represented by the grey shaded regions (Figure 109 - Figure 114 ).
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Figure 109: Biomechanical waveforms for the foot

95



Figure 110: Biomechanical waveforms for the ankle
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Figure 111: Biomechanical waveforms for the knee
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Figure 112: Biomechanical waveforms for the hip
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Figure 113: Biomechanical waveforms for the pelvis
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Figure 114: Biomechanical waveforms for the thorax
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6.2.2 Participant Demographics

Basic subject demogrpahics of the participants who partook in this project are presented
in the table below (Table 2).

Table 2: Subject Demographics

Sex N Age (yrs) Height (cm) Mass (kg)
Female 113 42.4 ± 8.6 164.5 ± 7.6 61.5 ± 8.2
Male 169 44.7 ± 9.4 177.9 ± 6.6 79.4 ± 10.6

Subject demographics presented as mean ± standard deviation.
N = number of participants, yrs. = years, cm = centimetre, kg = kilogram

6.3 Implementation

6.3.1 Data description

The following table provides a list and description of the features that were considered
in this project. It is worth noting that for the clustering implementation, the data was
delimited to the foot movement features.

Table 3: Feature list and description

Feature Name Description

’AnkleAcceleration abd maximum’
Maximum Ankle acceleration in the
frontal plane for the whole stance phase

’AnkleAcceleration abd mean’
Mean Ankle acceleration in the frontal
plane for the whole stance phase

’AnkleAcceleration abd median’
Median Ankle acceleration in the
frontal plane for the whole stance phase

’AnkleAcceleration abd minimum’
Minimum Ankle acceleration in the
frontal plane for the whole stance phase

’AnkleAcceleration abd standard deviation’
Ankle acceleration standard deviation
in the frontal plane for the whole stance
phase

’AnkleAcceleration abd 16 22’
Mean Ankle acceleration in the frontal
plane over 16-21% of the stance phase

’AnkleAcceleration abd 4 13’
Mean Ankle acceleration in the frontal
plane over 4-12% of the stance phase

’AnkleAcceleration abd 83 97’
Mean Ankle acceleration in the frontal
plane over 83-96% of the stance phase

’AnkleAcceleration fle maximum’
Maximum Ankle acceleration in the
transverse plane for the whole stance
phase

’AnkleAcceleration fle mean’
Mean Ankle acceleration in the trans-
verse plane for the whole stance phase

’AnkleAcceleration fle median’
Median Ankle acceleration in the trans-
verse plane for the whole stance phase
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Table 3 Feature list and description (continued from previous page)
Feature Name Description

’AnkleAcceleration fle standard deviation’
Ankle acceleration standard deviation
in the transverse plane for the whole
stance phase

’AnkleAcceleration fle 10 16’
Mean Ankle acceleration in the trans-
verse plane over 10-15% of the stance
phase

’AnkleAcceleration fle 31 35’
Mean Ankle acceleration in the trans-
verse plane over 31-34% of the stance
phase

’AnkleAcceleration fle 73 85’
Mean Ankle acceleration in the trans-
verse plane over 73-84% of the stance
phase

’AnkleAcceleration fle 88 94’
Mean Ankle acceleration in the trans-
verse plane over 88-93% of the stance
phase

’AnkleAcceleration rot maximum’
Maximum Ankle acceleration in the
transverse plane for the whole stance
phase

’AnkleAcceleration rot minimum’
Minimum Ankle acceleration in the
transverse plane for the whole stance
phase

’AnkleAcceleration rot standard deviation’
Ankle acceleration standard deviation
in the transverse plane for the whole
stance phase

’AnkleAcceleration rot 0 3’
Mean Ankle acceleration in the trans-
verse plane over 0-2% of the stance
phase

’AnkleAcceleration rot 14 28’
Mean Ankle acceleration in the trans-
verse plane over 14-27% of the stance
phase

’AnkleAcceleration rot 44 51’
Mean Ankle acceleration in the trans-
verse plane over 44-50% of the stance
phase

’AnkleAcceleration rot 5 12’
Mean Ankle acceleration in the trans-
verse plane over 5-11% of the stance
phase

’AnkleAcceleration rot 53 59’
Mean Ankle acceleration in the trans-
verse plane over 53-58% of the stance
phase

’AnkleAcceleration rot 79 80’
Mean Ankle acceleration in the trans-
verse plane over 79-79% of the stance
phase

’AnkleAcceleration rot 90 96’
Mean Ankle acceleration in the trans-
verse plane over 90-95% of the stance
phase
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Table 3 Feature list and description (continued from previous page)
Feature Name Description

’AnkleAcceleration rot 99 101’
Mean Ankle acceleration in the trans-
verse plane over 99-100% of the stance
phase

’AnkleAngles abd minimum’
Minimum Ankle angle in the frontal
plane for the whole stance phase

’AnkleAngles abd standard deviation’
Ankle angle standard deviation in the
frontal plane for the whole stance phase

’AnkleAngles abd 0 17’
Mean Ankle angle in the frontal plane
over 0-16% of the stance phase

’AnkleAngles abd 41 80’
Mean Ankle angle in the frontal plane
over 41-79% of the stance phase

’AnkleAngles abd 95 101’
Mean Ankle angle in the frontal plane
over 95-100% of the stance phase

’AnkleAngles fle maximum’
Maximum Ankle angle in the trans-
verse plane for the whole stance phase

’AnkleAngles fle mean’
Mean Ankle angle in the transverse
plane for the whole stance phase

’AnkleAngles fle standard deviation’
Ankle angle standard deviation in the
transverse plane for the whole stance
phase

’AnkleAngles fle 0 11’
Mean Ankle angle in the transverse
plane over 0-10% of the stance phase

’AnkleAngles fle 28 44’
Mean Ankle angle in the transverse
plane over 28-43% of the stance phase

’AnkleAngles fle 68 80’
Mean Ankle angle in the transverse
plane over 68-79% of the stance phase

’AnkleAngles fle 93 101’
Mean Ankle angle in the transverse
plane over 93-100% of the stance phase

’AnkleAngles rot standard deviation’
Ankle angle standard deviation in the
transverse plane for the whole stance
phase

’AnkleAngles rot 34 61’
Mean Ankle angle in the transverse
plane over 34-60% of the stance phase

’AnkleVelocity abd maximum’
Maximum Ankle velocity in the frontal
plane for the whole stance phase

’AnkleVelocity abd mean’
Mean Ankle velocity in the frontal
plane for the whole stance phase

’AnkleVelocity abd median’
Median Ankle velocity in the frontal
plane for the whole stance phase

’AnkleVelocity abd minimum’
Minimum Ankle velocity in the frontal
plane for the whole stance phase

’AnkleVelocity abd standard deviation’
Ankle velocity standard deviation in
the frontal plane for the whole stance
phase

’AnkleVelocity abd 0 6’
Mean Ankle velocity in the frontal
plane over 0-5% of the stance phase
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Table 3 Feature list and description (continued from previous page)
Feature Name Description

’AnkleVelocity abd 11 19’
Mean Ankle velocity in the frontal
plane over 11-18% of the stance phase

’AnkleVelocity abd 45 53’
Mean Ankle velocity in the frontal
plane over 45-52% of the stance phase

’AnkleVelocity abd 63 74’
Mean Ankle velocity in the frontal
plane over 63-73% of the stance phase

’AnkleVelocity abd 75 83’
Mean Ankle velocity in the frontal
plane over 75-82% of the stance phase

’AnkleVelocity abd 87 94’
Mean Ankle velocity in the frontal
plane over 87-93% of the stance phase

’AnkleVelocity fle maximum’
Maximum Ankle velocity in the trans-
verse plane for the whole stance phase

’AnkleVelocity fle mean’
Mean Ankle velocity in the transverse
plane for the whole stance phase

’AnkleVelocity fle median’
Median Ankle velocity in the transverse
plane for the whole stance phase

’AnkleVelocity fle standard deviation’
Ankle velocity standard deviation in
the transverse plane for the whole
stance phase

’AnkleVelocity fle 13 22’
Mean Ankle velocity in the transverse
plane over 13-21% of the stance phase

’AnkleVelocity fle 32 37’
Mean Ankle velocity in the transverse
plane over 32-36% of the stance phase

’AnkleVelocity fle 61 71’
Mean Ankle velocity in the transverse
plane over 61-70% of the stance phase

’AnkleVelocity fle 73 80’
Mean Ankle velocity in the transverse
plane over 73-79% of the stance phase

’AnkleVelocity fle 83 92’
Mean Ankle velocity in the transverse
plane over 83-91% of the stance phase

’AnkleVelocity fle 98 101’
Mean Ankle velocity in the transverse
plane over 98-100% of the stance phase

’AnkleVelocity rot maximum’
Maximum Ankle velocity in the trans-
verse plane for the whole stance phase

’AnkleVelocity rot minimum’
Minimum Ankle velocity in the trans-
verse plane for the whole stance phase

’AnkleVelocity rot standard deviation’
Ankle velocity standard deviation in
the transverse plane for the whole
stance phase

’AnkleVelocity rot 38 46’
Mean Ankle velocity in the transverse
plane over 38-45% of the stance phase

’AnkleVelocity rot 63 72’
Mean Ankle velocity in the transverse
plane over 63-71% of the stance phase

’AnkleVelocity rot 8 37’
Mean Ankle velocity in the transverse
plane over 8-36% of the stance phase

’AnkleVelocity rot 95 101’
Mean Ankle velocity in the transverse
plane over 95-100% of the stance phase
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Table 3 Feature list and description (continued from previous page)
Feature Name Description

’FootAcceleration fle maximum’
Maximum Foot acceleration in the
transverse plane for the whole stance
phase

’FootAcceleration fle mean’
Mean Foot acceleration in the trans-
verse plane for the whole stance phase

’FootAcceleration fle median’
Median Foot acceleration in the trans-
verse plane for the whole stance phase

’FootAcceleration fle standard deviation’
Foot acceleration standard deviation
in the transverse plane for the whole
stance phase

’FootAcceleration fle 0 5’
Mean Foot acceleration in the trans-
verse plane over 0-4% of the stance
phase

’FootAcceleration fle 24 33’
Mean Foot acceleration in the trans-
verse plane over 24-32% of the stance
phase

’FootAcceleration fle 50 61’
Mean Foot acceleration in the trans-
verse plane over 50-60% of the stance
phase

’FootAcceleration fle 6 20’
Mean Foot acceleration in the trans-
verse plane over 6-19% of the stance
phase

’FootAcceleration fle 64 75’
Mean Foot acceleration in the trans-
verse plane over 64-74% of the stance
phase

’FootAcceleration fle 91 101’
Mean Foot acceleration in the trans-
verse plane over 91-100% of the stance
phase

’FootAngles fle mean’
Mean Foot angle in the transverse
plane for the whole stance phase

’FootAngles fle median’
Median Foot angle in the transverse
plane for the whole stance phase

’FootAngles fle standard deviation’
Foot angle standard deviation in the
transverse plane for the whole stance
phase

’FootAngles fle 0 9’
Mean Foot angle in the transverse
plane over 0-8% of the stance phase

’FootAngles fle 15 26’
Mean Foot angle in the transverse
plane over 15-25% of the stance phase

’FootAngles fle 64 79’
Mean Foot angle in the transverse
plane over 64-78% of the stance phase

’FootAngles fle 94 101’
Mean Foot angle in the transverse
plane over 94-100% of the stance phase

’FootVelocity fle maximum’
Maximum Foot velocity in the trans-
verse plane for the whole stance phase
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Table 3 Feature list and description (continued from previous page)
Feature Name Description

’FootVelocity fle mean’
Mean Foot velocity in the transverse
plane for the whole stance phase

’FootVelocity fle median’
Median Foot velocity in the transverse
plane for the whole stance phase

’FootVelocity fle minimum’
Minimum Foot velocity in the trans-
verse plane for the whole stance phase

’FootVelocity fle standard deviation’
Foot velocity standard deviation in the
transverse plane for the whole stance
phase

’FootVelocity fle 0 10’
Mean Foot velocity in the transverse
plane over 0-9% of the stance phase

’FootVelocity fle 30 40’
Mean Foot velocity in the transverse
plane over 30-39% of the stance phase

’FootVelocity fle 55 67’
Mean Foot velocity in the transverse
plane over 55-66% of the stance phase

’FootVelocity fle 98 101’
Mean Foot velocity in the transverse
plane over 98-100% of the stance phase

’HipAcceleration abd maximum’
Maximum Hip acceleration in the
frontal plane for the whole stance phase

’HipAcceleration abd mean’
Mean Hip acceleration in the frontal
plane for the whole stance phase

’HipAcceleration abd median’
Median Hip acceleration in the frontal
plane for the whole stance phase

’HipAcceleration abd minimum’
Minimum Hip acceleration in the
frontal plane for the whole stance phase

’HipAcceleration abd standard deviation’
Hip acceleration standard deviation in
the frontal plane for the whole stance
phase

’HipAcceleration abd 0 8’
Mean Hip acceleration in the frontal
plane over 0-7% of the stance phase

’HipAcceleration abd 15 23’
Mean Hip acceleration in the frontal
plane over 15-22% of the stance phase

’HipAcceleration abd 29 37’
Mean Hip acceleration in the frontal
plane over 29-36% of the stance phase

’HipAcceleration abd 38 46’
Mean Hip acceleration in the frontal
plane over 38-45% of the stance phase

’HipAcceleration abd 54 62’
Mean Hip acceleration in the frontal
plane over 54-61% of the stance phase

’HipAcceleration abd 65 73’
Mean Hip acceleration in the frontal
plane over 65-72% of the stance phase

’HipAcceleration abd 77 87’
Mean Hip acceleration in the frontal
plane over 77-86% of the stance phase

’HipAcceleration fle maximum’
Maximum Hip acceleration in the
transverse plane for the whole stance
phase
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Table 3 Feature list and description (continued from previous page)
Feature Name Description

’HipAcceleration fle mean’
Mean Hip acceleration in the transverse
plane for the whole stance phase

’HipAcceleration fle median’
Median Hip acceleration in the trans-
verse plane for the whole stance phase

’HipAcceleration fle minimum’
Minimum Hip acceleration in the trans-
verse plane for the whole stance phase

’HipAcceleration fle standard deviation’
Hip acceleration standard deviation in
the transverse plane for the whole
stance phase

’HipAcceleration fle 0 12’
Mean Hip acceleration in the transverse
plane over 0-11% of the stance phase

’HipAcceleration fle 25 39’
Mean Hip acceleration in the transverse
plane over 25-38% of the stance phase

’HipAcceleration fle 51 58’
Mean Hip acceleration in the transverse
plane over 51-57% of the stance phase

’HipAcceleration fle 66 82’
Mean Hip acceleration in the transverse
plane over 66-81% of the stance phase

’HipAcceleration fle 84 101’
Mean Hip acceleration in the transverse
plane over 84-100% of the stance phase

’HipAcceleration rot maximum’
Maximum Hip acceleration in the
transverse plane for the whole stance
phase

’HipAcceleration rot mean’
Mean Hip acceleration in the transverse
plane for the whole stance phase

’HipAcceleration rot median’
Median Hip acceleration in the trans-
verse plane for the whole stance phase

’HipAcceleration rot minimum’
Minimum Hip acceleration in the trans-
verse plane for the whole stance phase

’HipAcceleration rot 0 7’
Mean Hip acceleration in the transverse
plane over 0-6% of the stance phase

’HipAcceleration rot 13 21’
Mean Hip acceleration in the transverse
plane over 13-20% of the stance phase

’HipAcceleration rot 22 29’
Mean Hip acceleration in the transverse
plane over 22-28% of the stance phase

’HipAcceleration rot 47 54’
Mean Hip acceleration in the transverse
plane over 47-53% of the stance phase

’HipAcceleration rot 72 79’
Mean Hip acceleration in the transverse
plane over 72-78% of the stance phase

’HipAcceleration rot 82 91’
Mean Hip acceleration in the transverse
plane over 82-90% of the stance phase

’HipAcceleration rot 93 94’
Mean Hip acceleration in the transverse
plane over 93-93% of the stance phase

’HipAcceleration rot 95 101’
Mean Hip acceleration in the transverse
plane over 95-100% of the stance phase

’HipAngles abd mean’
Mean Hip angle in the frontal plane for
the whole stance phase
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Table 3 Feature list and description (continued from previous page)
Feature Name Description

’HipAngles abd standard deviation’
Hip angle standard deviation in the
frontal plane for the whole stance phase

’HipAngles abd 0 11’
Mean Hip angle in the frontal plane
over 0-10% of the stance phase

’HipAngles abd 24 36’
Mean Hip angle in the frontal plane
over 24-35% of the stance phase

’HipAngles abd 40 65’
Mean Hip angle in the frontal plane
over 40-64% of the stance phase

’HipAngles abd 88 101’
Mean Hip angle in the frontal plane
over 88-100% of the stance phase

’HipAngles fle maximum’
Maximum Hip angle in the transverse
plane for the whole stance phase

’HipAngles fle standard deviation’
Hip angle standard deviation in the
transverse plane for the whole stance
phase

’HipAngles fle 33 58’
Mean Hip angle in the transverse plane
over 33-57% of the stance phase

’HipAngles fle 79 101’
Mean Hip angle in the transverse plane
over 79-100% of the stance phase

’HipAngles rot maximum’
Maximum Hip angle in the transverse
plane for the whole stance phase

’HipAngles rot minimum’
Minimum Hip angle in the transverse
plane for the whole stance phase

’HipAngles rot standard deviation’
Hip angle standard deviation in the
transverse plane for the whole stance
phase

’HipAngles rot variance’
Mean Hip angle in the transverse plane
over -% of the stance phase

’HipAngles rot 0 12’
Mean Hip angle in the transverse plane
over 0-11% of the stance phase

’HipAngles rot 20 31’
Mean Hip angle in the transverse plane
over 20-30% of the stance phase

’HipAngles rot 38 51’
Mean Hip angle in the transverse plane
over 38-50% of the stance phase

’HipVelocity abd maximum’
Maximum Hip velocity in the frontal
plane for the whole stance phase

’HipVelocity abd mean’
Mean Hip velocity in the frontal plane
for the whole stance phase

’HipVelocity abd median’
Median Hip velocity in the frontal
plane for the whole stance phase

’HipVelocity abd minimum’
Minimum Hip velocity in the frontal
plane for the whole stance phase

’HipVelocity abd standard deviation’
Hip velocity standard deviation in the
frontal plane for the whole stance phase

’HipVelocity abd 0 10’
Mean Hip velocity in the frontal plane
over 0-9% of the stance phase
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Table 3 Feature list and description (continued from previous page)
Feature Name Description

’HipVelocity abd 21 33’
Mean Hip velocity in the frontal plane
over 21-32% of the stance phase

’HipVelocity abd 36 45’
Mean Hip velocity in the frontal plane
over 36-44% of the stance phase

’HipVelocity abd 46 63’
Mean Hip velocity in the frontal plane
over 46-62% of the stance phase

’HipVelocity abd 71 83’
Mean Hip velocity in the frontal plane
over 71-82% of the stance phase

’HipVelocity abd 92 101’
Mean Hip velocity in the frontal plane
over 92-100% of the stance phase

’HipVelocity fle maximum’
Maximum Hip velocity in the trans-
verse plane for the whole stance phase

’HipVelocity fle mean’
Mean Hip velocity in the transverse
plane for the whole stance phase

’HipVelocity fle median’
Median Hip velocity in the transverse
plane for the whole stance phase

’HipVelocity fle minimum’
Minimum Hip velocity in the transverse
plane for the whole stance phase

’HipVelocity fle standard deviation’
Hip velocity standard deviation in the
transverse plane for the whole stance
phase

’HipVelocity fle 0 11’
Mean Hip velocity in the transverse
plane over 0-10% of the stance phase

’HipVelocity fle 17 26’
Mean Hip velocity in the transverse
plane over 17-25% of the stance phase

’HipVelocity fle 31 41’
Mean Hip velocity in the transverse
plane over 31-40% of the stance phase

’HipVelocity fle 49 58’
Mean Hip velocity in the transverse
plane over 49-57% of the stance phase

’HipVelocity fle 66 77’
Mean Hip velocity in the transverse
plane over 66-76% of the stance phase

’HipVelocity fle 79 88’
Mean Hip velocity in the transverse
plane over 79-87% of the stance phase

’HipVelocity fle 91 101’
Mean Hip velocity in the transverse
plane over 91-100% of the stance phase

’HipVelocity rot maximum’
Maximum Hip velocity in the trans-
verse plane for the whole stance phase

’HipVelocity rot mean’
Mean Hip velocity in the transverse
plane for the whole stance phase

’HipVelocity rot median’
Median Hip velocity in the transverse
plane for the whole stance phase

’HipVelocity rot minimum’
Minimum Hip velocity in the transverse
plane for the whole stance phase

’HipVelocity rot standard deviation’
Hip velocity standard deviation in the
transverse plane for the whole stance
phase
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Table 3 Feature list and description (continued from previous page)
Feature Name Description

’HipVelocity rot 0 3’
Mean Hip velocity in the transverse
plane over 0-2% of the stance phase

’HipVelocity rot 16 24’
Mean Hip velocity in the transverse
plane over 16-23% of the stance phase

’HipVelocity rot 27 35’
Mean Hip velocity in the transverse
plane over 27-34% of the stance phase

’HipVelocity rot 40 57’
Mean Hip velocity in the transverse
plane over 40-56% of the stance phase

’HipVelocity rot 6 14’
Mean Hip velocity in the transverse
plane over 6-13% of the stance phase

’HipVelocity rot 61 69’
Mean Hip velocity in the transverse
plane over 61-68% of the stance phase

’HipVelocity rot 73 83’
Mean Hip velocity in the transverse
plane over 73-82% of the stance phase

’HipVelocity rot 92 101’
Mean Hip velocity in the transverse
plane over 92-100% of the stance phase

’KneeAcceleration abd maximum’
Maximum Knee acceleration in the
frontal plane for the whole stance phase

’KneeAcceleration abd mean’
Mean Knee acceleration in the frontal
plane for the whole stance phase

’KneeAcceleration abd median’
Median Knee acceleration in the frontal
plane for the whole stance phase

’KneeAcceleration abd minimum’
Minimum Knee acceleration in the
frontal plane for the whole stance phase

’KneeAcceleration abd 0 5’
Mean Knee acceleration in the frontal
plane over 0-4% of the stance phase

’KneeAcceleration abd 15 22’
Mean Knee acceleration in the frontal
plane over 15-21% of the stance phase

’KneeAcceleration abd 31 45’
Mean Knee acceleration in the frontal
plane over 31-44% of the stance phase

’KneeAcceleration abd 53 66’
Mean Knee acceleration in the frontal
plane over 53-65% of the stance phase

’KneeAcceleration abd 70 76’
Mean Knee acceleration in the frontal
plane over 70-75% of the stance phase

’KneeAcceleration abd 99 101’
Mean Knee acceleration in the frontal
plane over 99-100% of the stance phase

’KneeAcceleration fle maximum’
Maximum Knee acceleration in the
transverse plane for the whole stance
phase

’KneeAcceleration fle mean’
Mean Knee acceleration in the trans-
verse plane for the whole stance phase

’KneeAcceleration fle median’
Median Knee acceleration in the trans-
verse plane for the whole stance phase

’KneeAcceleration fle minimum’
Minimum Knee acceleration in the
transverse plane for the whole stance
phase
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Table 3 Feature list and description (continued from previous page)
Feature Name Description

’KneeAcceleration fle standard deviation’
Knee acceleration standard deviation
in the transverse plane for the whole
stance phase

’KneeAcceleration fle 1 10’
Mean Knee acceleration in the trans-
verse plane over 1-9% of the stance
phase

’KneeAcceleration fle 13 21’
Mean Knee acceleration in the trans-
verse plane over 13-20% of the stance
phase

’KneeAcceleration fle 22 29’
Mean Knee acceleration in the trans-
verse plane over 22-28% of the stance
phase

’KneeAcceleration fle 30 37’
Mean Knee acceleration in the trans-
verse plane over 30-36% of the stance
phase

’KneeAcceleration fle 40 48’
Mean Knee acceleration in the trans-
verse plane over 40-47% of the stance
phase

’KneeAcceleration fle 51 66’
Mean Knee acceleration in the trans-
verse plane over 51-65% of the stance
phase

’KneeAcceleration fle 86 94’
Mean Knee acceleration in the trans-
verse plane over 86-93% of the stance
phase

’KneeAcceleration fle 99 101’
Mean Knee acceleration in the trans-
verse plane over 99-100% of the stance
phase

’KneeAcceleration rot maximum’
Maximum Knee acceleration in the
transverse plane for the whole stance
phase

’KneeAcceleration rot mean’
Mean Knee acceleration in the trans-
verse plane for the whole stance phase

’KneeAcceleration rot median’
Median Knee acceleration in the trans-
verse plane for the whole stance phase

’KneeAcceleration rot minimum’
Minimum Knee acceleration in the
transverse plane for the whole stance
phase

’KneeAcceleration rot 0 6’
Mean Knee acceleration in the trans-
verse plane over 0-5% of the stance
phase

’KneeAcceleration rot 19 32’
Mean Knee acceleration in the trans-
verse plane over 19-31% of the stance
phase

’KneeAcceleration rot 39 46’
Mean Knee acceleration in the trans-
verse plane over 39-45% of the stance
phase
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Table 3 Feature list and description (continued from previous page)
Feature Name Description

’KneeAcceleration rot 48 55’
Mean Knee acceleration in the trans-
verse plane over 48-54% of the stance
phase

’KneeAcceleration rot 58 64’
Mean Knee acceleration in the trans-
verse plane over 58-63% of the stance
phase

’KneeAcceleration rot 65 71’
Mean Knee acceleration in the trans-
verse plane over 65-70% of the stance
phase

’KneeAcceleration rot 88 95’
Mean Knee acceleration in the trans-
verse plane over 88-94% of the stance
phase

’KneeAcceleration rot 98 101’
Mean Knee acceleration in the trans-
verse plane over 98-100% of the stance
phase

’KneeAngles abd maximum’
Maximum Knee angle in the frontal
plane for the whole stance phase

’KneeAngles abd standard deviation’
Knee angle standard deviation in the
frontal plane for the whole stance phase

’KneeAngles abd 0 19’
Mean Knee angle in the frontal plane
over 0-18% of the stance phase

’KneeAngles abd 31 57’
Mean Knee angle in the frontal plane
over 31-56% of the stance phase

’KneeAngles abd 73 91’
Mean Knee angle in the frontal plane
over 73-90% of the stance phase

’KneeAngles fle mean’
Mean Knee angle in the transverse
plane for the whole stance phase

’KneeAngles fle minimum’
Minimum Knee angle in the transverse
plane for the whole stance phase

’KneeAngles fle standard deviation’
Knee angle standard deviation in the
transverse plane for the whole stance
phase

’KneeAngles fle 0 8’
Mean Knee angle in the transverse
plane over 0-7% of the stance phase

’KneeAngles fle 20 30’
Mean Knee angle in the transverse
plane over 20-29% of the stance phase

’KneeAngles fle 38 53’
Mean Knee angle in the transverse
plane over 38-52% of the stance phase

’KneeAngles fle 90 101’
Mean Knee angle in the transverse
plane over 90-100% of the stance phase

’KneeAngles rot standard deviation’
Knee angle standard deviation in the
transverse plane for the whole stance
phase

’KneeAngles rot 0 16’
Mean Knee angle in the transverse
plane over 0-15% of the stance phase
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Table 3 Feature list and description (continued from previous page)
Feature Name Description

’KneeAngles rot 32 59’
Mean Knee angle in the transverse
plane over 32-58% of the stance phase

’KneeAngles rot 86 101’
Mean Knee angle in the transverse
plane over 86-100% of the stance phase

’KneeVelocity abd maximum’
Maximum Knee velocity in the frontal
plane for the whole stance phase

’KneeVelocity abd mean’
Mean Knee velocity in the frontal plane
for the whole stance phase

’KneeVelocity abd median’
Median Knee velocity in the frontal
plane for the whole stance phase

’KneeVelocity abd minimum’
Minimum Knee velocity in the frontal
plane for the whole stance phase

’KneeVelocity abd standard deviation’
Knee velocity standard deviation in the
frontal plane for the whole stance phase

’KneeVelocity abd 23 47’
Mean Knee velocity in the frontal plane
over 23-46% of the stance phase

’KneeVelocity abd 5 15’
Mean Knee velocity in the frontal plane
over 5-14% of the stance phase

’KneeVelocity abd 53 61’
Mean Knee velocity in the frontal plane
over 53-60% of the stance phase

’KneeVelocity abd 67 76’
Mean Knee velocity in the frontal plane
over 67-75% of the stance phase

’KneeVelocity abd 87 101’
Mean Knee velocity in the frontal plane
over 87-100% of the stance phase

’KneeVelocity fle maximum’
Maximum Knee velocity in the trans-
verse plane for the whole stance phase

’KneeVelocity fle mean’
Mean Knee velocity in the transverse
plane for the whole stance phase

’KneeVelocity fle median’
Median Knee velocity in the transverse
plane for the whole stance phase

’KneeVelocity fle minimum’
Minimum Knee velocity in the trans-
verse plane for the whole stance phase

’KneeVelocity fle standard deviation’
Knee velocity standard deviation in the
transverse plane for the whole stance
phase

’KneeVelocity fle 0 7’
Mean Knee velocity in the transverse
plane over 0-6% of the stance phase

’KneeVelocity fle 11 20’
Mean Knee velocity in the transverse
plane over 11-19% of the stance phase

’KneeVelocity fle 28 37’
Mean Knee velocity in the transverse
plane over 28-36% of the stance phase

’KneeVelocity fle 52 61’
Mean Knee velocity in the transverse
plane over 52-60% of the stance phase

’KneeVelocity fle 63 71’
Mean Knee velocity in the transverse
plane over 63-70% of the stance phase
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Table 3 Feature list and description (continued from previous page)
Feature Name Description

’KneeVelocity fle 74 86’
Mean Knee velocity in the transverse
plane over 74-85% of the stance phase

’KneeVelocity fle 94 101’
Mean Knee velocity in the transverse
plane over 94-100% of the stance phase

’KneeVelocity rot maximum’
Maximum Knee velocity in the trans-
verse plane for the whole stance phase

’KneeVelocity rot mean’
Mean Knee velocity in the transverse
plane for the whole stance phase

’KneeVelocity rot median’
Median Knee velocity in the transverse
plane for the whole stance phase

’KneeVelocity rot minimum’
Minimum Knee velocity in the trans-
verse plane for the whole stance phase

’KneeVelocity rot standard deviation’
Knee velocity standard deviation in the
transverse plane for the whole stance
phase

’KneeVelocity rot 0 9’
Mean Knee velocity in the transverse
plane over 0-8% of the stance phase

’KneeVelocity rot 14 22’
Mean Knee velocity in the transverse
plane over 14-21% of the stance phase

’KneeVelocity rot 24 32’
Mean Knee velocity in the transverse
plane over 24-31% of the stance phase

’KneeVelocity rot 33 41’
Mean Knee velocity in the transverse
plane over 33-40% of the stance phase

’KneeVelocity rot 48 56’
Mean Knee velocity in the transverse
plane over 48-55% of the stance phase

’KneeVelocity rot 59 68’
Mean Knee velocity in the transverse
plane over 59-67% of the stance phase

’KneeVelocity rot 85 94’
Mean Knee velocity in the transverse
plane over 85-93% of the stance phase

’KneeVelocity rot 98 101’
Mean Knee velocity in the transverse
plane over 98-100% of the stance phase

’PelvisAngles abd maximum’
Maximum Pelvis angle in the frontal
plane for the whole stance phase

’PelvisAngles abd mean’
Mean Pelvis angle in the frontal plane
for the whole stance phase

’PelvisAngles abd standard deviation’
Pelvis angle standard deviation in the
frontal plane for the whole stance phase

’PelvisAngles abd 0 18’
Mean Pelvis angle in the frontal plane
over 0-17% of the stance phase

’PelvisAngles abd 26 38’
Mean Pelvis angle in the frontal plane
over 26-37% of the stance phase

’PelvisAngles abd 45 60’
Mean Pelvis angle in the frontal plane
over 45-59% of the stance phase

’PelvisAngles abd 65 78’
Mean Pelvis angle in the frontal plane
over 65-77% of the stance phase
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Table 3 Feature list and description (continued from previous page)
Feature Name Description

’PelvisAngles abd 93 101’
Mean Pelvis angle in the frontal plane
over 93-100% of the stance phase

’PelvisAngles fle standard deviation’
Pelvis angle standard deviation in the
transverse plane for the whole stance
phase

’PelvisAngles fle 4 24’
Mean Pelvis angle in the transverse
plane over 4-23% of the stance phase

’PelvisAngles fle 40 59’
Mean Pelvis angle in the transverse
plane over 40-58% of the stance phase

’PelvisAngles fle 88 101’
Mean Pelvis angle in the transverse
plane over 88-100% of the stance phase

’PelvisAngles rot minimum’
Minimum Pelvis angle in the transverse
plane for the whole stance phase

’PelvisAngles rot standard deviation’
Pelvis angle standard deviation in the
transverse plane for the whole stance
phase

’PelvisAngles rot 0 6’
Mean Pelvis angle in the transverse
plane over 0-5% of the stance phase

’PelvisAngles rot 14 38’
Mean Pelvis angle in the transverse
plane over 14-37% of the stance phase

’PelvisAngles rot 51 66’
Mean Pelvis angle in the transverse
plane over 51-65% of the stance phase

’PelvisAngles rot 91 101’
Mean Pelvis angle in the transverse
plane over 91-100% of the stance phase

’PelvisVelocity abd maximum’
Maximum Pelvis velocity in the frontal
plane for the whole stance phase

’PelvisVelocity abd mean’
Mean Pelvis velocity in the frontal
plane for the whole stance phase

’PelvisVelocity abd median’
Median Pelvis velocity in the frontal
plane for the whole stance phase

’PelvisVelocity abd minimum’
Minimum Pelvis velocity in the frontal
plane for the whole stance phase

’PelvisVelocity abd standard deviation’
Pelvis velocity standard deviation in
the frontal plane for the whole stance
phase

’PelvisVelocity abd 0 9’
Mean Pelvis velocity in the frontal
plane over 0-8% of the stance phase

’PelvisVelocity abd 17 28’
Mean Pelvis velocity in the frontal
plane over 17-27% of the stance phase

’PelvisVelocity abd 32 42’
Mean Pelvis velocity in the frontal
plane over 32-41% of the stance phase

’PelvisVelocity abd 48 57’
Mean Pelvis velocity in the frontal
plane over 48-56% of the stance phase

’PelvisVelocity abd 59 70’
Mean Pelvis velocity in the frontal
plane over 59-69% of the stance phase
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Table 3 Feature list and description (continued from previous page)
Feature Name Description

’PelvisVelocity abd 73 86’
Mean Pelvis velocity in the frontal
plane over 73-85% of the stance phase

’PelvisVelocity abd 97 101’
Mean Pelvis velocity in the frontal
plane over 97-100% of the stance phase

’PelvisVelocity fle maximum’
Maximum Pelvis velocity in the trans-
verse plane for the whole stance phase

’PelvisVelocity fle mean’
Mean Pelvis velocity in the transverse
plane for the whole stance phase

’PelvisVelocity fle median’
Median Pelvis velocity in the transverse
plane for the whole stance phase

’PelvisVelocity fle minimum’
Minimum Pelvis velocity in the trans-
verse plane for the whole stance phase

’PelvisVelocity fle standard deviation’
Pelvis velocity standard deviation in
the transverse plane for the whole
stance phase

’PelvisVelocity fle 0 18’
Mean Pelvis velocity in the transverse
plane over 0-17% of the stance phase

’PelvisVelocity fle 30 39’
Mean Pelvis velocity in the transverse
plane over 30-38% of the stance phase

’PelvisVelocity fle 40 48’
Mean Pelvis velocity in the transverse
plane over 40-47% of the stance phase

’PelvisVelocity fle 52 61’
Mean Pelvis velocity in the transverse
plane over 52-60% of the stance phase

’PelvisVelocity fle 77 87’
Mean Pelvis velocity in the transverse
plane over 77-86% of the stance phase

’PelvisVelocity fle 93 101’
Mean Pelvis velocity in the transverse
plane over 93-100% of the stance phase

’PelvisVelocity rot maximum’
Maximum Pelvis velocity in the trans-
verse plane for the whole stance phase

’PelvisVelocity rot mean’
Mean Pelvis velocity in the transverse
plane for the whole stance phase

’PelvisVelocity rot median’
Median Pelvis velocity in the transverse
plane for the whole stance phase

’PelvisVelocity rot minimum’
Minimum Pelvis velocity in the trans-
verse plane for the whole stance phase

’PelvisVelocity rot standard deviation’
Pelvis velocity standard deviation in
the transverse plane for the whole
stance phase

’PelvisVelocity rot 0 7’
Mean Pelvis velocity in the transverse
plane over 0-6% of the stance phase

’PelvisVelocity rot 12 25’
Mean Pelvis velocity in the transverse
plane over 12-24% of the stance phase

’PelvisVelocity rot 33 46’
Mean Pelvis velocity in the transverse
plane over 33-45% of the stance phase

’PelvisVelocity rot 56 70’
Mean Pelvis velocity in the transverse
plane over 56-69% of the stance phase
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Table 3 Feature list and description (continued from previous page)
Feature Name Description

’PelvisVelocity rot 89 101’
Mean Pelvis velocity in the transverse
plane over 89-100% of the stance phase

’ThoraxAngles abd standard deviation’
Thorax angle standard deviation in the
frontal plane for the whole stance phase

’ThoraxAngles abd 0 7’
Mean Thorax angle in the frontal plane
over 0-6% of the stance phase

’ThoraxAngles abd 31 59’
Mean Thorax angle in the frontal plane
over 31-58% of the stance phase

’ThoraxAngles abd 90 101’
Mean Thorax angle in the frontal plane
over 90-100% of the stance phase

’ThoraxAngles fle standard deviation’
Thorax angle standard deviation in the
transverse plane for the whole stance
phase

’ThoraxAngles fle 0 11’
Mean Thorax angle in the transverse
plane over 0-10% of the stance phase

’ThoraxAngles fle 32 56’
Mean Thorax angle in the transverse
plane over 32-55% of the stance phase

’ThoraxAngles fle 90 101’
Mean Thorax angle in the transverse
plane over 90-100% of the stance phase

’ThoraxAngles rot standard deviation’
Thorax angle standard deviation in the
transverse plane for the whole stance
phase

’ThoraxAngles rot 0 9’
Mean Thorax angle in the transverse
plane over 0-8% of the stance phase

’ThoraxAngles rot 27 55’
Mean Thorax angle in the transverse
plane over 27-54% of the stance phase

’ThoraxAngles rot 89 101’
Mean Thorax angle in the transverse
plane over 89-100% of the stance phase

’ThoraxVelocity abd maximum’
Maximum Thorax velocity in the
frontal plane for the whole stance phase

’ThoraxVelocity abd mean’
Mean Thorax velocity in the frontal
plane for the whole stance phase

’ThoraxVelocity abd median’
Median Thorax velocity in the frontal
plane for the whole stance phase

’ThoraxVelocity abd minimum’
Minimum Thorax velocity in the
frontal plane for the whole stance phase

’ThoraxVelocity abd standard deviation’
Thorax velocity standard deviation in
the frontal plane for the whole stance
phase

’ThoraxVelocity abd 0 7’
Mean Thorax velocity in the frontal
plane over 0-6% of the stance phase

’ThoraxVelocity abd 15 29’
Mean Thorax velocity in the frontal
plane over 15-28% of the stance phase

’ThoraxVelocity abd 37 49’
Mean Thorax velocity in the frontal
plane over 37-48% of the stance phase
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Table 3 Feature list and description (continued from previous page)
Feature Name Description

’ThoraxVelocity abd 63 78’
Mean Thorax velocity in the frontal
plane over 63-77% of the stance phase

’ThoraxVelocity abd 90 101’
Mean Thorax velocity in the frontal
plane over 90-100% of the stance phase

’ThoraxVelocity fle maximum’
Maximum Thorax velocity in the trans-
verse plane for the whole stance phase

’ThoraxVelocity fle mean’
Mean Thorax velocity in the transverse
plane for the whole stance phase

’ThoraxVelocity fle median’
Median Thorax velocity in the trans-
verse plane for the whole stance phase

’ThoraxVelocity fle minimum’
Minimum Thorax velocity in the trans-
verse plane for the whole stance phase

’ThoraxVelocity fle standard deviation’
Thorax velocity standard deviation in
the transverse plane for the whole
stance phase

’ThoraxVelocity fle 0 7’
Mean Thorax velocity in the transverse
plane over 0-6% of the stance phase

’ThoraxVelocity fle 13 26’
Mean Thorax velocity in the transverse
plane over 13-25% of the stance phase

’ThoraxVelocity fle 39 49’
Mean Thorax velocity in the transverse
plane over 39-48% of the stance phase

’ThoraxVelocity fle 73 85’
Mean Thorax velocity in the transverse
plane over 73-84% of the stance phase

’ThoraxVelocity fle 96 101’
Mean Thorax velocity in the transverse
plane over 96-100% of the stance phase

’ThoraxVelocity rot maximum’
Maximum Thorax velocity in the trans-
verse plane for the whole stance phase

’ThoraxVelocity rot mean’
Mean Thorax velocity in the transverse
plane for the whole stance phase

’ThoraxVelocity rot median’
Median Thorax velocity in the trans-
verse plane for the whole stance phase

’ThoraxVelocity rot minimum’
Minimum Thorax velocity in the trans-
verse plane for the whole stance phase

’ThoraxVelocity rot standard deviation’
Thorax velocity standard deviation in
the transverse plane for the whole
stance phase

’ThoraxVelocity rot 0 8’
Mean Thorax velocity in the transverse
plane over 0-7% of the stance phase

’ThoraxVelocity rot 19 34’
Mean Thorax velocity in the transverse
plane over 19-33% of the stance phase

’ThoraxVelocity rot 47 61’
Mean Thorax velocity in the transverse
plane over 47-60% of the stance phase

’ThoraxVelocity rot 64 82’
Mean Thorax velocity in the transverse
plane over 64-81% of the stance phase
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6.4 Clustering Models

In line with the no free lunch theorem (Wolpert; 1996), a wide range of clustering models
were explored in this project in order to identify a suitable clustering solution in the foot-
strike patterns. All clustering models with the exception of HDBSCAN were implemented
using scikit-learn (Pedregosa et al.; 2011).
The two most widely studied clustering models are partitional and hierarchical clustering
(Aggarwal and Reddy; 2013). Similarly, within the biomechanics domain, it would appear
the k-means and Hierarchical clustering are the most widely utilised algorithms. As such,
these were the first two models implemented in this project.

K-means: K-means is the most widely used partitional clustering model (Aggarwal and
Reddy; 2013), which aims to minimize the within sum of squares of the clusters. K-means
tends to perform very quickly however it susceptible to noise, it has an assumption of
convex clusters and requires the number of clusters to be defined in advance (VanderPlas;
2016). Within this current project, K-means was implemented using the default scikit
learn algorithm, ‘elkan’ with 300 iterations. To initialise the centroids, the k-means++
algorithm was implemented as this improves both the speed and the accuracy of k-means
in comparison to random initialisation (Arthur and Vassilvitskii; 2007). In order to
account for the variation in the initialisation, this model was implemented 10 times and
the solution with the best inertia was retained. K-means was implemented using k of size
2-5.

Hierarchical clustering: Hierarchical clustering is stable clustering model that does
not necessarily require the number of clusters to be defined in advance and does not have
an assumption of globular or convex clusters (VanderPlas; 2016). However, it can also be
influenced by noise. Within this project, Hierarchical clustering was implemented using
the four linkage options available in the scikit-learn package (‘ward’, ‘complete’, ‘average’
and ‘single’). Rather than subjectively interpreting a dendrogram, hierarchical clustering
was implement using predefined number of clusters to form using k of size 2-5.

Mean-Shift: Mean-shift is a popular nonparametric clustering technique that is both
density based and seen as a variation of the K-means model (Aggarwal and Reddy; 2013).
It aims to determine local maxima present in the density of the data through an iterative
convergence routine. It does not cluster every data point and as such, it is less susceptible
to noise, however, it does aim for globular clusters. Mean-shift has a single key parameter
to select;’ bandwidth’, which dictates the size of the region to search through in order to
identify groups of high density. Within this project, the bandwidth was estimated using
the scikit-learn function ‘estimate bandwidith’, which identifies the best bandwidth given
the statistical properties of the dataset.

Spectral Clustering: Spectral clustering is a graph-based method which learns the
clusters in the data by following the underlying manifolds (Aggarwal and Reddy; 2013).
It also does not assume globular clusters, but it is sensitive to noise in the data. Within
this current project Spectral clustering was performed by constructing an a�nity matrix
using a radial basis function kernel. The kernel coe�cient was set to one, and the number
of eigen vectors was set to the number of clusters as per default in the scikit-learn package.
Cluster labels were assigned using discretization, which is less sensitive to initialization
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in comparison to k-means. Finally, spectral clustering was assessed using a predefined
number of clusters to form with k of size 2-5.

HDBSCAN: HDBSCAN is a density-based method that is an evolution of the popular
DBSCAN model. Like its predecessor, HDBSCAN does not require clusters to be globular
and is not largely a↵ected by noise (Aggarwal and Reddy; 2013). However, in comparison
to the DBSCAN model, HDBSCAN can handle clusters of varying densities. Within this
project, HDBSCAN was implemented using the HDBSCAN package (McInnes et al.;
2017). The two main parameters to select in this algorithm are min cluster size and min
samples which control the minimum cluster size you wish to consider a cluster and how
conservative you want you clustering to be respectively. Within this project, min cluster
size was assessed for 2,4 and 6% of the total sample size (n), while min samples was
assessed from 1 to log(n).

OPTICS: Similar to HDBCSAN, OPTICS is a density-based method that is an evol-
ution of the popular DBSCAN model. However, in comparison to the DBSCAN model,
OPTICS relaxes the requirements to specify a single distance value in which two samples
datapoints are considered neighbours (Aggarwal and Reddy; 2013). OPTICS does not
require clusters to be globular and is not largely a↵ected by noise. Within this current
project, a single clustering parameter (min cluster size), was evaluated for five values
(5,10,15,20,25) which controls the number of samples required for a point to considered
a core point.

Traditional Approach: The final grouping was conducted using the traditional ap-
proach of identifying foot-strike types by the angle of the foot at the instance of initial
contact (Altman and Davis; 2012). Using this approach a forefoot strike would be clas-
sified when the foot angle was <- 1.6�, a rearfoot strike would be classified with a foot
angle of >8.0�, while a mid-foot strike is defined when the foot angle was between these
two thresholds.

6.5 Classification Models

Given that there is no such thing as a universally best machine learning algorithm (Wolp-
ert; 1996), six classification models were assessed in this project. The justification for
there choice and hyperparameters are presented below.

Näıve Bayes: Firstly, Näıve Bayes was implemented as parametric generative classifier
(Kelleher et al.; 2015), that tends to produce fast and simple classifications with reas-
onable accuracy. In addition, it provides probabilistic predictions that are often easily
interpretable. As such Näıve Bayes is commonly implemented as the first initial classifier,
however it is recognised that given the stringent assumptions Näıve Bayes makes about
data, other more complicated models may outperform it (VanderPlas; 2016).
Within this project, a single tuning parameter ‘var smoothing ‘was evaluated over 100
log spaced values between 0 and -9. This controls the portion of the largest variance of
all features that is added to variances for calculation stability.
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Elastic Net Logistic Regression: Logistic Regression was implemented as paramet-
ric discriminative classifier (Kelleher et al.; 2015), that like the Näıve Bayes model, tends
to results in a highly interpretable model that is fast to train. However, with increasing
dimensionality of data, there is increased risk of overfitting. To increase the generalisab-
ility of a logistic regression model and reduce its variance, Elastic Net regularisation was
implemented which combines both lasso (L1) and Ridge (L2) regularisations (Zou and
Hastie; 2005).
Elastic net regularization is a linear combination of the lasso (L1) and Ridge (L2) regu-
larization (Zou and Hastie; 2005). Within this current project, 15 regularization values
were tested from 1e-6 to 1 along with 10 values of the l1 ratio tuning parameters from
0.1 to 1.

Bagged SVM: Support Vector Machines were implemented as a non-parametric dis-
criminative and non-linear classifier (Kelleher et al.; 2015). As they are only a↵ected by
points near the margin of their boundary, they tend to work well with high dimensional
data (VanderPlas; 2016). Despite this, scaling to large number of samples can be com-
putationally prohibitive. As such, within this current project, Support Vector Machines
was implemented using bootstrap aggregated ensembles. The advantage of this approach
is that it speeds up convergence to a suitable solution, and theoretically several weak
learners tend to outperform one strong learner (VanderPlas; 2016).
For the bagged SVM, the hyperparameters were focused on the base classifier. As such,
four values of C and gamma were evaluated (0.1,1,10,100) which control the size of the
hyperplane margin and the level of curvature in the hyperplane respectively. In addition,
three nonlinear kernels were tested [gaussian kernel (rbf), polynomial kernel (ploy) and
sigmoid kernel (sigmoid)].

Random Forest and AdaBoost: Random Forest and Adaboost were implemented
as nonparametric, discriminative ensemble methods (Kelleher et al.; 2015). Both ap-
proaches are ensembles of decision trees. The disadvantage of decision trees is that they
are prone to overfitting the training data. Ensemble learning reduce this bias, by training
multiple weak learners combining the findings for a better classification. Random Forest
is an ensemble of randomised decision trees that are trained in parallel and the results
are aggregated. In contrast Adaboost is an ensemble of decision trees that are trained
sequentially with each subsequent tree increasing the weight of misclassified data points
(Geéron; 2017).

The Random Forest model was tuned with a combination of six hyperparameters.
Four values were evaluated for the min samples per split and min samples per leaf para-
meters (0.005, 0.01, 0.05 and 0.10 multiplied by the number of samples). These control
the minimum required number of observations in a node in order to split it and the
minimum number of observations in a node after splitting it respectively. Six values of
max dept were considered (3, 4, 5, 6, 7, 8) which control the longest path between the
root node and the leaf node in a tree. Four values for the number of estimators were
tested (300, 500, 800, 1000) which control the number of base trees in the random forest.
The maximum number of features to consider when looking for the best split was set at
either the

p
(number of features) or log2(number of features). Finally, the measure used

to determine the quality of each split in a tree was evaluated over two metrics (gini and
entropy).
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For the Adaboost algorithm, the base estimator was set as a decision tree with variations
in its max depth ranging from 1 to 6. Similar to the Random Forest model, the number
of estimators was evaluated over four values (300, 500, 800, 1000). Finally, eight values
controlling the learning rate of subsequent tree iterations were evaluated (0.001, 0.01,
0.05, 0.1, 0.25, 0.50, 0.75, 1.0).

Stacked Ensemble: Finally, a weighted, stacked ensemble model was implemented
which performs a weighted majority classification from the aforementioned models (Geéron;
2017). Given that Scikit-Learn does not directly support weighted stacking, a pragmatic
equation was proposed and utilised in this current project. After firstly transforming
predicted negative classes from zero to minus one, the aggregative classification was cal-
culated as follows:
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Each observation (x), is classified as a 0 should the sum of the weighted voting be less
than zero, otherwise it is a 1. Where vxc is the class vote for the xth observation by the cth

classifier.
R
ROCc is the average area under the receiver operator curve for cth classifier

across the one hundred bootstrapped samples.
���
h
P̂xc(1)� jc

i��� is the classifier confidence

for the class vote for the xth observation, where P̂xc(1) is the estimated probability by the
c
th classifier of the x

th observation being a positive class (1) and jc is the classification
cut o↵ probability as defined by Youden’s J statistic. Finally, w is an exponent weighting
bias, that would increase the weighting placed on the most confident and best predictor
as w increases. Within this current project, w was incremented from 0 -100 in increments
of five, with the aim of optimising the overall Youden’s J statistic.

6.6 Clustering Evaluation

All plots from the evaluated clustering solutions are presented below (Figure 115 - Figure
120).
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Figure 115: Visualising the cluster solution labels overlayed on the first two principle components of the data (1 of 6)
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Figure 116: Visualising the cluster solution labels overlayed on the first two principle components of the data (2 of 6)

124



Figure 117: Visualising the cluster solution labels overlayed on the first two principle components of the data (3 of 6)
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Figure 118: Visualising the cluster solution labels overlayed on the first two principle components of the data (4 of 6)
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Figure 119: Visualising the cluster solution labels overlayed on the first two principle components of the data (5 of 6)
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Figure 120: Visualising the cluster solution labels overlayed on the first two principle components of the data (6 of 6)
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6.6.1 Post hoc tests for Adjusted Rand Index

Full post hoc findings for the bootstrapped Adjusted Rand Index (ARI) scores are presen-
ted in table 4. A Games-Howell post hoc test indicated the only approaches that was
not statistically significantly di↵erent from another was the Hierarchical vs Spectral com-
parison (p = 0.35, D = 0.26). All other pairwise comparisons were statistically di↵erent
with e↵ect sizes ranging from medium to large (p <0.05, D = 0.42 – 4.17).

Table 4: Post hoc pair wise comparison for the bootstrapped ARI results

Comparison Mean Di↵erence p-val Cohen’s D
Hierarchical vs. K-means -0.001 <0.01 -0.91
Hierarchical vs. OPTICS -0.015 <0.01 -3.67
Hierarchical vs. Spectral 0.001 0.35 -0.26
Hierarchical vs. Taditional 0.002 <0.01 1.66
K-means vs. OPTICS -0.013 <0.01 -3.28
K-means vs. Spectral 0.001 0.02 0.42
K-means vs. Taditional 0.003 <0.01 2.47
OPTICS vs. Spectral 0.014 <0.01 3.35
OPTICS vs. Taditional 0.016 <0.01 4.17
Spectral vs. Taditional 0.002 <0.01 1.24

129



6.7 Classification Evaluation

This section presents the full posthoc comparisons for the bootstrap comparisons of ac-
curacy, specificity and sensistivity. Post hoc comparisons were conducted using Games-
Howell tests given the hetrogenity in the variances across the groups. The Games-Howell
test is similar to the Tukey HSD test, in that it uses Tukey’s studentized range distribu-
tion but is based on Welch’s degrees of freedom correction. It is robust to both unequal
variances and non-normality. Standardised e↵ect sizes were reported using Cohen’s D.

6.7.1 Accuracy

Full post hoc findings for the bootstrapped accuracy analysis are presented in table 5.
A Games-Howell post hoc test indicated the only approaches that were not statistically
significantly di↵erent from another were AdaBoost vs Näıve Majority comparison (p =
0.29, D = 0.31) along with Random Forest vs Stacked Ensemble comparison (p = 0.89,
D = 0.17). All other pairwise comparisons were statistically di↵erent with large e↵ect
sizes (p <0.01, D = 1.42 – 27.95)

Table 5: Post hoc pair wise comparison for the bootstrapped accuracy results

Comparison Mean Di↵erence p-val Cohen’s D
AdaBoost vs. Elastic Net 0.06 <0.01 6.86
AdaBoost vs. Naive Bayes 0.03 <0.01 1.73
AdaBoost vs. Naive Majority 0.00 0.29 0.31
AdaBoost vs. Random Forest -0.06 <0.01 -3.51
AdaBoost vs. SVM Bag 0.14 <0.01 19.30
AdaBoost vs. Stacked Ensemble -0.05 <0.01 -3.49
Elastic Net vs. Naive Bayes -0.03 <0.01 -1.42
Elastic Net vs. Naive Majority -0.06 <0.01 -8.50
Elastic Net vs. Random Forest -0.12 <0.01 -7.17
Elastic Net vs. SVM Bag 0.08 <0.01 11.84
Elastic Net vs. Stacked Ensemble -0.11 <0.01 -7.38
Naive Bayes vs. Naive Majority -0.03 <0.01 -1.68
Naive Bayes vs. Random Forest -0.09 <0.01 -3.86
Naive Bayes vs. SVM Bag 0.11 <0.01 6.06
Naive Bayes vs. Stacked Ensemble -0.09 <0.01 -3.82
Naive Majority vs. Random Forest -0.06 <0.01 -3.86
Naive Majority vs. SVM Bag 0.14 <0.01 27.95
Naive Majority vs. Stacked Ensemble -0.06 <0.01 -3.88
Random Forest vs. SVM Bag 0.20 <0.01 12.77
Random Forest vs. Stacked Ensemble 0.00 0.89 0.17
SVM Bag vs. Stacked Ensemble -0.20 <0.01 -13.39
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6.7.2 Specificity

Full post hoc findings for the bootstrapped specificity analysis are presented in table 6.
Games-Howell post hoc tests indicated that all methods were statistically significantly
di↵erent from one another (p <0.01), with the exception of the Random Forest model
vs Stacked Ensemble comparison (p = 0.71, D = 0.2) and the Naive Bayes vs Random
Forest comparison (p = 0.32, D = 0.3).

Table 6: Post hoc pair wise comparison for the bootstrapped specificity results

Comparison Mean Di↵erence p-val Cohen’s D
AdaBoost vs. Elastic Net -0.03 <0.01 -1.1
AdaBoost vs. Naive Bayes 0.08 <0.01 1.3
AdaBoost vs. Random Forest 0.06 <0.01 1.1
AdaBoost vs. SVM Bag 0.23 <0.01 10.7
AdaBoost vs. Stacked Ensemble 0.04 <0.01 0.9
Elastic Net vs. Naive Bayes 0.11 <0.01 1.8
Elastic Net vs. Random Forest 0.09 <0.01 1.7
Elastic Net vs. SVM Bag 0.26 <0.01 16.8
Elastic Net vs. Stacked Ensemble 0.07 <0.01 1.6
Naive Bayes vs. Random Forest -0.02 0.32 -0.3
Naive Bayes vs. SVM Bag 0.16 <0.01 2.7
Naive Bayes vs. Stacked Ensemble -0.04 <0.01 -0.5
Random Forest vs. SVM Bag 0.18 <0.01 3.7
Random Forest vs. Stacked Ensemble -0.01 0.71 -0.2
SVM Bag vs. Stacked Ensemble -0.19 <0.01 -4.4
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6.7.3 Sensitivity

Full post hoc findings for the bootstrapped specificity analysis are presented in table 7.
Games-Howell post hoc tests indicated that all methods were statistically significantly
di↵erent from one another (p <0.01), with the exception of the Random Forest model vs
Stacked Ensemble comparison (p = 0.78, D = 0.20) and the AdaBoost vs Naive Bayes
comparison (p = 0.9, D = 0.12).

Table 7: Post hoc pair wise comparison for the bootstrapped sensitivity results

Comparison Mean Di↵erence p-val Cohen’s D
AdaBoost vs. Elastic Net 0.11 <0.01 4.38
AdaBoost vs. Naive Bayes 0.01 0.9 0.12
AdaBoost vs. Random Forest -0.12 <0.01 -2.30
AdaBoost vs. SVM Bag 0.09 <0.01 4.65
AdaBoost vs. Stacked Ensemble -0.11 <0.01 -2.19
Elastic Net vs. Naive Bayes -0.10 <0.01 -1.65
Elastic Net vs. Random Forest -0.23 <0.01 -4.49
Elastic Net vs. SVM Bag -0.01 <0.01 -0.89
Elastic Net vs. Stacked Ensemble -0.21 <0.01 -4.54
Naive Bayes vs. Random Forest -0.13 <0.01 -1.68
Naive Bayes vs. SVM Bag 0.09 <0.01 1.47
Naive Bayes vs. Stacked Ensemble -0.11 <0.01 -1.56
Random Forest vs. SVM Bag 0.21 <0.01 4.39
Random Forest vs. Stacked Ensemble 0.01 0.78 0.20
SVM Bag vs. Stacked Ensemble -0.20 <0.01 -4.45
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