N National
College o
Ireland

The Identification of Foot-Strike Patterns
and Prediction of Running Related Injuries -
Configuration Manual

MSc Research Project
Data Analytics

Shane Gore
Student ID: x18174175

School of Computing
National College of Ireland

Supervisor: Dr Catherine Mulwa

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Shane Gore
Student ID: x18174175
Programme: Data Analytics
Year: 2020
Module: MSc Research Project
Supervisor: Dr Catherine Mulwa

Submission Due Date:

17/08,/2020

Project Title:

The Identification of Foot-Strike Patterns and Prediction of
Running Related Injuries - Configuration Manual

Word Count:

15530

Page Count:

136

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: // /
Date: 17th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [
each project (including multiple copies).

You must ensure that

a copy on computer.

your own reference and in case a project is lost or mislaid. It is not sufficient to keep

you retain a HARD COPY of the project, both for | J

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

The Identification of Foot-Strike Patterns and
Prediction of Running Related Injuries -
Configuration Manual

Shane Gore
x18174175

1 Introduction

This configuration manual contains the detailed steps required to undertake the project
entitled; “The Identification of Foot-Strike Patterns and Prediction of Running Related
Injuries”. The remaining document is structured as follows:

e Section 2 gives an overview of the enviromental configuration. This includes the
hardware which was utilised for this project along with the software configurations
for the primary tools utilised. These include; Vicon Nexus, MATLAB and Python.

e Section 3 presents the ICT implementation for the pre-processing steps. This in-
cludes the motion capture pre-processing, the general pre-processing and waveform
screening.

e Section 4 presents the ICT implementation for the clustering solutions.
e Section 5 presents the ICT implementation for the predictive classification solutions.

e Section 6 presents addtional materal for the technical documentation. This includes
additional literature review, methodologies and results.

2 Environmental Configuration

This section includes the description and setup required for the hardware and software
utilised in this project.

2.1 Hardware Configuration

All data processing was tested on a Window 10 PC (Figure 1).

Device specifications

Device name MSI
Processor Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz
2.80 GHz

Installed RAM 16.0 GB

Device ID BC334345-DDAA-4F38-A97F-09BAASD864D3
Product ID 00325-96070-97705-AA0EM
System type 64-bit operating system, x64-based processor

Pen and touch No pen or touch input is available for this display

Figure 1: Windows PC device specification

2.2 Software Configurations

The primary softwares utilised in this project include Vicon Nexus (2.10, UK), MATLAB
(R2018B, USA) and Python (3.7). Additionally, Microsoft Office applications (16.01);
Word, Excel and PowerPoint were utilised along with TexWork 0.6.3 to produce the
project documentation and Mendeley (1.19.5) was utilised as a reference manager.

2.2.1 Vicon Nexus

Vicon Nexus is the software utilised to capture and process the motion capture data. The
following steps are required to install Nexus:

1. Navigate to the Vicon Website and locate the download section for Vicon Nexus
(https://www.vicon.com/software /nexus/?section=downloads). Enter your email
address and download the software (Figure 2).

NICON APPUCATIONS SOFTWARE HARDWARE SUPPORT ABOUTUS NEws | BUIDMYSSTEM QO

TECHNICAL INFORMATION

SPECIFICATION DOCUMENTATION DOWNLOADS RELATED HARDWARE

Download Nexus

Download File
Email
Versions [1 would like to sign up to receive email updates from Vicon
Nexus 2103 [By clicking submit you are agreeing to our website terms and conditions and our privacy policy
Nexus 2.102
P T — DOWNLOAD SOFTWARE
(o i
OpenGL Nexus_2.10.3
Nexus 2.10 File Name: Nexus_2.10.3.125736h.zip

Nexus 2.9.3 o - - -
X Vicon Nexus: Vicons all-inclusive modeling and processing tool for movement analysis.

Figure 2: Vicon Nexus download location

2. After downloading and unzipping the files, double click on the set up application
(Figure 3).

Name Date modified Type Size

351 Bonjour3_win32 Windows Installer ...
351 Bonjour3_win64
g%l FirmwareUpdateUtility

| Nexus_2.10.3.125736h_x86.msi_
g%l ProEclipselnstaller
S;! SentinelSystemDriverlnstaller7.5.8
ﬂ? Vaultinstaller 9/0
) ve_redistx64 29/07/2020 16:21
[8g) Vicon_Nexus_Setup 29/0
ﬂ? ViconVideoViewerlnstaller32 29/0

Windows Installer
Windows Installer

MSI_Fil

Windows Installer

Windows Installer

Application

Windows Installer

Figure 3: Launch set up wizard

3. This will launch the set-up wizard. Press Next (Figure 4).

jﬁl Vicon Nexus 2.10.3 Setup

Welcome to the Vicon Nexus 2.10.3
Setup Wizard

The Setup Wizard will install Vicon Nexus 2.10.3 on your
computer. Click Next to continue or Cancel to exit the Setup
Wizard.

Figure 4: First step of set up

4. Agree to the terms of the licence to continue and press Next (Figure 5).

jﬁ] Vicon Nexus 2.10.3 Setup - X
End-User License Agreement
Please read the following license agreement carefully VICON
LICENSE AGREEMENT A

This section contains a copy of the license agreement with the Vicon
company from which you purchased your Vicon application software:

* For Vicon Motion Systems Inc Customers
* For Vicon Motion Systems Ltd, Agents, and Distributor Customers

Important: This copy of the license agreement is supplied for your
convenience. The definitive agreement is the software
license that is attached to the Vicon terms and conditions of
sale.

[A1 accept the terms in the License Agreement

Print Back Cancel

Figure 5: Licence agreement

5. Press Install to finish the installation process (Figure 6).

Vicon Nexus 2.10.3 Setup = X

Ready to install Vicon Nexus 2.10.3 NICON

Click Install to begin the installation. Click Back to review or change any of your
installation settings. Click Cancel to exit the wizard.

Back Install Cancel

Figure 6: Final installation step

2.2.2 MATLAB

Within this project, MATLAB was utilised in extraction of the biomechanical data from
the C3D files created by the Vicon Nexus Software, event detection and stride segment-
ation. To install MATLAB, the following steps are required.

1. Navigate to the website (https://uk.mathworks.com/downloads/) and download the
installation of MATLAB. In this project, MATLAB (2018B) was utilised (Figure 7).

G MathWorks - Google Search X 4\ R2018b - Updates to the MATL: X + = =) X
< C @ hitpsy/in.mathworks.com/products/new_products/latest_features.htmi?s tid=hp_release_2018b ¥ & Ggo BM@E | S
R2018b at a Glance Seatch MatnWorks o
Resources
@ Release Notes License-Related Changes gg System Requirements
o Why Upgrade? ﬁ Software Maintenance Service) Previous Releases H
ot
Updates by Product
MATLAB Product Family Simulink Product Family Code Generation .

Figure 7: MATLAB download location

2. Once downloaded and unzipped, double click the setup and login with your Math-
Works Account or use an Installation Key (Figure 8).

4\ MathWorks Installer - [m] X
Select installation method
@® 1ogin with a MathWorks Account Connection Settings S I\YB .
Requires an Internet connection H\/IL LINK
R2018b

(O Use a File Installation Key what s this?

No Internet connection required

MathWorks products are protected by patents (see mathworks.com/patents) and copyright laws.

By entering into the Software License Agreement that follows, you will also agree to additional O
restrictions on your use of these programs. Any unauthorized use, reproduction, or distribution

may result in civil and criminal penalties.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. Please see

mathworks.com/trademarks for a list of additional trademarks. Other product or brand names
may be trademarks or registered trademarks of their respective holders.

Figure 8: First step of installation

3. To continue with the installation, you will be required to accept the licence agree-
ment (Figure 9).

4\ License Agreement - [m] X
The MathWorks, Inc. Software License Agreement "
IMPORTANT NOTICE

THIS IS THE SOFTWARE LICENSE AGREEMENT (THE "AGREEMENT") OF THE MATHWORKS, INC. ("MATHWORKS") FOR
THE PROGRAMS. THE PROGRAMS ARE LICENSED, NOT SOLD. READ THE TERMS AND CONDITIONS OF THIS AGREEMENT
CAREFULLY BEFORE COPYING, INSTALLING, OR USING THE PROGRAMS. FOR INFORMATION ABOUT YOUR LICENSE
OFFERING, CONSULT THE PROGRAM OFFERING GUIDE PRESENTED AFTER THE AGREEMENT.

THE AGREEMENT REPRESENTS THE ENTIRE AGREEMENT BETWEEN YOU (THE "LICENSEE") AND MATHWORKS
CONCERNING YOUR RIGHTS TO INSTALL AND USE THE PROGRAMS UNDER THE LICENSE OFFERING YOU ACQUIRE.

YOU MUST ACCEPT THE TERMS OF THIS AGREEMENT TO COPY, INSTALL, OR USE THE PROGRAMS. IF YOU DO NOT
ACCEPT THE LICENSE TERMS, THEN YOU MUST IMMEDIATELY STOP USING THE PROGRAMS.

IF YOU TERMINATE THIS LICENSE FOR ANY REASON WITHIN THIRTY (30) DAYS OF PROGRAM DELIVERY (THE
"ACCEPTANCE PERIOD") YOU WILL RECEIVE A FULL REFUND FROM THE AUTHORIZED DISTRIBUTOR FROM WHOM YOU

O Ne

Do you accept the terms of the license agreement? () ¥Yes

Figure 9: Licence agreement

4. Choose the installation location and press next to install (Figure 10).

4\ Folder Selection - [m] X

Choose installation folder:

e | MATLAB ’
SIMULINK
Restore Default Folder R2018b

Figure 10: InstallationlLocation

2.2.3 Python

Within this project, Python was utilised for most of the ICT solution. This included, data
pre-processing, feature engineering, feature selection, data modelling and visualisation.
To install python, the following steps are required.

1. Python was installed with the Anaconda Distribution. Navigate to the Anaconda
website (https://www.anaconda.com/products/individual) and download the 3.6
Distribution for the OS required. Within this current project, python was down-
loaded Windows (Figure 11).

Anaconda Installers

Windows &8 MacOs & Linux &

Figure 11: Python download location

2. Once downloaded, double click on the file to launch to the set up (Figure 12).

O Anaconda3 5.0.1 (64-bit) Setup - X

Welcome to Anaconda3 5.0.1
(64-bit) Setup

Setup will guide you through the installation of Anaconda3
5.0.1 (64-bit).

ANACONDA Itis recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your

computer.

Click Next to continue.

I Next > | » Cancel

Figure 12: First step of installation

3. Agree to the licence agreement to proceed (Figure 13).

O Anaconda3 5.0.1 (64-bit) Setup -
29 License Agreement
..) ANACONDA Please review the license terms before installing Anaconda3 5.0.1
(64-bit).

Press Page Down to see the rest of the agreement.

==== ==== ===== ======= A
Anaconda End User License Agreement
Copyright 2015, Anaconda, Inc.
All rights reserved under the 3-clause BSD License:
Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

v

If you accept the terms of the agreement, dlick I Agree to continue. You must accept the
agreement to install Anaconda3 5.0.1 (64-bit).

Anaconda, Inc,

<onck | tgee] [Conce

Figure 13: Licence agreement

4. To finish installation, register Anaconda as the default Python (Figure 14).

2 Anaconda3 5.0.1 (64-bit) Setup — X

P Advanced Installation Options
'.) ANACONDA Customize how Anaconda integrates with Windows

Advanced Options

[] Add Anaconda to my PATH environment variable

Not recommended. Instead, open Anaconda with the Windows Start
menu and select "Anaconda (64-bit)". This "add to PATH" option makes
Anaconda get found before previously installed software, but may
cause problems requiring you to uninstall and reinstall Anaconda.

Register Anaconda as my default Python 3.6

This will allow other programs, such as Python Tools for Visual Studio
PyCharm, Wing IDE, PyDev, and MSI binary packages, to automatically
detect Anaconda as the primary Python 3.6 on the system.

Anaconda, Inc,

< Back v Install | Cancel

Figure 14: Final step of installation

3 ICT Implementation (Preprocesing)

This section details the preprocessing steps that were conducted as part of this project.
This includes:

e Motion capture pre-processing which involves the tracking, modelling and gap filling
of motion capture data using Vicon Nexus software.

e Data extraction and segmentation into stance phases.
e Waveform screening using a custom application.

e General data pre-processing which includes landmark registration, feature genera-
tion, screening for outliers and imputation.

3.1 Motion Capture Preprocessing

Motion capture data was preprocessed using Vicon Nexus software. After data capture,
marker trajectories taken from 16 cameras in a calibrated space are used to create a
three-dimensional representation of the marker position. A biomechanical model called
‘Plugln Gait’ is then applied to this raw trajectory data, allowing the calculation of joint
centres and axes of rotation. However, before applying this model, it is essential to track
and fill gaps in the maker trajectories.

A screenshot of the main interface is provided below with some key buttons indicated
(Figure 15). For a full description on the use of Vicon NEXUS software, please see the
Vicon NEXUS manual available online *.

Thttps://docs.vicon.com/display /Nexus29/Vicon+Nexus+User+Guide

10

Switch between live

view (for data

capture) and offline Run a pipeline Change your view type to see
view (for processing) via its shortcut graphs or a 3D representation

NICON NEXUS

30 Per

,,,,,,,

;;;;;

810 Detat

I
SiitEh BT i \ Switch between t.oolbars.
s Hover over each icon to see
your system (cameras and Switch between data e
what it is
forceplates) and your management/ data log reports

subject model

Figure 15: General layout of Vicon Nexus Software

3.1.1 Static trial processing

The first step involves processing the static trial. To do so, press F2 and double click the
static trial in the data managament tab (Figure 16).

Name Files Created
T e E—— T T T o
® ROM AxP 29/01/2(
® Squat Ax 29/01/2(
W CMJI Ax 29/01/2(
W CMJ2 Ax 29/01/2(
W CMJ3 AxpP 29/01/2(
® SLCMJLeft1 Ax 29/01/2(
® SLCMJLeft2 Ax 29/01/2(
SLCMJLeft3 AxpP 29/01/2(
#® SLCMJRight1 Ax 29/01/2(
® SLCMJRight2 Ax® 29/01/2(

Figure 16: Data managment tab

11

Next, select the pipeline tab on the tools bar and run the reconstruct pipeline. This
will reconstruct the marker trajectories in 3D space (Figure 17).

Jality History E Monitors @ Matla

(a) Pipeline tab where the reconstruct pipeline will be found

(b) Reconstructed markers in 3D space

Figure 17: Procedure to reconstruct the unlabelled maker trajectories

12

Using the predefined markers associated with the ‘Plugin Gait’ model, label the the
figure (Figure 18). This involves, right clicking on an available marker and subsequently
right clicking on the unlabelled trajectory to assign it.

Subject: B EB 82938 Revision Retest (SSC Function Ai) *

Manual Labeling

< Backward < m > Forward >

[Nej
@ o
@ cav
@ sry
® sHo
@ RSHO

@ Last

(a) Marker labels associated with the biomechanical model

Manual Labeling

Qe © |70t
(I © RTHIA

® RrTH

(b) Static trial in the process of being labelled

Figure 18: Procedure to label the unlabelled maker trajectories

13

Once the trajectories have been labelled, run the ‘Plug-in Gait Static’ pipeline in the
pipelines tab on the tools bar. This will model the data, and inform Nexus of the marker
positions (Figure 19).

m Dynamic Oxford Foot Model
[y] Kinematic Fit

m Plug-in Gait Dynamic

m Reconstruct

m Reconstruct And Label

[\'] Static Oxford Foot Model

(a) Static Pugln Gait pipeline

StaticTria

(b) Modelled Static Trial

Figure 19: Procedure to model the reconstructed and labelled maker trajectories

14

3.1.2 Dynamic trial processing

After modelling the static trial, the dynamic trials can be processed. This involves using
pipelines to automaticallly reconstruct and label the marker trajectories, after which,
the data is screened and gaps are filled. To view a specific dynamic trial, press F2 and
double click on the trial to view the data. To produce tracker marker trajectories, press
the ‘Reconstruct and Label” icon. This will reconstruct the positions of the markers in 3D
space from the 2D camera images and apply the model marker template to the marker
positions (Figure 20).

Figure 20: Reconstructed and labelled makers in 3D space

After reconstructing the marker trajectories, it is useful to be able to view the data
from multiple perspectives. Key controls for the 3D space are provided in Table 1.

Table 1: Key controls to manipulate the 3D perspective.

Outcome Required Action
Dolly/Zoom: Right-click and drag forward or backward.
Orbit: Left-click and drag left, right, forward, or backward.

Truck/Translate: Click right and left simultaneously and drag.

15

To correct a mislabelled trajectory, select the trajectory at the first instant it becomes
mislabelled or begins an incorrect trajectory and manually re-label it by selecting the
appropriate marker label from the tools pane (Figure 21).

Manual Labeling

[N
@ o
@ cLav
@ srRN
® sHO
@ RSHO
® a3
© RasI
® Lra
© rpsI
® LTHA
® LH

— - ~ — - B K
— ,,_,,_ﬁ,,,‘ —
I& T —— T— g

RTHIA
@ RKNE
) RTIBA
O RTIB

@ RANK

Figure 21: Manually relabel any mislabelled trajectories

If there are any gaps in a labelled trajectory, these will be listed by the marker name
the gap occurs in (LASI in this example) (Figure 22).

Gap Hang R
Trajectory #Gaps
-« ust |
Range

Figure 22: Indication of gaps in labelled trajectories

16

Selecting the name of the trajectory in the list causes the workspace to zoom to the
area of the trajectory containing the gap (Figure 23).

Figure 23: Graphical representation of the gap in the labelled trajectory

There are five potential methods of gap-filling a trajectory in Vicon Nexus which are
presented in the labels tab of the tools bar (Figure 24). These are:

e Spline Fill: Extrapolates the missing trajectory based on the last known and first
reappearing coordinates.

e Pattern Fill: Uses the trajectory of another manually selected marker and fills
the gap on the assumption that the missing marker follows the same pattern of
movement as the selected source marker.

e Rigid Body Fill: Uses the trajectory of three other manually selected markers and
fills the gap on the assumption that the three source markers and the missing marker
are located on the same rigid body.

e Kinematic Fill: Approximates where a missing trajectory is on the assumption that
it is located on a particular segment selected from the Resources menu on the left
and defined sufficiently by other markers.

e Cyclic Fill: Used for cyclic actions such as running and fills the gap as the likely
position of the marker based on previous repeating cycles.

17

Spline Fill Pattern Fill
e | — ——— |
Maximum gap length: Empty
200 |X]
Rigid Body Fill Kinematic Fill
[———— [———
Empty Empty
X XI
Cyclic Fill
[————

Figure 24: Gap fill functions available in Nexus

Once the marker trajectories have been tracked and gap filled, the dynamic trials can
be modellled using the ‘Plugln Gait’ model and exported to C3d file format for further
analysis.

-

[\] Dynamic Oxford Foot Model
[U Kinematic Fit

N Plug-in Gait Dynamic

(] Plug-in Gait Static

(a) Dynamic Pugln Gait pipeline

(b) Modelled Dynamic Trial

Figure 25: Procedure to model the dynamic trials

18

3.2 Data extraction and segmentation into stance phases

The data preprocessing begins from a script. After moving C3d files into a single folder,
and defining the raw file locations, the various properties of the primary class to extract
the data is defined in the configeration file (Figure 26). This latter process is usefull for
rapid testing of the code.

% Written by Shane Gore 2020 contact Shane.Gore2@gmail.com
% Extract C3D files to a folder

extract = ExtractC3D2folder RISC;

extract.origin = 'F:\DCU RISC Study\Mocap';
extract.exercise = { ,'sStatic'};

extract.output = 'F:\DCU RISC Study\Extracted C3D Vue';

extract.Extractdata

'C:\Users
InputFolders
SubjectIdx
ExcludeIdx

Figure 26: Script to set up data and prepare for further analysis

19

An example excerpt for the config file is presented in Figure (27).

[-] function config = get_biomech config RISC(caseString)
| $GET_BIOCMECH CONFIG This function updates object properties

each of the sections below change the number from off (0) to on (1)
% where the parameter is to be examined.

% Written by Shane Gore

switch (caseString)

es to be examined

% Define exercis
Exercise.HH = 0;
Exercise.Cut = 0;
Exercise.SLDL = 0
Exercise.SLDJ = 0;
Exercise.Run =1
Exercise.Hopping = 0;
Exercise.SLCMJ = 0;
Exercise.Ex45BE = 0;
Exercise.CMJ = 0;
Exercise.DLDJ = 0;

R i A e e 13

case 'Variables'
$Define Joints to be extracted
Joints.Thorax = 1;
Joints.Pelvis = 1;
Joints.Hip = 1;
Joints.Knee = 1;
Joints.Ankle = 1;
Joints.Foot = 1;
$Define variable type to be extracted

Extract.marker = 0;
Extract.Angles = 1;
Extract.Velocity = 1;
Extract.Acceleration = 1;
Extract.AbsAngles = 0;
Extract.Moment = 0;
Extract.Power = 0;
Extract.Work =0
Extract.GRF = 0;

Extract.COMpower = 0;

Figure 27: Excerpt from the config file defining the test, segments and metrics to extract

20

The data is then extracted in the class DataExtract_3DMOCAP_MSc with the properties
as defined by the config file (Figure 27) and exported for futher analysis in python (Figure
28).

- Extract the data from C3d files---—————————-------———— %%
Extract = DataExtract_3DMOCAP_MSc;
Ckbjproperties = properties (Extract):
[-]for i = l:size(Cbjproperties,l) $#ok<FORPF>
Extract. (Objproperties{i}) = get_biomech_config RISC(Objproperties{i}):
end
Extract.Inputorigin = {'F:\DCU RISC Study\Extracted C3D Vue\Baseline'};
Extract.SubjectIdx = Subjectldx;
Extract.Excludeldx = Excludeldx;
[PxroklemData,Data] = Extract.ExtractdatafromC3D;

$join conditions tables

names = fieldnamesr (Data):

conditions t = cell(0,5):

[-]for i =l:size(names,l)

conditions = split(names{i},'."'):
conditions = repmat (conditions',size(eval(['Data.’',names{i}]),2),1);
conditions = [conditions, (eval(['Data.',names{i},'.Properties.VariableNames']))"']:
conditions_t = [conditions_t;conditions];

end

%$join data tables
cdata = []:
|for i =l:size(names,l)
cdata = [cdata;table2array(eval(['Data.’',names{i}]))"'];

~end

$export data

csvwrite ('Vuedata_stance_28_06.csv',cdata)
T = cell2table(conditions_t);
writetable (T, 'Vuedata_index_stance_28_06.csv')

Figure 28: Data is extracted from the C3d files and exported for further analysis

21

The following sections will detail the ‘DataExtract_3DMOCAP_MSc’ class utilsied to
extract the biomechanics data (Figure 29).

classdef DataExtract_3DMOCAP_MSc
$DATAEXTRACT_ 3DMOCAP Extracts 3D mocap data from C3D file.
$This class was written to extract data from the mocap data based
$on the variables indicated in a config file 'get_biomech config RISC'.
$Data is extracted and normalised to 101 data points using a parallel
$computing paradigm.

$Written by Shane Gore 2020. Contact Shane.Gore2@gmail.com

properties
Groups = ''" § List of groups to be examined
Exercise = '' % List of exercises to be examined
Inputorigin = 'none' % Location of folder containing data
SubjectIdx = 'none' % Location of subject index
Events =" List of events to examine the data within
Variables = '' § List of variables to be examined
FunctJoints = true % Determines if functional joints are used.
Combined = true % Determines if force plare are combined.
SetUp = 'RISC' % Define some default setup values
ExcludeIdx = '' % Location of list of trials to exclude.

end

methods

Figure 29: Class for extracting biomechanical data

22

Before extracting data from the running trials, the static trials were analysed (see
section 3.2.1 for details on the function). When exploring the running triials, the first
steps essentially involve extracting information from the file names and controlling for
variations in the mocap format (Figure 30 and 31)

files = getAllFiles(foldername);
files = files(~cellfun('isempty',regexp(files,'.c3d'))); % De
files = files(cellfun('isempty',regexpi(files, 'static'))):; %r

$open up workers for parrell loop

if isempty(gcp('nocreate'))
parpool (3)

end

$Preallocate persistant arrays for indexing when storing data.
variables = control.Variables;

idxl = zeros(size(variables,2),3):;

idx2 = zeros(size(variables,2),3):;

AllExercises = cell(''); %Create Empty Cell to hold Exercies list.

$Loop through relivent dynamic trial files and extract data.

n = 0; h = waitbar (0, ['Processing Dynamic Trials...',num2str(n),' of ',num2str(size(files,1))]):

for n = 1l:size(files,1)
waitbar (n/size(files, 1) ,h, ['Processing Dynamic Trials...',num2str(n),' of ',num2str(size(files,1))])
file = files(n):
$ set up current subject string

idx = strfind(file{l},filesep):
trial_id = file{l} (idx(size(idx,2))+1l:end);
sub_idx = strfind(trial_id,'_'):
Csub = trial id(l:sub_idx(2)-1);

$Exclude subjects not in subject index

IDX = readtable (control.SubjectIdx{l}):;

if sum(strcmp (Csub,IDX.SubName)) ~= 1
continue

end

$Exclude data if in the Exculde index

exIDX = readtable (control.ExcludeIdx{1l}):

if sum(strcmp(file,exIDX.Trial Name)) ~= 0
continue

end

% Add Direction to
Varidx = (strcmp (variables, 'Grou

strcmp (variables, 'CentreofMass') |....

strcmp (variables, 'CentreCfMassPower')|....

strcmp (variables, "STRN") |....

strcmp (variables, '"CLAV") |....

strcmp (variabkles, 'T10') |....

strcmp (variables, 'C7')|....

strcmp (variables, "LASI") |....

strcmp (variables, "RASI") |....

strcmp (variables, "LSHO') |....

strcmp (variables, "RSHO") |....

strcmp (variables, '"RPSI") |....

strcmp (variables, 'LPSI'"));

Figure 30: Extracting file information and controlling for format variations (1 of 2)

23

% Identify tested limb from file name.
if contains(trial_id, 'Right')
Dir = {'R'};
elseif contains(trial_id,'Left')
Dir = {'L'};
else
Dir = {'R','L"};
end

for nn = 1l:size(Dir,2)
c_Dir = Dir{nn};
NewVariables = variables;
DirIDX = find(Varidx==0):;

% Control for Combined Forceplates
if strcmp (control.Combined, 'true')

NewVariables(strcmp (NewVariables, 'GroundReactionForce')) = {[c_Dir,'GroundReactionForce M']};
end

%$Control for functional joints
if strcmp (control.FunctJoints, 'trus')
for £ = 1l:size(DirIDX,2)

NewVariables (1,DirIDX(f)) = {[c_Dir,variables{DirIDX(£f)},' M']};
end
else
for £ = 1l:size(DirIDX,2)
NewVariables (1,DirIDX(f)) = {[c_Dir,variables{DirIDX(f)}]};
end

Figure 31: Extracting file information and controlling for format variations (2 of 2)

24

The data was then extracted from the C3d file using the biomechanics toolkit (Barre
and Armand; 2014) (Figure 32).

$Extract data from c3d file and down sample force plate to mocap
file = files(n):

c3dfile = btkReadAcquisition(file{l});

c3d.points = btkGetPoints (c3dfile);

c3d.plates = btkGetAnalogs (c3dfile);

c3d.ratio = btkGetAnalogSampleNumberPerFrame (c3dfile);
c3d.labels = fieldnames (c3d.plates);

c3d.events = btkGetEvents (c3dfile);

c3d.frequency = btkGetPointFrequency(c3dfile);
c3d.firstframe = btkGetFirstFrame (c3dfile);
for is = l:btkGetAnalogNumber (c3dfile)
c3d.plates. (c3d.labels{is}) = c3d.plates. (c3d.labels{is}) (l:c3d.ratio:end);

btkCloseAcquisition(c3dfile);

1 for data not processed

if ~isfield(c3d.points,

warning([trial_id ,'_not_reconstructed'])
ProblemData (find (cellfun('isempty', (ProblemData)),l, 'first'),1) = {[file{l},'_','Reconstruct']}:
continue

end

Figure 32: Extracting data from the C3d file

Afterwhich, the extracted data was then segmented by identifying the events of foot-
strike and toe-off (Figure 33). For full details on the custom class utilised to identify
these events, please see section 3.2.2.

$ Set up new events
if any(strcmpi (control.Exercise,'run'))
control.Exercise = {'run',' 9k',' Self'};
if sum(~cellfun('isempty', regexpi(trial_id,control.Exercise))) >0
CurrentExercise = 'Run';
end

else
CurrentExercise = control.Exercise(~cellfun('isempty', regexpi(trial_id,control.Exercise))):;
end

$Define events allowing for multiple events.

DefineEvent = EVENTS_3DMOCRP_RISC;
DefineEvent.CurrentEvent = control.Events;
DefineEvent.c3d = c3d;
DefineEvent.file = file;
DefineEvent.SubjectIdx = control.SubjectIdx;
DefineEvent.Combined = control.Combined;
DefineEvent.Exercise = CurrentExercise;
DefineEvent.SubQS = 5ubQS;
DefineEvent.side = c_Dir;
DefineEvent.StaticFoot = StaticFoot;
try

[Eventl,Event2,~] = DefineEvent.Define3DEvents;
catch

warning([file{l} ,'_Events',' can not process'])
ProblemData (find (cellfun('isempty', (ProblemData)),l,'first"),1) = {[file{l},"'_"','Events']};
continue

end

Figure 33: Identifying events for segementing into stance phases

25

Given the variations possible in the naming of the motion capture data, the files were
classified using a combination of exact and fuzzy matching using Levenshtein distance
(Figure 34)

% Define Type of run with exact and fuzzy matching critera.
teststring = trial_id(l:strfind(trial_id,'.c3d')-1);
teststring = strsplit(teststring,{'_', ' '}); ¥ Split strings on delimiter

if contains(trial_id,'9km',‘Ig:o:eCase‘,true) && contains(trial_id,“*

,'IgnoreCase',true)...

&& sum(cellfun(@(x) strdist(x,'Baseline'),teststring) < 3) == 1

CurrentExercise = ['Baseline_Run_9%km ']; $#0k<*NBRAK>
elseif contains(trial_id, '9km’', 'IgnoreCase’,true) && ~contains(trial_id, 't ', 'IgnoreCase’',true)...
&& sum(cellfun(@(x) strdist(x,'Baseline'),teststring) < 3) == 1
CurrentExercise = ['Baseline_Run_ 9kmhr'];
elseif ~contains(trial_id,'%km’', oreCase',true) && ~contains(trial_id, 'Vue', 'IgnoreCase’,true)...
&& sum(cellfun(@(x) strdist(x,'Post'),teststring) < 2) == 1 && sum(cellfun(@(x) strdist(x,'Self’')...
,teststring) < 2) == 1
CurrentExercise = ['Post_Ru lected'];
elseif contains(trial_id,'9km’',"'I Case',true) && ~contains(trial_id, 'V yreCase',true)...
&& sum(cellfun(@(x) strdist Post'),teststring) < 2) == 1
CurrentExercise = ['Post_Run_9kmhr'];
elseif ~contains(trial id,'9km','Ig Case',true) && ~contains(trial_id, 'Vue','IgnoreCase',true)...
&& sum(cellfun(@(x) strdist(x,'Baseline'),teststring) < 3) == 1 && sum(cellfun(@(x) strdist(x,'Post')...

,teststring) > 1) ~= 0
CurrentExercise = ['Baseline_Run
elseif ~contains(trial_id,'%km','Ig
&& sum(cellfun(@(x) strdist(x,’
,teststring) < 2) =1
CurrentExercise = ['Post_|

lected']:
',true) && ~contains(trial_id, 'Vue','IgnoreCase',true)...
e'),teststring) < 3) == 1 && sum(cellfun(@(x) strdist(x,'Post')...

3

elseif ~contains(trial_id,
CurrentExercise = ['Post_Ru ;
else

sum(cellfun (@ (x) strdist(x,'Post'),teststring) < 2) == 1

warning ([file{l} ,'_Name',' can not process'])
ProblemData (find (cellfun('isempty', (ProblemData)),l, 'firsc'),1) = {[file{l},"'_','NodefName']};
continue

end

if isempty(RAllExercises)

AllExercises{l,1} = CurrentExercise; %#ok<*RAGROW>
elseif sum(strcmp (AllExercises,CurrentExercise)) == 0
AllExercises = [AllExercises;CurrentExercise];

end

$Specify Events depending on type
if strcmp(c_type, 'stance’)
c_Eventl = Eventl;
c_Event2 = Event2;

c_Evencl = Eventl(l:end-1);
c_EvencZ = Eventl(2:end);
end

Figure 34: Classifying motion capture files using exact and fuzzy name matching

26

Additional biomechanical metrics were then derived from the raw motion capture data
for the foot (Figure 35).

$Derive metrics and normalise data using parrell computing
temp_norm cell = cell(size(NewVariables,2),3);
c_points = struct;
try
pointnames = fieldnames (points);
for x = 1:3 $Seperate data into planes
for v = l:size(pointnames,l)
if sum(~cellfun('isempty',regexp (pointnames{v},{'HEE','TOE'}))) > 0
c_points. ([pointnames{v}]) (:,:) = points. ([pointnames{v}]) (:,:);
else
c_points. ([pointnames{v}]) (:,1) = points. ([pointnames{v}]) (:,x);
end
end

parfor v = l:size (NewVariables,2)
if ~isempty(regexp (NewVariables{v},'Foot', 'once'))
if x ~= 1 %$planes not required.
continue
else
$Extract Footstrike angle
if strcmp(c_Dir,'L')
StaticCalc = tableZ2array(StaticFoot.Left (~cellfun('isempty’',...
regexp (file,table2cell (StaticFoot.Left(:,1)))),2)); %#ok<*PFBNS>
else
StaticCalc = table2array(StaticFoot.Right (~cellfun('isempty’',...
regexp (file,table2cell (StaticFoot.Right(:,1)))),2)):

end
hoz = (c_points. ([c_Dir,'TCE']) (:,1) - c_points.([c_Dir,’ 1) (1))
vert = (c_points.([c_Dir,'TOE']) (:,3) - c_points. ([c_Dir,'HEE']) (:,3));

angle = atan2d(vert,hoz);

if ~isempty(regexp (NewVariables{v},'FootVelocity', 'once'))
angle = angle - StaticCalc;
paddata = angle(l,1)- (angle(2,1)- angle(l,1l)); % Pad data to retain signal length
cdata = ([paddata;diff(angle(:,1))])./(1/200):;

elseif ~isempty(regexp (NewVariables{v},'FootAcceleration', 'once'))
angle = angle - StaticCalc;
paddata = angle(l,1)- (angle(2,1)- angle(l,1)); % Pad data to retain signal length
cdata = ([paddata;diff(angle(:,1))])./(1/200);
paddata = cdata(l,1l)- (cdata(2,1)- cdata(l,l)); % Pad data to retain signal length
cdata = ([paddata;diff(cdata(:,1))])./(1/200);

cdata = angle - StaticCalc;

end

Figure 35: Deriving foot metrics

27

This was also conducted for the remaining extracted segments which were then nor-
malised to 101 datapoints using a cubic spline to represent 100% of the stance phase
between the foot-strike and toe-off events (Figure 36).

elseif contains (NewVariables{v},'Work', reCase',true) %$Calculate joint work d
angle = c_points. ([NewVariables{v} (l:stxfind(NewVariables{v},'W
moment = c_points. ([NewVariables{v} (l:strfind(NewVariables{v}, 'Work')-1), 'Mo
paddata = c_points. (NewVariables{v}) (1,1)- ...

(c_points. (NewVariables{v}) (2,1)- c_points. (NewVariables{v}) (1,1)); % Pad data to retain signal length
deltaAngle = [paddata;diff(angle(:,1))];
cdata = (moment(:,1l)./1000) .* deltaAngle;
elseif contains(NewVariables{v}, 'Moment','Ign

Case',true)

cdata = c_points.([NewVariables(v)])(:,l)./lOOO: $Convert to
elseif contains(NewVariables{v},'Velocity','IgnoreCase',true)
angle = c_points. ([NewVariables{v} (l:strfind(NewVariables{v},
paddata = angle(l,1)- (angle(2,1)- angle(l,1l)); % Pad data to
cdata = ([paddata;diff(angle(:,1))])./(1/200);
elseif contains(NewVariables{v},'Acceleration', 'Igr eCase',true)
angle = c_points. ([NewVariables{v} (l:strfind(NewVariables{v}, 'Acceleration’)-1), 'Angles']);
paddata = angle(l,1)- (angle(2,1)- angle(l,1l)); % Pad data to retain signal length
cdata = ([paddata;diff(angle(:,1))])./(1/200);
paddata = cdata(l,l)- (cdata(2,1l)- cdata(l,l)); % Pad data to retain signal length
cdata = ([paddata;diff(cdata(:,1))])./(1/200);
elseif ~isempty(regexp (NewVariables{v},'Foot', 'once'))
continue
else
cdata = c_points. ([NewVariables{v}]) (:,1);
end

$Split norm data into trials
c_norm = zeros(l0l,size(c_Eventl,l));%preallocate with zeros
for ¢ = l:size(c_Eventl,1l)
c_norm(:,c) = norm2frame(cdata(c_Eventl(c):c_Event2(c),:),101);
end
temp_norm cell{v,x} = c_norm;

Figure 36: Deriving additional biomechanical metrics and normalising to 101 datapoints

28

The final steps involved storing the data to export. The size of the data being ex-
amined in this project excluded the use heterogeneous data structures due increasing time
complexity. As such the numeric data and their string identifiers were stored separately
in homogeneous arrays (Figure 37) .

set up column names.

repmat ({ [Csub,'_',c_Dir,' ',c_typel},l,size(c_Eventl,2));
num2cell (1:size(c_Eventl,l));

cellfun (@num2str,b, 'un’,0);

colnames = strcat(a,b):

for v =l:size(NewVariables,2)

"o

[2 Y

$Set up axis labels
if ~isempty (regexp (NewVariables{v},'
size (NewVariables{v},2) < 5 || .
strcmp (NewVariables{v}, 'CentreOfMass")
planes = {'_x',' y','_z'};
else
planes = {' fle',' abd',' _rot'};

ReactionForce', 'once')) ||

end

$Store data in a structure
for x = 1:3
$Account for if there are duplicates in the names
try
prefix = {'8_','C_','D ','E

while any(~cellfun('isempty

'J'E_'Y:
,regexp (colnames (1), ...
(Data.Norm. (CurrentExercise) . (c_type). ([variables{v},planes{x},' colnames'])))))
a = repmat ({[Csub,prefix{l},c Dir,' ',c typel},1l,size(c_Eventl,2));
colnames = strcat(a,b):
prefix(l) =[1;
end
catch
$do nothing
end

if size(temp_norm cell{v,x},2) > 0

try
if isfield(Data.Norm. (CurrentExercise). (c_type), ([variables{v},planes{x}]))
idxl(v,x) = idx2(v,x) + 1; idx2(v,x) = idx2(v,x) + size(temp_norm cell{v,x},2);
Data.Norm. (CurrentExercise) . (c_type). ([variables{v},planes{x},' colnames'])...
(:,idxl (v, x) :idx2 (v,X)) = colnames;
Data.Norm. (CurrentExercise). (c_type) . ([variables{v},planes{x}])...
(:,1dxl(v,x):1idx2(v,x)) = temp_norm cell{v,x};
else
idxl(v,x) = 1; idx2(v,x) = size(temp_norm cell{v,x},2);
Data.Norm. (CurrentExercise). (c_type) . ([variables{v},planes{x}]) = NaN(101,1e5);
Data.Norm. (CurrentExercise) . (c_type) . ([variables{v},planes{x}])...
(:,1idxl(v,x) :idx2 (v, x)) = temp_norm cell{v,x};
Data.Norm. (CurrentExercise). (c_type) . ([variables{v},planes{x}, ' col = cell(l,1e5);
Data.Norm. (CurrentExercise) . (c_type). ([variables{v},planes{x},'_co
(:,1idxl(v,x):idx2(v,X)) = colnames;
end
catch
idxl(v,x) = 1; idx2(v,x) = size(temp_norm cell{v,x},2);
Data.Norm. (CurrentExercise). (c_type). ([variables{v},planes{x}]) = NaN(101,1e5);
Data.Norm. (CurrentExercise). (c_type) . ([variables{v},planes{x}])...
(:,1idxl(v,x):idx2 (v, x)) = temp_norm cell{v,x};
Data.Norm. (CurrentExercise). (c_type). ([variables{v},planes{x},' colnames']) = cell(l,1eS);
Data.Norm. (CurrentExercise) . (c_type) . ([variables{v},planes{x},' colnames'])...
(:,1idxl(v,x):idx2(v,X)) = colnames;
end
end
end

end

Figure 37: Storing data to export

29

Similarly, given the time and memory cost of dynamically growing arrays, they were
excessively pre-allocated with NaNs. After the data had been stored in the structures, the
excess NaNs were removed and the structures were exported for further analysis (Figure
38) .

$ remo NaNs
for ¢ = 1l:size (AllExercises,l)
for v =l:size(NewVariables,2)
for x = l:size(planes,2)
if isfield(Data.Norm. (AllExercises{c}).(c_type), ([variables{v},planes{x}]))
Data.Norm. (Rl1Exercises{c}). (c_type). ([variables{v},planes{x}])...
= Data.Norm. (RllExercises{c}). (c_type). ([variables{v},planes{x}])...
(:,~arrayfun(@isnan, Data.Norm. (Rl1Exercises{c}). (c_type). ([variables{v},planes{x}]) (1,:))):
Data.Norm. (AllExercises{c}).(c_type). ([variables{v},planes{x},'_colnames'])...
= Data.Norm. (AllExercises{c}). (c_type). ([variables{v},planes{x},' colnames'])...
(:,~cellfun('isempty', Data.Norm. (AllExercises{c}).(c_type).([variables{v},planes{x},’'

e

for ¢ = 1l:size(AllExercises,l)
for v =l:size (NewVariables,2)
for x = 1l:size(planes,2)
if isfield(Data.Norm. (AllExercises{c}). (c_type), ([variables{v},planes{x}]))
Data.Norm. (AllExercises{c}).(c_type). ([variables{v},planes{x}])...
= array2table(Data.Norm. (AllExercises{c}).(c_type). ([variables{v},planes{x}]), 'VariableNames',...
Data.Norm. (RllExercises{c}). (c_type). ([variables{v},planes{x},'_colnames']));
Data.Norm. (AllExercises{c}). (c_type)...
= rmfield(Data.Norm. (AllExercises{c}). (c_type), ([variables{v},planes{x},'_colnames']));

Figure 38: Removing excess rows in the data and exporting for analysis

30

3.2.1 Static Trial Metrics

This section depicts the function to extract useful metrics from the static trial when the
subject is standing still (Figure 39 and 40). Theses include quiet standing force and
angle of the foot when in a neutral position. The later point is particularly important to
this project, as it is essential for calculating the angle of the foot while running (Altman
and Davis; 2012).

function [ProblemData ,StaticFoot ,SubQS] = extract_static(foldername, ProblemData)

$EXTRACT STATIC: This function extracts useful metrics from the static

$trial while the subject is standing still.

folder = dir (foldername);

folder = folder (arrayfun(@(x) x.name(l), foldexr) ~= '.');
folder = folder(~cellfun('isempty',regexp({folder.name},'Static'))):;
h = waitbar (0, 'Processing Static Trials...'):

for n = 1l:size(folder,1l)
waitbar (n/size (folder,1),h)

try
$Extract data from C3D
file = folder (n) .name;
c3dfile = btkReadAcquisition([foldername,filesep,file]):
plates = btkGetAnalogs (c3dfile);
points = btkGetPoints (c3dfile);

btkCloseAcquisition (c3dfile);

lculate Quiet Standing Force
S = mean(plates.Force_Fzl + plates.Force_Fz2);
QS_res = Q5 + 1.7 * max(abs(mean(plates.Force_Fzl) - plates.Force_Fzl)):;

0

$Calculate the foot anlge during static

hoz median (points. ('LTOE

vert = median(points. ('LTOE') (:,3)) - median(points. ('LHEE"') (:,3)):
staticAnglel = (atan(vert/hoz))* 360 /(2 * pi);

hoz = median (points. ('RTCE') (:,1)) - median(points. ('RHEE') (:,1));
vert = median(points. ('RTOE') (:,3)) - median(points. ('RHEE") (:,3)):
staticAngleR = (atan(vert/hoz))* 360 /(2 * pi);

Standdatal = table;
StanddataR = table;

Figure 39: Function to extract useful metrics from the static trial (1 of 2)

31

-end

if ~exist('StaticFoot', 'var'
idx = strfind(file,' '):

)

(30001

1,300

StanddataL.Name = file(l:idx(2)-1);
StanddataLl.staticAngle = staticAngleLl;
StaticFoot. ('Left') = StanddataL;
StanddataR.Name = file(l:idx(2)-1):
StanddataR.staticAngle = staticAngleR;
StaticFoot. ('Right') = StanddataR;
StaticFoot. ('RightToe') = [table(file(l:idx(2)-1),median(points. ('RTOE"') (:,3)))] :
StaticFoot. ('LeftToe') =[table(file(l:idx(2)-1),median(points. ('LTOE") (:,3)))]
StaticFoot. ("RightHee') = [table(file(l:idx(2)-1),median(points. ('RHEE
StaticFoot. ('LeftHee') = [table(file(l:idx(2)-1),median(points. ('LH
else
idx = strfind(file,' ');
StanddataL.Name = file(l:idx(2)-1);
StanddataLl.staticAngle = staticAngleLl;
StaticFoot. ("Left') = [StaticFoot. ('Left');Standdatal]:;
StanddataR.Name = file(l:idx(2)-1):
StanddataR.staticAngle = staticAngleR;
StaticFoot. ('Right') = [StaticFoot. ('Right');StanddataR];
StaticFoot. ('RightToe') = [StaticFoot. ('RightToe');...

[table (file (l:idx(2)
StaticFoot. ('LeftToe')
[table (file(1l:idx(2)
StaticFoot. ("RightHee")
[table (file(l:idx(2)
StaticFoot. ('LeftHee")
[table (file(l:1dx(2)

end

Subdata = table;

if ~exist('SubQS','var')
idx = strfind(file,' ');
Subdata.Name =
Subdata.Q5 = QS5;
Subdata.Q5_res = Q5_res;
SubQS = Subdata;

else
idx = strfind(file,' ');
Subdata.Name =
Subdata.Q5 = QS5;
Subdata.Q5_res = Q5_res;
SubQS = [SubQS;Subdata]

end

catch

end

-1) ,median (points. ("RTICE") (:

#3)))11]

[StaticFoot. ('LeftToe') ;...

-1) ,median (points. ("LTCE") (:

-1) ,median (points. ("RHEE") (:

[StaticFoot. ('RightHee') ;..

#3)))1]

#3)))11]

[StaticFoot. ('LeftHee"); ...

-1) ,median(points. ("LHEE") (:

file(l:idx(2)-1):

file(l:idx(2)-1):

;

warning([file ,'_Static','_can not process'])
ProblemData (find(cellfun('isempty’', (ProblemData)),1l, 'first'),1)

delete(h) % delete static waitbar

“end

310111

;

;

{[file,'_','Static']};

Figure 40: Function to extract useful metrics from the static trial (2 of 2)

32

3.2.2 Event Detection

Within this project, data was collected, continiously over a one minute period. In order
to segment the biomechanical data into stance phases, the events of inital contact and
toe-off had to be detected. Event detection was coded as a self contained class (Figure

A1),

classdef EVENTS_3DMOCAP_RISC
$EVENTS_3DMOCAP Defines events in motion capture data, to allow the
$segmentation of key movements and/or tasks.
$Written by Shane Gore. Contact Shane.Gore2@gmsil.com
properties
CurrentEvent = '' % List of groups to be examined
Exercise = '' % List of exercises to be examined
file = '' % List of events to examine the data within;
SubjectIdx = '' § The subject index (data dicti
Combined = '' $ A boolean determining if the plates h
SubQS = {} % A cell array of subject guiet stand
side = '' $ A string indicating the side
c3d = '' § A structure containing C3d data
StaticFoot = '' § A cell array containing info from the static trial
end
methods
function [Eventl,Event2,plate]= Define3DEvents(control)

Figure 41: Event detection class

Initial foot contact was defined by firstly identifying a window in which the

marker was within 10cm of its local minima (Figure 42).

ankle

%% —-- Events for running -- %%
plate = 1; %$arbitary value (must be defined)
$ Find where Ankle is at its minimum height
'MinPeakDistance',10); % Find where marker is at its lowest.
Peakvals = sort (Peakvals):
Peakvals = Peakvals (round(size (Peakvals,l)/4) :round(size (Peakvals,1)/2)):

[Peakvals,~,~,proms] = findpeaks(((control.c3d.points. ([control.side, 'B2NK']) (:,3)) .*-1),...

[~,WindowEnd marker] = findpeaks(((control.c3d.points. ([control.side,'RNK']) (:,3)) .*-1),...
'MinPeakDistance',50, '"MinPeakHeight', (median (Peakvals) *1.12),...
'MinPeakHeight', (median (Peakvals) *1.10), 'MinPeakProminence', (median (proms) *0.80)):

Figure 42: Identifying a search window defined by the height of the ankle marker

33

Heel contact was then subjsequently defined using the peak negative horizontal velo-
city of heel (Figure 43).

- Calculate usefull marker metrics for heel ---—-———- %
marker m = (control.c3d.points. ([control.side, 'HEE']) (:,:)) ./1000;

paddata = marker m(l,:)-(marker _m(2,:)-marker m(l,:)); % Pad data to retain signal length
marker_vel = (diff([paddata;marker m]))./(l/control.c3d.frequency):;

this section checks for double peaks within 60 frames. if there

%
% is more than one peak within 60 frames, it checks for
% peak height and if there is a difference takes the
% largest, ¢ erwise takes the second peak.

idx = zeros(size (WindowEnd marker,1),1);

for ii = l:size(WindowEnd_marker,1l) -1

if WindowEnd marker (ii + 1) - WindowEnd marker(ii) < 60 %events within 60 frames
thresh = max(marker m(WindowEnd marker (ii + 1)),marker m(WindowEnd marker(ii))) *.05; %within 5%
if abs (marker_m(WindowEnd marker (ii + 1))- marker m(WindowEnd marker(ii))) > abs(thresh)

if marker m(WindowEnd marker (ii + 1)) > marker m(WindowEnd marker (ii))
idx(ii) =1;

else
idx(ii + 1) =1;

end
WindowEnd_marker (logical (idx)) = [];

% Remove early and late peaks - within 40 frames of start and end
WindowEnd marker (WindowEnd marker < (control.c3d.frequency *0.2)) =[];
WindowEnd marker (WindowEnd marker + (control.c3d.frequency *0.2) > length(marker m)) = [];

$Find first negative velocity of hee
markerstrike vel =[];
for w = l:size(WindowEnd_marker,1l)
if WindowEnd_marker (w) < double(control.c3d.frequency) *0.15

offset = WindowEnd marker(w) - (WindowEnd marker (w) - 1);
else
offset = (double(control.c3d.frequency) *0.15):;
end
vel _idx = find(marker_vel ((WindowEnd marker (w) - offset):WindowEnd marker(w),1l) < 0,1) ;
markerstrike vel = [markerstrike vel; ((WindowEnd marker (w) - offset) + vel idx -1)]; %#0k<AGROW>

end
HEE markerstrike_vel = round(markerstrike_ vel);

Figure 43: Identifying the first negative heel velocity

34

This was then repeated for the toe, and the first occuring event was defined as inital
contact (Figure 44).

- Calculate usefull marker metrics for Toe ------- %
marker m = (control.c3d.points. ([control.side,'TCE']) (:,:))./1000;

paddata = marker m(1l,:)-(marker_m(2,:)-marker _m(l,:)); ¥ Pad data to retain signal length
marker_vel = (diff([paddaca;marke:_m]))./(l/control.c3d.frequency);

% Find where Ankle is at its minimum height

[Peakvals,~,~,proms] = findpeaks(((control.c3d.points. ([control.side, 'BNK']) (:,3)) .*-1),...
'MinPeakDistance',10); % Find where marker is at its lowest.

Peakvals = sort (Peakvals);

Peakvals = Peakvals(round(size (Peakvals,l)/4):round(size (Peakvals,1)/2));

[~,WindowEnd marker] = findpeaks(((control.c3d.points. ([control.side,'ANK']) (:,3)) .*-1),'MinPeakDistance',50,...
'MinPeakHeight', (median (Peakvals) *1.13), 'MinPeakPromir e', (median(proms) *0.80));

% this section checks for double peaks within 60 frames.
idx = zeros(size (WindowEnd marker,1),1);
for ii = l:size (WindowEnd marker,1l) -1
if WindowEnd marker (ii + 1) - WindowEnd marker(ii) < 60 %events within 60 frames
thresh = max(marker_m(WindowEnd marker (ii + 1)),marker m(WindowEnd marker(ii))) *.05; %within 5%
if abs (marker _m(WindowEnd marker (ii + 1))- marker_m(WindowEnd marker(ii))) > abs(thresh)
if marker m(WindowEnd marker(ii + 1)) > marker m(WindowEnd marker (ii))
idx(1ii) =1;
else
idx(ii + 1) =1;
end
else
idx(ii + 1) =1;

WindowEnd marker (logical(idx)) = [];

% Remove early and late peaks - within 40 frames of start and end

WindowEnd_marker (WindowEnd marker < (control.c3d.frequency *0.2)) =[]:
WindowEnd marker (WindowEnd marker + (control.c3d.frequency *0.2) > length(marker m)) = [];
markerstrike_vel = zeros(size(WindowEnd_markeI));

for w = l:size(WindowEnd marker, 1)
if WindowEnd marker (w) < double (control.c3d.frequency) *0.15

offset = WindowEnd marker(w) - (WindowEnd marker(w) - 1);
else
offset = (double(control.c3d.frequency) *0.15);
end
vel_idx = find(marker_vel((WindowEnd marker (w) - offset):WindowEnd marker(w),1l) < 0,1) ;
markerstrike_vel(w) = ((WindowEnd marker(w) - offset) + vel idx -1);

end
TOE_markerstrike_vel = round(markerstrike_vel);

% Pick Touchdown Event

Eventl = zeros(size(TOE_markerstrike_vel));

h_idx = HEE markerstrike vel < TOE_markerstrike vel;
Eventl (h_idx) = HEE_markerstrike_vel (h_idx):;

Eventl (~h_idx) = TOE_markerstrike_vel (~h_idx);

Figure 44: Identifying the first negative toe velocity, and definfing initial contact

35

To identify toe off, a search window was again specified when the ankle marker was
within 10cm of its local minima (Figure 45).

—--Calculate toe off —-—

% usefull vertical movement metrics
marker m = (control.c3d.points. ([control.side,'TOE']) (:,3))./1000;
paddata = marker m(l,:)-(marker_m(2,:)-marker m(l,:)); % Pad data to retain signal length

marker_vel = (diff([paddata;marker_m]))./(l/control.c3d.frequency);

paddata = marker_vel(l,:) - mean(diff (marker vel(l:3,:))):;

marker_acc = (diff([paddata;marker_vel]))./(l/control.c3d.frequency);

paddata = marker_acc(l,:) - mean(diff(marker_acc(l:3,:)));% Pad data to retain signal length

marker_ jerk = (diff([paddata;marker_acc]))./(l/control.c3d.frequency);

[Peakvals,~,~,proms] = findpeaks((((control.c3d.points. ([control.side, 'BNK']) (:,3))./1000) .*-1)...
, '"MinPeakDistance',10); % Find where marker is at its lowest.

[~,WindowEnd marker] = findpeaks((((control.c3d.points. ([control.side,'ANK']) (:,3))./1000) .*-1)...

, '"MinPeakDistance',50,...

'MinPeakHeight', (median (Peakvals) *1.12), 'MinPeakPromine ', (median(proms) *0.80)):;

% this section checks for double peaks within 60 frames.
idx = zeros(size (WindowEnd_marker,1),1);
for ii = l:size(WindowEnd_marker,1l) -1
if WindowEnd marker(ii + 1) - WindowEnd marker(ii) < 60 %events within 60 frames.
thresh = max(marker m(WindowEnd marker (ii + 1)),marker m(WindowEnd marker(ii))) *.05; %within 5%
if abs (marker m(WindowEnd marker (ii + 1))- marker m(WindowEnd marker(ii))) > abs(thresh)
if marker m(WindowEnd marker(ii + 1)) > marker m(WindowEnd marker (ii)
idx (ii) =1;
else
idx(ii + 1) =1

end
else
idx(ii + 1) =1;
end
end
end
WindowEnd marker (logical (idx)) = [];

% Remove early and late peaks - within 40 frames of start and end
WindowEnd_marker (WindowEnd marker < (control.c3d.frequency *0.2)) =[];
WindowEnd_marker(WindowEnd_marker + (control.c3d.frequency *0.2) > lengch(marker_m)) = [1;

Figure 45: Identifying a search window defined by the height of the ankle marker

36

Toe off was defined using the toe jerk maxima (3rd derivative of toe marker position)
following peak knee extension (Figure 46) as a combination of two previously published
algorithms (Handsaker et al.; 2016; Dingwell et al.; 2001).

Event2 = zeros(size (WindowEnd marker)); $preallocation
for w = l:size(WindowEnd_marker, 1)
if w == size (WindowEnd _marker,1l)
min toe_frames = (WindowEnd marker (w)-1): ((WindowEnd marker (w)-1)...
+ find((marker_ m(WindowEnd marker(w):end)) > ...
(min (marker m(WindowEnd marker(w):end)) + 0.05), 1)):
if isempty(min_ toe_frames)
% there is no toe off before the end so last footstrike is void.

Eventl (size (Eventl,l)) = []:
continue % there is no toe off before the end.
end
else
[~,min_idx] = min(marker_m(WindowEnd marker (w) :Eventl(w+l))):
min toe_frames = (WindowEnd marker (w)-1): (((WindowEnd marker (w)+ min_ idx)-1)...

+ find((marker m((WindowEnd marker (w)+ min_idx):Eventl(w+l))) > ...
(min (marker m(WindowEnd marker (w) :Eventl(w+l))) + 0.05), 1))
end

% find peak knee extension

% find next max acceleration

[~,acc_idx] = max(marker_ acc(min toe_frames(min idx):min_ toe_frames(end))):

$ Find maximum jerk between peak knee extension and acceleration

[~,Jjerkidx] = max(marker_ jerk(min toe_frames(min_idx):min toe_frames(min idx + acc_idx -1)));
%$if there are multiple peaks, take the earlest.

maxjerk = min(jerkidx + min_idx -1);

Event2 (w,1) = min toe_frames (maxjerk);

end
$Ensure we have complete footstrikes.

if Eventl(l) > Event2(1l)
Event2(1l) = []:

end

if Eventl (end) > Event2 (end)
Eventl(end) = []:;

end

Figure 46: Identifying toe off event

37

3.3 Waveform Screening

In order to assist with the initial screening of the biomechanical waveform data, a custom
written application was developed in MATLAB (R2018B). After collecting biomechan-
ical motion capture data, it can be challenging to identify when motion capture data
has been modelled inappropriately. To overcome this challenge, this application was
developed which enables the end user to rapidly visualise, interpret and delimit biomech-
anical waveforms for further investigation or correction via a graphical user interface
(Figure 47).

Amongst its functionalities:

e It allows the user to read in motion capture time series data.
e Plot a user defined number of curves at a time.

e Zoom in, zoom out and pan on plots.

Cycle forward or backward in the plotting of the data.

Select and remove user identified inappropriate waveforms for further investigation.

Use statistical measures to delimit the data being screened.

Within this current project, the latter point was particularly important given the
large number of waveforms which had to be analysed.

4| Waveform Screen Tool: Written by Dr Shane Gore 2020 - [m] X

L]
V&Y ~

60 —

0 10 20 30 40 50 60 70 80 90 100

No. of Curves:
Next >>>
30

Waiting...

Tools Advanced Options
Plot data

Load data

Figure 47: Custom application designed to assist in the screening of biomechanical data

38

3.3.1 Method: LaunchGui

This is a function which initialises the application. The appearance of the application
is set and the various interactive features (e.g. push buttons) are created with callback
functions to the object’s other methods (Figure 48, Figure 49 and Figure 50).

function LaunchGui (control)

58— Set up gui display-—---- %3

%create a figure to house the GUI

Fig = figure('toolbar', 'none');

set (Fig, 'Name', 'Waveform 5
'NumberTitle', 'off');

$Utilise standard Matlab plot tools
H = uitoolbar('parent',Fig):

uitoolfactory(H, 'Explorat
uitoolfactory(H, ploration
uitoolfactory(H, 'Explorati
set (Fig , 'Menubar', 'none');

ZoomIn');
ZoomOut') ;

$Set default size of figure window
Fig.Position = [754.5,231,1051,618];

$Set figure window positio
set (Fig, 'Units’', 'pixels');
%get your display size
screenSize = get (0, 'Scre
$calculate the center of
position = get(Fig, 'P«
position(l) = (screenSize(3)-position(3))/2;
position(2) = (screenSize (4)-position(4))/2:

$center the window

n

nSize'):

e
the display

set (Fig, 'Position', position):;

% Create a panel for gui items
pnl = uitabgroup('Parent', Fig, 'Units' ,°'
'Position’', [0 O 1.0 0.16]);
tabl = uitab('Parent', pnl, 'Ti
tab2 = uitab('Parent', pnl, 'T

rmalized',...

e', 'Tools'):
.

tl
itle', 'Advanced Options'):;

% Create text to display code status

Status_h = uicontrol('Style','text', ..., ...
'Str ',
'fontsize',10, 'Units' ,'Normalized',...
'Position', [0.244,0.141,0.5,0.035],...
'Tag', 'UpdateGUI');

t Status:Wait

’

% Create checkbox to select automatic sc

Auto_type_h = uipanel('Parent', tab2, 'visi ’

items = size(control.auto_types,2); INumber of items

itemspace = (1/(items*1.1));

for e = l:size(control.auto_types,2)

ExEv{e}= uicontrol('Style’, 'Checkbox','String',control.auto_types{e},...

'units', 'normalized', 'pos’', [((itemspace*e)- 0.3), .3, 1, 0.5],...
'parent’',Ruto_type_h, 'HandleVisibility','on'); $#0k<AGROW>

lized','Position', [0.02, 0.040 , 0.243, 0.43]):

end

% Create checkbox to determine how to load the data

Load_type_h = uibuttongroup('Parent',tab2,'visible','on','

,'normalized', 'Position', [0.3, 0.040 , 0.4, 0.43]):
items = size(control.load_types,2); tNumber of items
itemspace = (1/(items*1.1));

for e = l:size(control.load_types,2)
Lt_h{e}= uicontrol('Style','Radio', 'St ',control.load_types{e},...
'units', 'normalized', 'pos’', [((itemspace*e)- 0.25), .3, 1, 0.5],...
'parent’,Load_type_h, 'HandleVisibility','on'); $#0k<AGROW>

end
uicontrol ('Style', 'text', 'String','Load Options', 'fontsize',10,'units', 'normalized’',...
'position', [0.37, 0.5, 0.243, 0.395],'parent',tab2)

Figure 48: Initialising the application, setting appearance and creating interactive fea-
tures (1 of 3)

39

$Create a button to delimit data based on statistical measures.
Auto_exlude_h = uicontrol ('Parent',tab2,'Style' , 'pushbutton',...

'String', 'Auto Screen' ,...

'Units' ,'Normalized',...

'Position', [0.020 0.5 0.243 0.395],...

'BackgroundColor',[.1 .44 .89],...

'ForegroundColor', [1 1 1],...

'FontWeight', 'bold', ...

'Tag', 'PlotData’, ...

'Callback', {€GUI_Auto_screen,Status_h,ExEv,control}); $#ok<NASGU>

% Create list box to select sensor
datalist_h = uicontrol('Parent',tabl,'Style', 'list',...
'String', {control.datalist},...
'max',1l,'min',1,...
'Units' ,'Normalized',...
'Position', [0.345,0.08,0.30,0.79]);

$Set up controls for plotting data.
plot_control h = uipanel('visible','on','units', 'normalized','Position’,[0.23,0.189,0.537,0.079]);
no_curves_h = uicontrol('Style', 'edit', 'units','normalized',...
'position', [0.408,0.010,0.2,0.45], 'parent',plot_control h);% Number of curves to plot at a time.
curves_text_h = uicontrol('Style', 'text', 'String','No. of Curves:',6'fontsize',b1l0,'units’','normalized',...
'position', [0.10,0.469,0.80,0.55], 'parent’,plot_control _h);
uistack(curves_text_h, 'top');

$Create load data button
load_data_h = uicontrol('Parent',tabl, 'Style' , 'pushbutton',...
'String', 'Load data' ,...
'Units' ,'Normalized',...
'Position', [0.020 0.043 0.243 0.395],...
'BackgroundColor',[.1 .44 .89],...
'ForegroundColor', [1 1 1],...
'FontWeight', 'bold', ...
'Tag', 'PlotData’, ...
'Callback’, {@GUI_load data,Status_h,datalist_h,Lt_h,curves_text_h,no_curves_h,control}); %#ok<NASGU>

$Create plot forwards button

plot_next_h = uicontrol ('Parent',plot_control_h,'Style' , 'pushbutton',...

'String', "Next >
'Units' ,'Normalized',...

'Position', [0.729,0.07,0.249,0.807],...

'BackgroundColor',[.1 .44 .89],...

'ForegroundColor', [1 1 1],...

'FontWeight', 'bold', ...

'Tag', 'PlotData’, ...
'Callback',(@GUI_next_daca,Scatus_h,curves_text_h,no_curves_h,concrol}); $#0k<NASGU>

gros

Figure 49: Initialising the application, setting appearance and creating interactive fea-
tures (2 of 3)

40

%Create plot backwards button
plot_prev_h = uicontrol ('Parent’',plot_control h,'Style' , 'pushbutton',...
'String’', "’

< Prewvious' ,...

'Units' , 'Normalized',...

'Position', [0.018,0.07,0.249,0.807],...

'BackgroundColor',[.1 .44 .89],...

'ForegroundColoxr', [1 1 1],...

'FontWeight', 'bold', ...

'Tag', 'PlotData’, ...
'Callback',(@GUI_p:ev_data,S:atus_h,curves_tex:_h,no_curves_h,control)): $#0k<NASGU>

%$Create plot data button
plot_data_h = uicontrol ('Parent',tabl, 'Style' , 'pushbutton',...
'String', 'Plot data' ,...
'Units' ,'Normalized',...
'Position', [0.020 0.5 0.243 0.395],...
'BackgroundColor',[.1 .44 .89],...
'ForegroundColor', [1 1 1],...
'FontWeight', 'bold', ...
'Tag', 'PlotData', ...
'Callback',(@GUI_plotdata,Status_h,datalist_h,curves_text_h,no_curves_h,control)); $#0k<NASGU>

$Create exclude data button
exclude_data_h = uicontrol ('Parent’',tabl, 'Style' , 'pushbutton’',...
'String', 'Exclude data' ,...
'Units' , 'Normalized',...
'Position', [0.737 0.5 0.243 0.395],...
'BackgroundColox', [1, O, O],...
'ForegroundColor', [1 1 1],...
'FontWeight', 'bold', ...
'Callback’, {@GUI_excludedata,Status_h,datalist_h,control}); %$#ok<NASGU>

$Create screen data button
screen_data_h = uicontrol ('Parent’',tabl, 'Style' , 'pushbutton',...
'String', 'Screen data' ,...
'Units' , 'Normalized',...
'Position', [0.737 0.043 0.243 0.395],...
'BackgroundColorx', [0.9290, 0.6940, 0.1250],...
'ForegroundColoxr', [1 1 1],...
'FontWeight', 'bold', ...
'Callback',{@GUI_sc:eendaca,Scacus_h,datalisc_h,cont!ol)); $#0k<NASGU>

Figure 50: Initialising the application, setting appearance and creating interactive fea-
tures (3 of 3)

41

3.3.2 Method: LoadData

This method launches a dialogue box to allow the user to locate the data, which is
then loaded into the application. It allows three forms of loading, as stored (default),
randomised and ordered by the base identifier. This functionality was useful to visualise
the data in different ways. After reading in the data, it writes the file categories (as
determined by the MATLAB data structure) to a selection box (Figure 51 and Figure
52).

function GUI_load_data(~,~,Status_h,datalist_h,Lt_h,curves_text_h,no_curves_h,control)

$GUI_LOAD DATA: function opens a di

e box to allow

$the user select the MATLAB str e data is

$stored.

[struct_name, control.pathname, ~] = uigetfile('Select Data Structure');
set (Status_h, 'String', 'Loading data')

drawnow

$ read in structure and rename appropiately

try
control.my_struct = load([control.pathname,struct_name]);
struct_name = fieldnames([control.my struct]);
control.my_struct = control.my_struct. (struct_name{l});
catch
set (Status_h, 'String', 'Exrror loading data')
drawnow
return
end

$read the fieldnames of the structure and store in property

control.datalist = fieldnamesr(control.my_strucc);

if Lt_h{2}.Value == 1
s

for i = 1l:size(control.datalist,l)

rng(42)
rand_idx = randperm(size (eval(['con / struct.',control.datalist{i}]),2)):
currrent_data = eval(['control.my struct.',control.datalist{i}]):
Structstrings = strsplit(control.datalist{il},’'.’):
control.my_ struct = Dynamicstruct (control.my_ struct,Structstrings,currrent_data(:,rand_idx));
end
elseif Lt_h{3}.Value == 1

$order by participant.
if ~istable(eval ([’
errordlg('Particip

t uct.',control.datalist{1}]))

y works with tables for now', 'Error Loading'):

oad

else

for i = l:size(control.datalist,l)
currrent_data = eval(['control.my struct.',control.datalist{il}]):
[~,sort_idx] = sort(currrent_data.Properties.VariableNames);
Structstrings = strsplit(control.datalist{i},'.'):
control.my struct = Dynamicstruct (control.my_struct,Structstrings,currrent_data(:,sort_idx));
set (curves_text_h,
set (no_curves_h, 'visible','off');

end

', 'Screening Participants')

end
set (curves_text_h, 'St

set (no_curves_h, 'visib
control.c_load_type = 'Participant load';

Figure 51: Method to load data (1 of 2)

42

set (datalist_h, 'String’',control.datalist)
drawnow
set(Status_h,'St:;:g','F;:;sheﬂ importing data')

if ~exist([control.pathname,'S
T = cell2table(cell(l1,2),"'
writetable (T, [control.pathname,

writetable (T, [control.pathname, 'ScreenIndex.x1lsx"'], "’
control.ExcludeIndex = readtable([control.pathname, '
control.ScreenIndex = readtable([control.pathname, 'S

else
control.ExcludeIndex = readtable([control.pathname,'S
control.ScreenIndex = readtable([control.pathname, 'S

end

catch
set (Status_h, 'String', 'Error writing files')
drawnow

Figure 52: Method to load data (2 of 2)

3.3.3 Method: PlotData

This method plots user selected data stored in long or wide format (Figure 53). After
consulting the screen index file to determine if any of trials should be excluded, this
method plots user selected data. In order to provide some context to the data, a shaded
region is also plotted to represent the mean + 2 * standard deviations of the whole data-
set. If the user has loaded the data by base identifier (participant), the number of plots
displayed will equal the all the trials by the first participant. If the user has loaded the
data as default or by randomised load, the number of trials displayed will be determined
by a user defined number entered in an interactive text box (or defaults to 20) (Figure 54).

43

function GUI_plotdata(~,~,5tatus_h,datalist_h,curves_text_h,no_curves_h,control)
$GUI_PLOTDATA: Function to plot data from the first
$observation.#
$reset properties
control.selected_curve = []; control.ob_ident = []; control.num curve = [];
control.num curve = 0;

$set up enviroment for plotting.

set (Status_h, 'String', 'Plotting data')

drawnow

cfield = datalist_h.5tring(datalist_h.Value);
cdata = eval(['control.my struct.',cfield{1l}]) :
Plot_h = subplot(3,1,1:2);

Plot_h.Position = [0.104,0.401,0.77,0.515];

%check to see if data is in wide or long format and format
$approporiatly.
if istable (cdata)

cdata = [cdata.Properties.VariableNames; tabkle2cell (cdata)]:

end
if iscell (cdata)
if sum(cellfun(@ischar,cdata(:,1l)))/size(cdata(:,1),1l) == 1 %Long data
$Gather oberservation identifiers:
subdata = cdata(:, (cellfun(@ischar,cdata(l,:)))):

control.ob_ident = cell(size (subdata,l),1);
control.c_data = cellZ2mat (cdata(:,~cellfun(@ischar,cdata(l,:)))):
for i = 1l:size(subdata,2)
ifi>1
control.ob_ident = strcat(control.ob_ident,' ',subdata(:,1)):
else
control.ob_ident = strcat(control.ob_ident,subdata(:,1i)):

end
end
else ¥ wide data
subdata = cdata((cellfun(@ischar,cdata(:,1))),:):
control.ob_ident = cell(size (subdata,2),1);
control.c_data = cell2mat (cdata (~cellfun (@ischar,cdata(:,1)),:)):
subkdata = subdata';
for 1 = 1l:size(subkdata,2)
ifi>1
control.ob_ident = strcat(control.ob_ident,' ',subdata(:,1)):
else

control.ob_ident = strcat(control.ob_ident,subdata(:,1i)):
end

end
else

set (Status_h, 'String', 'This app can currently only import cell or table data')
end

Figure 53: Method to plot data (1 of 2)

44

$exclude all of a participants data based on 'all data' keyword.
if ~isempty(control.ExcludeIndex.Observation)

exclude_idx = control.ExcludeIndex.Observation (contains (control.ExcludeIndex.Observation, 'all_data'));
exlude _prefix = cellfun(@(x){x(l:strfind(x,'all_data')-1)}, exclude_idx);

control.c_data = control.c _data(:,~contains(control.ob_ident,exlude_prefix));

control.ob_ident = control.ob_ident(~contains(control.ob_ident,exlude_prefix)):;

end

$exclude data in exclude and screen index.
if ~isempty(control.ScreenIndex.Cbservation)

control.c_data = control.c data(:,~contains(control.ob_ident,control.ScreenIndex.Observation));
control.ob_ident = control.ob_ident (~contains (control.ob_ident,control.ScreenIndex.Cbservation));
end
if ~isempty(control.ExcludeIndex.Observation)
control.c_data = control.c_data(:,~contains(control.ob_ident,control.ExcludeIndex.Observation)):;
control.ob_ident = control.ob_ident (~contains(control.ob_ident,control.Excludelndex.Observation));
end

% store error bands
control.bands = [(mean(control.c_data,2) + (2* std(control.c data,l,2)));...
flipud((mean(control.c_data,2) - (2* std(control.c_data,l1,2))))]:

% plot error bands

xframes = [(O:size(control.c_data,l)-1),fliplr(0:size(control.c_data,l)-1)]1';

hPatch = patch(xframes, control.bands, .
'k','facealpha',0.2, 'edgecolor', 'none');

set (hPatch, 'HitTest', 'off");

hold on

$Plot by participant
if strcmp(control.c load type, 'Participant load')
participants = cellfun(@(x){x(l:max(strfind(x,'_")))}, control.ob_ident);
control.c_particpant = participants{l};
end_idx = find(contains(participants,control.c particpant), 1, 'last');
control.current_range = [l,end idx];
set (curves_text_h, 'String',['Screening Participant ',control.c particpant])
cdata = control.c_data(:,l:control.current_range(2));
participant_bands = [(mean(cdata,2) + (2* std(cdata,l,2))); flipud((mean(cdata,2) - (2* std(cdata,l1,2))))];

% plot error bands
xframes = [(O:size(control.c_data,l)-1),fliplr(0:size(control.c_data,l)-1)]1"';
control.hPatch_p = patch(xframes, participant_bands,...
'b','facealpha', 0.2, 'edgecolor', 'none');
set (control.hPatch p, 'HitTest','off');
hold on
else
$Plot by curves - Set current plot range
if isempty(no_curves_h.String)

no_curves_h.String = '20';

control.current_range = [1,str2double(no_curves_h.String)];
else

control.current_range = [1,str2double(no_curves_h.5tring)];

end

$control for less data than range

if size(control.c_data,2) <= control.current_range(2)
control.current_range (2) = size(control.c_data,2);
no_curves_h.S5tring = num2str(size(control.c data,2));
set (Status_h, 'String', 'Plotting all data')

end

end

$plot data with button down callback function

control.linelist = plot3(0:100,control.c data(:,l:control.current_range(2)),ones(1,101),...
‘ButtonDownFcn',(@StoreCurve,Status_h,control},'Llnewldch',l.s):

Figure 54: Method to plot data (2 of 2)

45

The data is plotted with a button-down call back function, which allows the user to
select any of the curves after they are plotted by clicking on a curve and excluding it
from the current session (Figure 55).

StoreCurve (LineH, ~,5tatus_h, control)
ECURVE: This function stores the handle of selected curves
if sum(control.selected curve == LineH) > 0
set (Status_h, 'String', [num2str (control.num curve),' Lines currently selected - (Line already selected)'])
else
control.num curve = control.num curve + 1;
set (Status_h, 'String’', [num2str (control.num curve),' Lines currently selected'])
control.selected curve = [control.selected curve;LineH];
set (LineH, 'Li idth', 2.5)
end
end

Figure 55: Callback function to store clicked curves

3.3.4 Method: Next data and Previous data

These methods allow the user to cycle forward or backwards through the data. Similar
to the plot data method (see section 3.3.3), the number of plots displayed depend on the
method of loading. As both the next data and previous data methods are very similar,
only the next data method is shown here (Figure 56 and Figure 57).

function GUI_next_data(~,~,5tatus_h,curves_text_h,no_curves_h,control)

$GUI_NEXT DATA: button donwn function to plot next n curves.
set (Status_h, 'String', 'Plotting data')
drawnow

$rest properties

control.selected curve = []; control.num curve = 0;

tdelete all lines on figure
hLine = findall (gcf, 'Type
delete (hLine)

delete (control.hPatch_p)

$exclude data in exclude and screen index.

if ~isempty(control.ScreenIndex.Cbservation)

control.c_data = control.c_data(:,~contains (control.ob_ident,control.ScreenIndex.Observation));
control.ob_ident = control.ob_ident (~contains (control.ob_ident,control.ScreenIndex.Observation));
end
if ~isempty(control.ExcludeIndex.Observation)
control.c_data = control.c_data(:,~contains (control.ob_ident,control.Excludelndex.Cbservation));
control.ob_ident = control.ob_ident (~contains (control.ob_ident,control.Excludelndex.Observation));
end

$plot by participant
if strcmp(control.c_load type, 'Participant load')
participants = cellfun(@(x){x(l:max(strfind(x,'_")))}, control.cb_ident);
start_idx = find(contains (participants,control.c particpant), 1, 'last') + 1;
try
control.c_particpant = participants(start_idx):;
end idx = find(contains(participants,control.c particpant), 1, 'last');
control.current_range = [start_idx,end idx]:;
set (curves_text_h, 'String',['Screening Participant ',control.c_particpant])

cdata = control.c_data(:,control.current_range (l) :control.current_range (2));
participant_bands = [(mean(cdata,2) + (2* std(cdata,l,2)));...
flipud((mean(cdata,2) - (2* std(cdata,l1,2))))]:

Figure 56: Method to cycle through data and plot curves (1 or 2)

46

cdata = control.c_data(:,control.current_range (l) :control.current_range(2)):;
participant_bands = [(mean(cdata,2) + (2* std(cdata,l1l,2)));...
flipud((mean(cdata,2) - (2* std(cdata,l,2))))]:

$ plot error bands
xframes = [(0:size(control.c _data,l)-1),fliplr(0:size(control.c_data,l)-1)]"';
control.hPatch_p = patch(xframes, participant_bands, ...
'b', 'facealpha', 0.2, 'edgecoloxr', 'none');

set (control.hPatch_p, 'HitTest','off');
hold on

catch
set (Status_h, 'String', 'No more data to plot')

end

else

$determine how many lines to plot

if isempty(no_curves_h.5tring)
no_curves_h.String = '20';
inc = 20;

else
inc = str2double (no_curves_h.S5tring);

end

if size(control.c_data,2) > control.current_range(2) + inc

control.current_range = [control.current_range(2) + 1, control.current_range(2) + inc];
elseif (size(control.c_data,2) - control.current_range(2)) == 0
set (Status_h, 'S5tring', 'No more data to plot')
else
control.current_range = [size(control.c_data,2) - (inc -1) ,size(control.c_data,2)];
end
end
set (Status_h, 'String', 'Waiting..")

$plot curves.
control.linelist = plot3(0:size(control.c_data,l)-1,...
control.c _data(:,control.current_range(l):control.current_range(2)),ones(1l,101),...
'ButconDownFcn',(@StoreCurve,Status_h,cont:ol),'Ll:erdth',l.S):
end

Figure 57: Method to cycle through data and plot curves (2 or 2)

47

3.3.5 Method: Exclude data and Screen data

These methods are called by pressing the exclude data or screen data buttons. These
methods write the identifiers associated with the selected curves to a file. As both meth-
ods are very similar only the exclude data method will be presented here (Figure 58).
An example of the output is also presented (Figure 59).

function GUI_excludedata(~,~,Status_h,datalist_h, control)

UDEDATA: This button function writes currently

%
$selected curve indentifiers to a screening list.

set(Status_h,’Str;:c , '"Excluding data')

cfield = datalist_h.S5tring(datalist_h.Value);

$find data belonging to currently selected lines.
for i = 1l:size(control.selected_curve,l)
idx = control.selected_curve (i) == control.linelist;
c_obs = control.ob_ident (control.current_range (l):control.current_range(2));
control.ExcludeIndex = [control.ExcludeIndex ;[c_obs(idx),cfield(1)]]:
end
try
%Write ExcludeIndex to file.
writetable (control.ExcludeIndex, [control.pathname, 'ScreenIndex.xlsx"'], 'Sheet', 'ExcludeData’)
catch
set (Status_h, 'S5tring', 'Excluded data not stored')
errordlg('Make sure target excel file is closed and try again', 'Error Exporting'):
return
end
$delete currently select line objects.
for i = 1l:size(control.selected_curve,l)

delete (control.selected curve(i))
end

$reset curves

control.num curve = 0; control.selected_curve = [];
set (Status_h, 'String’', 'Ready..")
end
Figure 58: Method to write selected curve identifiers to file
Observation Condition

P_4315 | stance24 Norm.Baseline_Run_Skmhr_Vue.stance.KneeVelocity_rot_Auto_Entropy
P_4315 L stance35 Norm.Baseline_Run_Skmhr_Vue.stance.KneeVelocity_rot_Auto_Entropy
P_4315_L_stance75 Norm.Baseline_Run_Skmhr_Vue.stance.KneeVelocity_rot_Auto_Entropy
P_4056_R_stance24 Norm.Baseline_Run_Skmhr_Vue.stance.KneeAcceleration_fle_Auto_Amplitude
P_4057_R_stance33 Norm.Baseline_Run_Skmhr_Vue.stance.KneeAcceleration_fle_Auto_Amplitude
P_4057_L_stance26 Norm.Baseline_Run_Skmhr_Vue.stance.KneeAcceleration_fle_Auto_Amplitude

Figure 59: Example outputed file after excluding curves

48

3.3.6 Method: Auto Screen

This final method provides the option to automatically delimit the data based on stat-
istical tests, to identify extreme outliers in terms of amplitude and entropy (Figure 60
and Figure 61).

function GUI_ARuto_screen(~,~,S5tatus_h,ExEv,control)
$This function implements some statistical tests to automatically delimit the data

tread the fieldnames of the structure and sStore in property
control.datalist = fieldnamesr (control.my_struct):;
cdata = eval(['control.my struct.',control.datalist{l}]):

if istable(cdata)
control.ob_ident = cdata.Properties.VariableNames;
control.c_data = table2array(cdata);

else
errordlg('Auto Screen only works with tables for now','Erro

H

end
$exclude all of a participants data based on 'all data' keyword.
if ~isempty(control.ExcludeIndex.Observation)
exclude idx = control.ExcludeIndex.Observation(contains (control.ExcludeIndex.Observation, 'all_data'));
exlude prefix = cellfun(@(x)(x(l:strfind(x,'al;_data')—l)), exclude_idx):;
control.c_data = control.c_data(:,~contains(control.ob_ident,exlude prefix)):
control.ob_ident = control.ob_ident (~contains (control.ob_ident,exlude_prefix));
end

$exclude data in exclude and screen index.

if ~isempty(control.ScreenIndex.Observation)

control.c_data = control.c_data(:,~contains (control.ob_ident,control.ScreenIndex.Observation));
control.ob_ident = control.ob_ident (~contains(control.ob_ident,control.ScreenIndex.CObservation));
end
if ~isempty(control.ExcludeIndex.Observation)
control.c_data = control.c_data(:,~contains (control.ob_ident,control.ExcludeIndex.Observation));
control.ob_ident = control.ob_ident (~contains(control.ob_ident,control.ExcludeIndex.Observation));

end

for i = 1l:size(control.datalist,l)
$update info provided to user.

set (Status_h, 'String’, ['Buto S ', num2str(i),' out of ',num2str(size(control.datalist,1))])
drawnow
cdata = eval([’ .',control.datalist{i}]):

% Auto screen based on Amplitude

if ExEv{l}.Value 1
idxl = control.c_data' > (mean(control.c data') + (std(control.c data') * 4.0)); %Fok<UDIM>
idx2 = control.c_data' <(mean(control.c_data') - (std(control.c_data') * 4.0));%#ok<UDIM>
idx = sum((idxl == 1|idx2 1),2)> 5 ;
outliers = control.ob_ident (idx);
control.ScreenIndex = [control.ScreenIndex ;...

[outliers', repmat ({[control.datalist{i},' Auto_Amplitude']},size(outliers'))]];

Figure 60: Method to auto screen data (1 of 2)

49

% Auto screen based on Entropy
if ExEv{2}.Value == 1
data_std = std(control.c_data);
ent_data = zeros(size(data_std)):
for x = l:size(data_std,2)
[se,~,~] = sampenc(control.c_data(:,x),2,(0.2*data_std(x))):

ent_data(l,x) = se(2,1);
end
idxl = ent_data > (mean(ent_data,2,'omitnan') + (std(ent_data,0,2,'omitnan') * 4.5));
idx2 = ent_data < (mean(ent_data,2,'omitnan') - (std(ent_data,0,2,'omitnan’) * 4.5));
idx = (idxl == 1]idx2 == 1)~=0 ;
outliers = control.ob_ident (idx):;
control.ScreenIndex = [control.ScreenIndex ;...
[outliers',repmat ({[control.datalist{i},' Auto_Entropy']},size(outliers'))]];
end
end
if ExEv{l}.Value == 0 && ExEv{2}.Value == 0
set (Status_h, 'String', 'Exror... no metric selected to auto screen')
end

% Save data to file
try
writetable(control.ScreenIndex, [control.pathname, 'ScreenIndex.xlsx"'], 'Sheet’', 'ScreenData’)
catch
set (Status_h, 'String’', 'Data to screen not stored')
errordlg('Make sure target excel file is closed and try again', 'Error Exporting'):
return
end
set (Status_h, 'S5tring', 'Finished Auto Screening’)

Figure 61: Method to auto screen data (2 of 2)

50

3.4 General Preprocessing

After extracting the data from the biomechanical files and normalising the stance phase
data to 101 data points in MATLAB, the data was ready for the general preprocessing
phase in python. Firstly, the required packages were loaded including the custom modules
(LandMarkReg and ACP). The data was read in, along with the injury status of the
participants. The data was then delimited to those participants who completed the
prospective arm of the study (Figure 62).

51

This script was written for the MSc project entitled 'The identification of foot-strike patterns
using unsupervised learning and their association with injury’. This script represents the general
preprocessing of the data.

An overview of the preprocessing steps:

The biomechanical data is aligned using dynamic time warping

Features are generated using ACP and TSFresh.

The data is scaled to zero mean, unit variance.

The data is screened for outliers using LocalOutlierFactor and IsolatedForests.
Missing data is imputed using MICE and a baysian ridge regression.

Features with with near zero variance are removed.

Highly correlated features are removed.

#Written by Shane Gore Cotact: Shane.Gore2@gmail.com

import pandas as pd

import numpy as np

import os

import matplotlib.pyplot as plt

from scipy import interpolate

from tqdm import tqdm

from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA

import copy

from sklearn.feature_selection import VarianceThreshold
from tsfresh import extract_features

from tsfresh.feature_extraction import MinimalFCParameters
from sklearn.impute import SimpleImputer

from sklearn.impute import IterativeImputer

from sklearn.linear_model import BayesianRidge

from sklearn.neighbors import LocalOutlierFactor

from sklearn.ensemble import IsolationForest

os.chdir('D:\MSc Thesis\MSc Files")

from LandMarkReg import LandMarkReg #custom module
from ACP import ACP #custom module

data_conditions = pd.read_csv('Vuedata_index_stance 28 06.csv’)
data = pd.read_csv(Vuedata_stance_ 28 06.csv’, header=lone)

data.head()
data_conditions.head()

injury_status = pd.read_excel(Injury Status_ 086 2020.x1sx")
injury_status.columns = ['Participant_ID', Injured_Prospectively’]
injury_status[‘Injured_Prospectively’][injury_status[Injured_Prospectively']
.str.contains("y",na=False,case=False)]=1
injury_status[‘'Injured_Prospectively’][injury_status['Injured_Prospectively']
.str.contains("n",na=False,case=False)]=0

#De f n r y tat i i 3 1 y non RRT niur

participants = data_conditions.conditions_t5.str[0:6]
len(set(participants))

idx = np.inld(participants,injury_status.Participant_ID)
data_conditions = data_conditions.iloc[idx,:]

participants = participants.iloc[idx]

data = data.iloc[idx,:]

idx = np.inld(injury_status.Participant_ID,participants)
injury_status = injury_status.iloc[idx,:]

Figure 62: Loading packages and data

52

The biomechanical time series data was then aligned using landmark registration
Moudy et al. (2018) using the LandMarkReg class (Figure 63). Details of the Land-
MarkReg are presented in section 3.4.1.

global_data = (data.loc[data_conditions.conditions_t4 == 'KneeAngles_fle',:]).transpose()
global_data_mean = np.array(global_data.mean(axis = 1))

global_landmark = np.argmax(global_data_mean)

x_array = np.arange(len(global_data_mean)).reshape(len(global_data_mean),1)

registered_data_conditions = pd.DataFrame(columns=data_conditions.columns)
variables = list(data_conditions.conditions_t4.unique())

registered_data = np.zeros_like(data)
counter = @
for variable in variables:
print(variable)
current_data = data.loc[data_conditions.conditions_t4 == variable,:].transpose()
for i in tqdm(range(np.size(current_data,axis = 1))):
current_landmark = np.argmax(np.array(global_data.iloc[@:88,i]))
Landmark = LandMarkReg(1@1,current_landmark,global_landmark)
reg = Landmark.DynamicTimeWarp()
tck = interpolate.splrep(x_array, current_data.iloc[:,1i])
registered_data[counter,:] = (interpolate.splev(reg, tck)).transpose()
counter += 1

current_condit = data_conditions.loc[data_conditions.conditions_t4 == variable,:]
registered_data_conditions = registered_data_conditions.append(current_condit)
participants_delim = pd.Series(participants
[data_conditions.conditions_t4 == variable],name="Participant_ID")

np.savetxt(“registered_data.csv”, registered_data, delimiter=",")
registered_data_conditions.to_csv('registered_data_conditions.csv', index=False)

Figure 63: Implementation of Landmark Registration

33

Using the time aligned data, ‘Analysis of Characterising Phases’ (ACP) is conducted
100 times on random 70% subsamples (Figure 64). Only robust phases were then retained
defined as being identified more than 80% of the time (Richter et al.; 2019). For details
on the ACP class, please see section 3.4.2.

registered_data[np.std(registered_data[:,:],axis = 1) == 0,:] = np.nan

Features = np.zeros([registered_data
[registered_data_conditions.conditions_t4 == variable,:].shape[0],1000],np.float64)
Feature_names = pd.DataFrame()
counter = @
for variable in variables:

print(variable)
reg_data = copy.copy(registered_data[registered_data_conditions.conditions_t4 == variable ,:])
ACP_idx np.zeros([1,101],int)

phase_idx = np.zeros([100,101],int)
for x in range(0,100):
np.random.shuffle(reg_data)
c_reg_data = reg_data[@:round(len(reg_data)*0.70),:]
ACP_phases = ACP(c_reg_data,90)
phase_start,phase_end = ACP_phases.identify_phases()
for i in range(len(phase_start)):
phase_idx[x,phase_start[i]:phase_end[i] +1] = 1
ACP_idx[@,np.sum(phase_idx,8) > 80] = 1
cp = np.diff(ACP_idx)
phase_end = np.where(cp == -1)[1] + 1
phase_start = np.where(cp == 1)[1] + 1
if phase_start[@] > phase_end[0]:
phase_start = np.hstack(([@],phase_start))
if phase_start[-1] > phase_end[-1]:
phase_end = np.hstack((phase_end,[101]))
reg_data = registered_data[registered_data_conditions.conditions_t4 == variable ,:]
for i in range(len(phase_start)):
Features[:,counter] = np.nanmean(reg_data[:,phase_start[i]:phase_end[i]],axis = 1)
Feature_names = Feature_names.append([variable + '_° +str(phase_start[i]) + ' + str(phase_end[i])])
counter += 1

ACP_Features = Features[:,np.sum(Features,axis = @) != 0]

ACP_Features = pd.DataFrame(ACP_Features,columns = Feature_names[08].tolist())
ACP_Features = ACP_Features.set_index(registered_data_conditions[conditions_t5"]
[registered_data_conditions[conditions_t4'] == variable])

ACP_Features.to_csv(Features.csv’)

Figure 64: Implementation of Analysis of Characterising Phases

o4

Additional time series metrics are then calculated using the TSFresh python package
(Christ et al.; 2018) (Figure 65).

registered_data_conditions = registered_data_conditions.reset_index()

ts_data = pd.concat([registered_data_conditions[[conditions_t4°, conditions_t5°]],
pd.DataFrame(registered_data)], axis =1)

ts_data = pd.melt(ts_data, id_vars =[conditions_t5", conditions_t4'])

ts_data = ts_data.pivot_table(index=[conditions_t5°, ‘variable'],

columns="conditions_t4", values='value').reset_index()

ts_data.to_csv('ts_data_0507.csv’)

ts_data = pd.read_csv(ts_data_0587.csv")

ts_data = ts_data.iloc[:,1:]

imp = SimpleImputer(missing_values=np.nan, strategy='median’)
imp.fit(ts_data.iloc[:,2:])
TS_temp = imp.transform(ts_data.iloc[:,2:])

ts_data_c = copy.copy(ts_data)

ts_data_c.iloc[:,2:] = TS_temp

TSF_features = extract_features(ts_data_c, column_id="conditions_t5", column_sort="variable”,
default_fc_parameters= MinimalFCParameters(), n_jobs = @)

TSF_features.to_csv('TSF_features_8507.csv’)

All _Features = pd.merge(ACP_Features,TSF_features,left_index=True, right_index=True)
All_Features.to_csv(All_Features_05087.csv’)

Figure 65: Engineering additional feature with TSFresh

Data was scaled to zero mean and unit variance. Outliers in the generated features
were detected using isolated forests and local outlier factor. Missing data was then
imputed using multivariate imputation by chained equations (MICE) and a Bayesian
ridge regression approach based on the twenty nearest features (Figure 66).

Features_scaled = StandardScaler().fit_transform(All_Features)
Feature_names = list(All_Features)

imp = SimpleImputer(missing_values=np.nan, strategy='median’)
imp.fit(Features_scaled)
Features_scaled_temp = imp.transform(Features_scaled)

clf = LocalOutlierFactor(n_neighbors=20, contamination='auto’, n_jobs = -1)
y_pred = clf.fit_predict(Features_scaled_temp[:,:-1])
clf = IsolationForest(max_samples = ‘auto’, contamination="auto’, n_jobs = -1)

clf = clf.fit(Features_scaled_temp[:,:-1])
y_pred2 = clf.predict(Features_scaled_temp[:,:-1])
Features_scaled[(y_pred == -1)|(y_pred2 == -1),:] = np.nan

MICE = IterativeImputer(random_state=8, estimator = BayesianRidge(verbose = 2), n_nearest_features = 20)
MICE.fit(Features_scaled)
Features_scaled = MICE.transform(Features_scaled)

Figure 66: Scaling the data, identifying outliers and imputation with MICE

95

In the final stage of the general preprocessing, near zero variance and highly correlated
features are removed. Injury status is added to the feature matrix and the data is
visualised as its first two PCs (Figure 67).

from itertools import compress

selector = VarianceThreshold(©.01)

selector.fit(Features_scaled)

Features_scaled = Features_scaled[:,selector.get_support()]
Feature_names = list(compress(Feature_names, selector.get_support()))

Features_scaled = pd.DataFrame(Features_scaled,columns = Feature_names)

corr_matrix = Features_scaled.corr().abs()

upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))
to_drop = [column for column in upper.columns if any(upper[column] > ©.90)]
Features_scaled = Features_scaled.drop(Features_scaled[to_drop], axis=1)
[Feature_names.remove(drop) for drop in to_drop]

paticipant_class = pd.merge(participants_delim,injury_status)

Features_scaled = pd.concat([Features_scaled,paticipant_class[['Participant_ID', Injured Prospectively']]
.reset_index(drop=True)], axis=1)

Features_scaled = Features_scaled.set_index(registered_data_conditions[conditions_t5"]
[registered_data_conditions[‘conditions_t4'] == variable])

Feature_names = list(Features_scaled)

Features_scaled.to_csv(Features_scaled_preprocessed.csv’, index=False)

pca = PCA(n_components=2)

principalComponents = pca.fit_transform(Features_scaled.iloc[:,:-2])

fig, ax = plt.subplots(figsize=(10, 5))

ax.scatter(principalComponents[:,0], principalComponents[:,1],alpha=0.70,c= Features_scaled.Injured_Prospectively)

np.sum(paticipant_class.Injured_Prospectively)/ len(paticipant_class.Injured_Prospectively)

Figure 67: Removing near zero and high correlated feature before adding injury status

3.4.1 LandMark Registration

In order to remove unwanted temporal variations from the biomechanical waveforms, a
landmark registration algorithm as previously described (Moudy et al.; 2018), was em-
ployed using a custom writen python class (Figure 68) and a sub method to dynamically
warp the timing of the signals (Figure 69 and Figure 70). In comparison to the algorithm
proposed by Moudy et al. (2018), this current project used an akima spline rather than
a cubic spline and implemented a binary search approach to speed up convergence. This
latter point was important given the size of the dataset.

56

class LandMarkReg(object):
"""This is a class to warp the velocity of signals so that the user
identified landmarks align. This class is based on the MATLAB class
written by Dr Chris Richter and described in the paper by Moudy et al 2018.

Modifications:

- Uses divide and conquer, binary search algorithm to speed up convergence.

- Uses Akima spline rather than cubic spline to reduce overshooting between
landmarks.

- Smaller error tolerance resutls in better alignment.

Attributes:
nrows: An int representing the number of rows in the signal.
current_pos: A int representing the position of the ladmark in the
current signal.
landmark_pos: An int representing the position of the registration
landmark.

Moudy, S., Richter, C., & Strike, S. (2018). Landmark registering waveform
data improves the ability to predict performance measures.
ournal of biomechanics, 78, 109-117.

wan

Writen by Shane Gore 2020. Contact Shane.Gore2@Gmail.com

def __init_ (self, nrows =101, current_pos ="', landmark_pos=""):

self.nrows = nrows
self.current_pos current_pos
self.landmark_pos = landmark_pos

def DynamicTimeWarp(self):

speedMAT = Ap;embty(ksei}.néoﬁs;lsj7 -
speedMAT.fill(np.nan)
speedMAT[np.array([@, self.landmark_pos, self.nrows -1])] =1

mpos = [a;;etf.landmark_pos, self.nrows]
cpos = [@,self.current_pos, self.nrows]

wéébE=Vnp;é;pty(te,i];ﬁp.%losfsﬁ)>
for n in range(len(mpos)-1):
c_len = cpos[n+l] - cpos[n]

if n ==

cutting = False
else:

cutting = True

warp = np.append(warp,self.warpfnc(speedMAT[mpos[n]:mpos[n+1]+1],c_len,cutting))

wé%p - ﬁp;éumsum(warp) -1

return(warp)

Figure 68: Class to landmark register the biomechanical time series data

o7

def warpfnc(self,raw_sig,c_len,cutting):

c_sig = np.empty_like(raw_sig)
c_sig[:] = raw_sig

c_thresh = 10

thresh = 10

midpoint = round(len(c_sig)*@.5)
c_sig[midpoint] = c_thresh

x1
x2

np.where(~np.isnan(c_sig))
np.where(np.isnan(c_sig))

f = interpolate.AkimalDInterpolator(x1[@], c_sig[~np.isnan(c_sig)])
c_sig[np.isnan(c_sig)] = f(x2[@])

while abs(sum(c_sig) - c_len) > @.@01:
if sum(c_sig) > c_len:

thresh = thresh/2
c_thresh = (c_thresh - thresh)

c_sig = np.empty_like(raw_sig)
c_sig[:] = raw_sig
c_sig[midpoint] = c_thresh

f = interpolate.AkimalDInterpolator(x1[@], c_sig[~np.isnan(c_sig)])
c_sig[np.isnan(c_sig)] = f(x2[@])

Figure 69: Method of the LandMarkReg class to dynamically warp the timing of the
signals (1 of 2)

98

c_sig[c_sig<@] = @;

if cutting == True:
c_sig = c_sig[1:]

elif sum(c_sig) < c_len:
thresh = thresh/2
c_thresh = (c_thresh + thresh)
c_sig = np.empty_like(raw_sig)
c_sig[:] = raw_sig
c_sig[midpoint] = c_thresh

f = interpolate.AkimalDInterpolator(x1[@], c_sig[~np.isnan(c_sig)])
c_sig[np.isnan(c_sig)] = f(x2[@e])

if cutting == True:
c_sig = c_sig[1l:]

return(c_sig)

Figure 70: Method of the LandMarkReg class to dynamically warp the timing of the
signals (2 of 2)

3.4.2 Analysis of Characterising Phases

In order to reduce the dimensionality of the data and extract key features, the concept
of ‘Analysis of Characterizing Phases’ (ACP) was used to generate participant scores
that represent the movement of each participant within key phases of variation using
VARIMAX rotated principal components (Richter et al.; 2014). Each score captures
the samples movement for each identified phase (k) as the summed difference between a
participant’ s waveform (p) and the mean waveform (q) for each time point (i) between the
start (n) and end (m) of a phase. This was completed for each biomechanical waveform
(j) (Equation 1):

feature;, =" p(i) — q(i) (1)

The following figures (Figure 71 and Figure 72) depecit the class written based on
the paper by Richter et al. (2014).

39

import numpy as np

class ACP(object):

This is a class used to extract key phases from time series data

based on the method 'Analysis of Characterising Phases' as described
in the paper by Richter et al. (2014).

Attributes:

data: An n*m array where each row represents a case and each column
represents a time point.

threshold: An int (10:9@) representing the percentage of the peak
vector loading that should be extracted. Default = 90.

Richter, C., 0’Connor, N. E., Marshall, B., & Moran, K. (2014).
Analysis of characterizing phases on waveforms: an application to vertical
jumps. Journal of applied biomechanics, 3@(2), 316-321.

Writen by Shane Gore. Contact: Shane.Gore2@Gmail.com

def

def

__init_ (self,data = '’ ,threshold = 90):

self.data = data
self.threshold = threshold

identify_phases(self):

ifrnb.ishéﬁ(ﬁmeiﬁ(seLk.&ataj5é 7 7
self.data = self.data[~np.isnan(self.data).any(axis=1)]

daéa;meéﬁ =7ﬁb;mean(setf.data,axis=0) #Compute mean of each time point
data_centered = self.data - np.tile(data_mean, (self.data.shape[@],1))

cov_data = np.cov(data_centered.T)

eigen_values, eigen_vectors = np.linalg.eig(cov_data)
desc_order = np.flip(np.argsort(eigen_values))
eigen_values = eigen_values[desc_order]

eigen_vectors = np.real(eigen_vectors[:, desc_order])

var;é*biéine& ér(éigén;Qéiué; / np.sum(eigen_values)) *1@@

Figure 71: Class to calculate ACP phases (1 of 2)

60

princ_comp = eigen_vectors[:,var_explained > 1]

rot_comps = self.varimax(princ_comp)

phase_start, phase_end = self.PC2_keyphase(rot_comps)

desc_order = np.argsort(phase_start, axis=0)
phase_start = phase_start[desc_order]
phase_end = phase_end[desc_order]

c_phase_end = np.empty(0,int)
c_phase_start = np.empty(0,int)
while len(phase_end) > 0:
mergeidx = (abs(phase_end[@] - phase_end)< 2)
if (np.sum(mergeidx) > 1):
c_phase_end = np.append(c_phase_end,max(phase_end[mergeidx]))
c_phase_start = np.append(c_phase_start,min(phase_start[mergeidx]))
phase_end = np.delete(phase_end,np.where(mergeidx))
phase_start = np.delete(phase_start,np.where(mergeidx))
else:
c_phase_end = np.append(c_phase_end,phase_end[0])
c_phase_start = np.append(c_phase_start,phase_start[0])
phase_end = np.delete(phase_end,0)
phase_start = np.delete(phase_start,0)

return(c_phase_start.astype('int'), c_phase_end.astype('int"))

Figure 72: Class to calculate ACP phases (2 of 2)

61

The figure below depicts the method to extract the key phases from the principle
component waveforms (Figure 73).

def PC2_keyphase(self,rot_comps):

threshold = round((self.threshold /1@8),2)

rot_comps = abs(rot_comps)

peak_pos = np.argmax(rot_comps,axis=8)
peak = np.max(rot_comps,axis=8)

phase_start = np.zeros((rot_comps.shape[1],1))
phase_end = np.zeros((rot_comps.shape[1],1))

for n in range(rot_comps.shape[1]):
try:
phase_start[n] = np.max(np.where(rot_comps[@:peak_pos[n]+1,n]
< peak[n] * threshold))
except:
phase_start[n] = @
try:
phase_end[n] = peak_pos[n] + np.min(np.where
(rot_comps[peak_pos[n]:rot_comps.shape[@]+1,n]
< peak[n] * threshold)) + 1
except:
phase_end[n] = rot_comps.shape[@]

return (phase_start,phase_end)

Figure 73: Method of the ACP class to extract phases from the principle component
waveforms

The identified principle component waveforms are then varimax rotated (Figure 74).

def varimax(self,Phi, gamma = 1, q = 20, tol = le-6):

p,k = Phi.shape

R = np.eye(k)
d=0
for i in range(q):
d old =d
Lambda = np.dot(Phi, R)
u,s,vh = np.linalg.svd(np.dot(Phi.T,np.asarray(Lambda)**3 -
(gamma/p) * np.dot(Lambda,
np.diag(np.diag(np.dot(Lambda.T,Lambda))))))
R = np.dot(u,vh)
d = np.sum(s)
try:
if d/d_old < tol: break
except:

continue
return np.dot(Phi, R)

Figure 74: Method of the ACP class to varimax rotate principle components

62

4 Implementation: Clustering

In order to identify the presence of naturally occurring foot-strike patterns, six clustering
algorithms (K-means, Hierarchical, Spectral, OPTICS, HDBSCAN, Mean Shift) were
implemented and assessed. The required modules were firstly loaded (Figure 75).

""'This script was written for the MSc project entitled 'The identification of foot-strike patterns
using unsupervised learning and their association with injury'. This script represents the implementation
of the clustering solutions.
An overview of the steps:
Minority class over-sampled.
Feature selection conducted with Spectral Feature Selection.
Data tested with Hopkins statistic.
Six algorithmns applyed to data(Kmeans, Hierarchial, Spectral, Optics, HDBSCAN, Mean Shift)
Clustering solutions evaluated using bootstrapped Adjusted rand index.
Clustering Solution statistically tested with Welch ANOVA and Games-Howell post hoc tests.
Clustering solutions vizualised.

#Written by Shane Gore 2020 Cotact: Shane.Gore2@gmail.com

import pandas as pd

import numpy as np

import os

import matplotlib.pyplot as plt

import sklearn.cluster as cluster

from imblearn.over_sampling import SMOTE
import seaborn as sns

import hdbscan

from sklearn.utils import resample

from sklearn.metrics import adjusted_rand_score
import pingouin as pg

from itertools import compress

import ptitprince as pt

from sklearn.decomposition import PCA

os.chdir('D:\\MSc Thesis\\MSc Files2')

from cluster_validation import cluster_validation

Figure 75: Loading the required modules

63

The required data generated in the general implementation phase was then read in,
the data class was rebalanced with SMOTE and the data was visualised (Figure 76).

Features_scaled = pd.read_csv('Features_scaled preprocessed ds.csv')
registered_data_conditions = pd.read_csv('registered_data conditions.csv')
registered_data = pd.read_csv("registered_data.csv")

paticipant_class = pd.read_csv("paticipant_class.csv")

data = pd.read_csv("data.csv")

data_conditions = pd.read_csv("data conditions.csv")

data.head()
data_conditions.head()
Features_scaled.to_csv('Features_scaled preprocessed_ds.csv', index=False)

Feature_names = list(Features_scaled)
Foot_Features = Features_scaled.iloc[:,['foot’' in var.lower() for var in Feature_names]]
Foot_names = list(Foot_Features)

oversample = SMOTE(random_state=42,k_neighbors=5)
X_res, y res = oversample.fit_resample(Foot_Features.iloc[:,:-1],
Features_scaled.iloc[:,-1].astype('int"'))

pca = PCA(n_components=2)

principalComponents = pca.fit_transform(X_res)

fig, ax = plt.subplots(figsize=(10, 5))

ax.scatter(principalComponents[:,0], principalComponents[:,1],alpha=0.70, c= y_res)

Figure 76: Loading the data, rebalancing the classes and visualisation

64

Using the concept of spectral feature selection, the number of features to retain for
the clustering solution was determined by visual inspection of the spec scores (Zhao and
Liu; 2007), and the five retained features produced a Hopkins statistic of 0.96, suggesting
high clusterability of the data (Figure 77).

os.chdir('D:\\MSc Thesis\\MSc Files2\\fsfc-master"')
from fsfc.generic.SPEC import GenericSPEC

select2 = GenericSPEC(5)

Gspec = select2.fit(X_res[:,:])

scores_idx = np.argsort(Gspec.scores*-1)

fig, ax = plt.subplots(figsize=(10, 5))
plt.plot(Gspec.scores[scores_idx])
plt.xlabel('Features', fontsize=14)

plt.ylabel('Score', fontsize=14)

plt.suptitle('Spectral Feature Selection', fontsize= 14)
fig.savefig('FS_cluster_SPEC")

os.chdir('D:\\MSc Thesis\\MSc Files2')

from cluster_feature_selection import cluster_feature_selection
cfs = cluster_feature_selection(X_res[::5,Gspec.get_support()])
best_score,best_indices = cfs.hopkins_feature_selection()

X_res = X_res[:,Gspec.get_support()]
Foot_names = list(compress(Foot_names, Gspec.get_support()))

Figure 77: Spectral feature selection and statistical test for clusterability

65

To test the clustering algorithms in a repeatable manner, the various clustering para-
meters were saved as dictionary structure in a dataframe which would then be passed to
a class for evaluation (Figure 78).

cluster_types = pd.DataFrame(éolumns:['algorithm', 'érgs', 'kwds "', "model’,
'prediction_strength', 'adjusted_rand_index',
'VIC_stability', 'silhouette_coefficient', 'density_coefficient'])

for i in range(2,6):

cluster_types = cluster_types.append(pd.DataFrame ({'algorithm': [cluster.KMeans], 'args':[()],
"kwds': [{'init': 'k-means++','max_iter':200, 'n_clusters':i}],
'model':[()], 'prediction_strength':[@], 'adjusted_rand_index':[@],
'VIC_stability':[@], 'silhouette_coefficient':[@],
'density_coefficient':[0]}))

linkages = {'ward', 'complete', 'average', 'single'}
for link in linkages:
for i in range(2,6):
cluster_types = cluster_types.append(pd.DataFrame({'algorithm':[cluster.AgglomerativeClustering],

‘args':[()], 'kwds': [{'linkage':1link, 'n_clusters': i}], 'model':[()],
'prediction_strength':[@], 'adjusted_rand_index':[0@],
'VIC_stability':[@], 'silhouette_coefficient':[0@],
'density_coefficient':[@]}))

for i in [round(len(X_res) * ©.02),round(len(X_res) * 0.04),round(len(X_res) * 0.06)]:
for x in range(1,int(round(np.log(len(X_res))))+1,2):
cluster_types = cluster_types.append(pd.DataFrame ({'algorithm': [hdbscan.HDBSCAN], 'args':[()],
'kwds': [{'min_samples':x, 'min_cluster_size':i}], 'model’':[()],
'prediction_strength':[@], "adjusted_rand_index':[@],
'VIC_stability':[@], 'silhouette_coefficient':[0],
'density_coefficient':[0]}))

cluster_types = cluster_types.append(pd.DataFrame ({'algorithm': [cluster.MeanShift], 'args':[()],
'kwds': [{ 'bin_seeding': False}], 'model’':[()],
'prediction_strength':[@], 'adjusted_rand_index':[@],
'VIC_stability':[@], 'silhouette_coefficient':[@],
‘density_coefficient':[0]}))

for i in range(5,25,5): # ste :
cluster_types = cluster_types.append(pd.DataFrame ({'algorithm': [cluster.OPTICS], 'args':[()],
"kwds': [{'min_samples':i,}], 'model’':[()],
"prediction_strength':[@], 'adjusted_rand_index':[0],
'"VIC_stability':[@], 'silhouette_coefficient':[0],
'density_coefficient':[0]}))

assignmnets = {'discretize’, 'kmeans'}
for assignmnet in assignmnets:
for i in range(2,6):
cluster_types = cluster_types.append(pd.DataFrame ({'algorithm': [cluster.SpectralClustering],
‘args':[()], 'kwds': [{'n_clusters':i,"'assign_labels': "discretize"}],
"prediction_strength':[@], 'adjusted_rand_index':[@],
'VIC_stability':[@], 'silhouette_coefficient':[0], 'density_coefficient':[0]}))

Figure 78: Feature Selection with spectral feature selection

66

The clustering algorithms were then evaluated using the custom module (cluster val-
idation) and the traditional foot-strike classifications (Altman and Davis; 2012) were
calculated (Figure 79). For further details on the cluster validation module, please see
section 4.1

for x in range(len(cluster_types)):
print(x)
cluster_val = cluster_validation(X_res[:,:],cluster_types.algorithm.iloc[x],
cluster_types.args.iloc[x],cluster_types.kwds.iloc[x],
ground_truth = y_res[:],repeats = 2)
methods = cluster_val.call _methods({'adjusted_rand_index': [], 'VIC_ stability': [],

'silhouette_coefficient': [],

'density_coefficient': [],

'plot_clusters': 'foot_cluster_'+ str(x) +'.png'})
cluster_types.loc[x ,'adjusted_rand_index'] = methods['adjusted rand_index']
cluster_types.loc[x , 'VIC stability'] = methods['VIC stability']
cluster_types.loc[x , 'silhouette_coefficient'] = methods['silhouette_coefficient']
cluster_types.loc[x , 'density coefficient'] = methods['density_ coefficient']
cluster_types.loc[x , 'model’] = methods['model’]

FA = data_conditions[data_conditions.conditions_t4 == 'FootAngles fle']

Foot_Angle_IC = FA.reset_index(drop=True)

Foot_Angle_IC = Foot_Angle_IC.join(paticipant_class.reset_index())

FA_data = pd.DataFrame(data[data_conditions.conditions_t4 == 'FootAngles fle'][['©']]).reset_index()
Foot_Angle_IC = Foot_Angle_IC.join(FA_data[['©']])

Foot_Angle_IC = Foot_Angle_IC.rename(columns={'0"': 'Foot_Angle'})

Foot_Angle_IC['FootStrike Class'] = 'x'
Foot_Angle_IC.loc[Foot_Angle_IC.Foot_Angle > 8, 'FootStrike Class'] = ©
Foot_Angle_IC.loc[Foot_Angle_IC.Foot_Angle < -1.6, 'FootStrike Class'] = 1
Foot_Angle_IC.loc[(Foot_Angle IC.Foot_Angle > -1.6) &
(Foot_Angle_IC.Foot_Angle < 8), 'FootStrike Class'] = 2

(sum(Foot_Angle IC['FootStrike Class'] == 0))/len(Foot_Angle_ IC)
(sum(Foot_Angle_IC['FootStrike Class'] == 1))/len(Foot_Angle_IC)
(sum(Foot_Angle_IC['FootStrike Class'] == 2)) /len(Foot_Angle_IC)

Figure 79: Inital Evaluation of the clustering approaches and classification of foot-strike
angle

67

In the final evaluation of the clustering algorithms, 100 bootstrapped Adjusted Rand
Index (ARI) scores were calculated the four best clustering solutions along with the
traditional classification approach (Figure 80).

ARI_KM = bootstrap_ARI(X_res[:,:],cluster_types.algorithm.iloc[1],
cluster_types.args.iloc[1],
cluster_types.kwds.iloc[1],
ground_truth = y_res[:],
cluster_labels = None)

ARI_H = bootstrap_ARI(X_res[:,:],cluster_types.algorithm.iloc[8],
cluster_types.args.iloc[8],
cluster_types.kwds.iloc[8],
ground_truth = y_res[:],
cluster_labels = None)

ARI_O = bootstrap_ARI(X_res[:,:],cluster_types.algorithm.iloc[39],
cluster_types.args.iloc[39],
cluster_types.kwds.iloc[39],
ground_truth = y_res[:],
cluster_labels = None)

ARI_S = bootstrap_ARI(X_res[:,:],cluster_types.algorithm.iloc[47],
cluster_types.args.iloc[47],
cluster_types.kwds.iloc[47],
ground_truth = y_res[:],
cluster_labels = None)

ARI_trad = bootstrap_ARI(X_res[:,:],cluster_types.algorithm.iloc[2],
cluster_types.args.iloc[2],
cluster_types.kwds.iloc[2],
ground_truth = y_res[:],
cluster_labels = np.array(Foot_Angle_IC['FootStrike Class']))

Figure 80: Evaluation of the best clustering solutions with boostrapped ARI

68

The functions used to carry out this bootstrapped ARI testing are presented below
(Figure 81).

def bootstrap_ARI (data,algorithm,args,kwds,ground_truth,cluster_labels):

n_iterations = 100
n_size = round(len(data) * ©.70)

data = np.column_stack([data,ground_truth])
if any(cluster_labels == None):
cluster_info, cluster_labels = find_clusters(data[:,:-1],algorithm,args,kwds)

stats = list()
for i in range(n_iterations):
print(i)
c_data = resample(data, n_samples = n_size, random_state = i)
if 'kmeans' in str(algorithm).lower():
cluster_labels = cluster_info.predict(c_data[:,:-1])
else:
try:
cluster_info = find_clusters(c_data[:,:-1],algorithm,args,kwds)
cluster_labels = cluster_info.labels_
except:
cluster_info, cluster_labels = find_clusters(c_data[:,:-1],algorithm,args,kwds)
ARI = adjusted_rand_score(c_data[:,-1], cluster_labels)
stats.append(ARI)
else:

stats = list()

for i in range(n_iterations):
print(i)
c_data = resample(data, n_samples = n_size,random_state = i)
c_cluster_labels = resample(cluster_labels,n_samples = n_size,random_state = i)
ARI = adjusted_rand_score(c_data[:,-1], c_cluster_labels)
stats.append(ARI)

return(stats)

def find_clusters(data,algorithm,args,kwds):
print('clustering data')
clusters = algorithm(*args, **kwds).fit(data)

cluster_labels = algorithm(*args, **kwds).fit_predict(data)
return(clusters, cluster_labels)

Figure 81: Functions used to calculate bootstrapped ARI scores

69

The ARI scores were then visualised using rain cloud plots and statistically tested
using a one-way Welch’s ANOVA with Games-Howell post hoc follow up test. Finally,
to compare the ARI scores for each model with zero (random assignment) a series of

one sample welch t-tests with holm’s correction for multi-comparisons were conducted
(Figure 82).

ARI_results = pd.DataFrame([ARI_KM, ARI_H, ARI_O, ARI_S, ARI_trad])
ARI_results = ARI_results.T
ARI_results.columns = ['K-means', 'Hierarchical', 'OPTICS', 'Spectral', 'Taditional']
ARI_results = pd.melt(ARI_results)
pal = sns.color_palette(n_colors=1)
dx = "variable"; dy = "value"; ort = "v"; pal = "Set2"; sigma = .2
fig, ax = plt.subplots(figsize=(7, 5))
pt.RainCloud(x = dx, y = dy, data = ARI_results, palette = pal, bw = sigma,
width_box = 0.3, width_viol = .6, ax = ax, orient = ort)
ax.set_xlabel('Model’,fontsize=14);
ax.set_ylabel('Bootstrapped Adjusted Rand Index',fontsize=14);
plt.xticks(rotation=45)
fig.savefig('Footstrike_Bootstrapped ARI.png',dpi=300, transparent=False, bbox_inches="tight")

pg.homoscedasticity(dv="value', group='variable', data=ARI_results)
table = pg.welch_anova(data=ARI_results, dv='value', between='variable')

ph = pg.pairwise_gameshowell(dv="value', between='variable', data=ARI_results,effsize ='cohen')
ph.to_csv('Foot_post_hoc_clusters.csv', index=False)
table.to_csv('Foot_Anova_clusters.csv')

owt = pd.DataFrame()
for i in range(len(ARI_results.T)):

owt = owt.append(pg.ttest(ARI_results.iloc[:,i],0, tail = 'two-sided' ,correction='auto').round(2))
pg.multicomp(np.array(owt[['p-val’']]),method = "holm")

Figure 82: Visualisation and statistical testing of the bootstrapped ARI scores

4.1 Cluster Validation

In order to validate the clustering solutions, a custom class was written to validate each
clustering algorithm in a repeatable manner (Figure 84 , Figure 85, Figure 86). The
class contains several methods which will be detailed in turn. The prediction strength
method (Tibshirani and Walther; 2005) will not be detailed here as within this current
project, it was superseded by the cluster validation approach (Rodriguez et al.; 2018)
which is based on the same concept of cluster stability. However, unlike the prediction
strength method, the cluster validation index is suitable for all clustering types, not just
does based on a distance metric (Rodriguez et al.; 2018).

70

import os

import pandas as pd

import numpy as np

from sklearn.metrics import adjusted_rand_score

from sklearn.metrics import silhouette_score

from sklearn.linear_model import LogisticRegression

from sklearn.naive_bayes import GaussianNB

from sklearn.svm import SVC

from sklearn.neighbors import KNeighborsClassifier

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
from sklearn.metrics import roc_auc_score

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import StratifiedKFold

from sklearn.decomposition import PCA

import matplotlib.pyplot as plt

from hdbscan.validity import validity_index

class cluster_validation(object):
"""This is a class used to validate clusters using unsupervised methods. It
is written as a wrapper for Scikit-learn Clustering algorithms and should
support any Scikit-learn compatible algorithms (untested).

Methods:
adjusted_rand_index

This is a wrapper method for the Scikit-learn evaluation metric
adjusted_rand_score. This approach uses the adjusted rand index
(Hubert and Arabi 1985), to detmerine the agreement between the
know class label and the clustering solution.

For more info,see: https://scikit-learn.org/stable/modules/generated
/sklearn.metrics.adjusted_rand_score.html

prediction_strength

This method uses predictive strength to assess clustering performance
as described by Tibshirani and Walther (20@5). As per this approach
euclaidian distance is used to determine cluster membership.

This method is currently only supported for K-means clustering.
Outcome: mean percentage of data points with stable cluster
memebership. Experiments for selecting k, suggests taking

the highest k for which prediction stregth is above 8@

(Tibshirani and Walther 20@5).

silhouette_coefficient

This is a wrapper method for the Scikit-learn evaluation metric
Silhouette Coefficient (Rousseeuw, 1987). This approach evaluates
clustering solutions by its within cluster distance to between
cluster distance.

For more info,see: https://scikit-learn.org/stable/modules/
clustering.html#silhouette-coefficient

Figure 83: Class to evaluate clustering solutions (1 of 3)

71

density_coefficient

This approach is based on the method outlined in Moulavi et al
(2014). This approach evaluates clustering solutions by its within
cluster density to between cluster density.

VIC_stability

This approach is based on the cluster validation index method

outline in Rodriguez (2018).This method uses an ensemble of supervised
learners and 1@ fold cross validation to evalutate the clustering
solution. The basic premise is that a good clustering solution should
invoke a good classifier.

call_methods:

A method to call several of the above methods on a single clustering
solution.

ittributes:
data: An n x m array, where each row represents a case and each column
represents a feature.
algorithm: Name of the clustering algorithm to be tested. Currently
supports Scikit-learn clustering methods and should support any
approach that is Scikit-learn compatible.

Additionaly algorithms tested: hdbscan (McInnes et al 2017)
https://github.com/scikit-learn-contrib/hdbscan

args: A variable number of arguments to be passed to the cluster
algorithm function.

kwds: A keyworded, variable-length argument list to be passed to the
cluster algorithm function.

repeats: An int representing the number of times the validation should
be tested on random splits.

ground_truth: An optional argument used when the class labels are known.
classifiers: An optional argument of what classifiers to use in the

VIC_stability method. If not provided, default classifiers used
similar to Rodriguez (2018).

Figure 84: Class to evaluate clustering solutions (2 of 3)

72

cluster_labels: An optional argument which is assigned if the call_methods
method is utilised.

cluster_info: An optional argument which is assigned if the call_methods
method is utilised.

References:

L. McInnes, J. Healy, S. Astels, "hdbscan: Hierarchical density based
clustering”, Journal of Open Source Software,
The Open Journal, volume 2, number 11. 2017

R. Tibshirani, G. Walther, "Cluster Validation by Prediction Strength”,
American Statistical Association, Institute of Mathematical Statistics
and Interface Foundation of North America 20805, Journal of Computational
and Graphical Statistics, Volume 14 Number 3, Pages 511-528.

Source: http://pubs.amstat.org/doi/abs/10.1198/106186005X59243

Peter J. Rousseeuw (1987). “Silhouettes:

a Graphical Aid to the Interpretation and Validation of Cluster Analysis”.
Computational and Applied Mathematics 20: 53-65.
doi:10.1016/0377-0427(87)90125-7.

Hubert, Lawrence, and Phipps Arabie. "Comparing partitions.”
Journal of classification 2, no. 1 (1985): 193-218.

Moulavi, D., Jaskowiak, P.A., Campello, R.J., Zimek, A. and Sander, J.,
2014, April. Density-based clustering validation. In Proceedings of
the 2014 SIAM international conference on data mining (pp. 839-847).
Society for Industrial and Applied Mathematics.

Rodriguez, J., Medina-Pérez, M.A., Gutierrez-Rodriguez, A.E.,

Monroy, R. and Terashima-Marin, H., 2@818. Cluster validation

using an ensemble of supervised classifiers. Knowledge-Based Systems,
145, pp.134-144.

Written by Dr Shane Gore 2020, Contact Shane.Gore2@Gmail.com

def _ init_ (self, data, algorithm, args, kwds,repeats = None,ground_truth = None,
classifiers = None, cluster_labels = None, cluster_info = None):

self.data = data

self.algorithm = algorithm
self.args = args

self.kwds = kwds

self.repeats = repeats - 1 #zcro in
self.ground_truth = ground_truth
self.classifiers = classifiers
self.cluster_labels = cluster_labels
self.cluster_info = cluster_info

Figure 85: Class to evaluate clustering solutions (3 of 3)

73

4.1.1 Method: Cluster Validation Index

This method is based on the cluster validation index outlined in Rodriguez (2018). This
method uses an ensemble of supervised learners and 5 fold cross validation to evaluate
the clustering solution (Figure 86). The basic premise is that a good clustering solution
should invoke a good classifier.

def VIC_stability(self):

print(‘calculating VIC")

c_data = self.data
c_cluster_labels = self.cluster_labels

if all(self.cluster_labels == None):
self.cluster_info, self.cluster_labels = self._find_clusters(self.data,
self.algorithm,self.args,self.kwds)

if (self.classifiers == None):
print(“"No classifiers provided, using journal default™)

try:
clfl = LogisticRegression(max_iter = 200)
c1f2 = RandomForestClassifier(n_estimators=100, random_state=0)
c1f3 = GaussianNB()
clf4 = SVC(kernel="rbf',C = 1, gamma ='auto’, probability=True)
c1f5 = KNeighborsClassifier(n_neighbors=1, metric = ‘euclidean’)
c1f6 = LinearDiscriminantAnalysis(solver="1lsqr’, shrinkage='auto")
eclf = VotingClassifier(estimators=[('1r',clfl),('rf’,clf2),('gnb’,clf3),(svc’,clf4),
("knn',clf5),("1da’,clf6)],voting="soft")
aucs = []

unique, counts = np.unique(c_cluster_labels, return_counts=True)
if len(set(c_cluster_labels)) < 3:
if min(counts) < 2:
return(‘Na")
else:
aucs = cross_val_score(eclf,c_data, c_cluster_labels, cv=5,scoring="roc_auc")
else:
if min(counts) < 2:
return(’Na"’)
elif min(counts) < 5:
k = min(counts)
else:
k=5
cv = StratifiedKFold(n_splits=k)
for train, test in cv.split(c_data, c_cluster_labels):
prediction = eclf.fit(c_data.iloc[train,:],
c_cluster_labels[train]).predict_proba(c_data.iloc[test,:])
aucs.append(roc_auc_score(c_cluster_labels[test],
prediction, multi_class = ‘ovo’,average="macro"))

return (sum(aucs)/len(aucs))
except:
return ("Na’)

Figure 86: Method to calculate the cluster validation index

74

4.1.2 Method: Silhouette Coeflicient

This is a wrapper method for the Scikit-learn evaluation metric Silhouette Coefficient
(Rousseeuw; 1987). This approach evaluates clustering solutions by its within cluster
distance to between cluster distance (Figure 87).

def silhouette_coefficient(self):
print(‘calculating silhouette_score®)

if all(self.cluster_labels == lone):
self.cluster_info, self.cluster_labels = self._find_clusters(self.data,

self.algorithm,self.args,self.kwds)
try:

SS = silhouette_score(self.data, self.cluster_labels, metric='euclidean’)
return(SS)

except:
return(‘Na")

Figure 87: Method to calculate the silhouette coefficient

4.1.3 Method: Density Coefficient

This approach is based on the method outlined in Moulavi et al. (2014). This approach

evaluates clustering solutions by its within cluster density to between cluster density
(Figure 88).

def density_coefficient(self):

print(‘calculating density_coefficient")

if all(self.cluster_labels == lone):
self.cluster_info, self.cluster_labels = self._find_clusters(self.data,
self.algorithm,self.args,self.kwds)
try:
DB_CV = validity_index(self.data, self.cluster_labels)
except:
DB_CV

‘Na*

return(DB_CV)

Figure 88: Method to calculate the density based validation index

75

4.1.4 Method: Adjusted Rand Index

This is a wrapper method for the Scikit-learn Adjusted rand score evaluation metric.
This approach uses the adjusted rand index (Hubert and Arabie; 1985), to determine the
agreement between the know class label and the clustering solution (Figure 89).

def adjusted_rand_index(self):
assert any(self.ground_truth != None), "Please provide the argument ground_truth”
print(‘calculating ARI")
if all(self.cluster_labels == lone):
self.cluster_info, self.cluster_labels = self. find_clusters(self.data,
self.algorithm,self.args,self.kuds)
ARI = adjusted_rand_score(self.ground_truth, self.cluster_labels)

return(ARI)

Figure 89: Method to calculate the adjusted rand index

4.1.5 Method: Plot Clusters

This method plots the clustering solution labels over the first two prinicple components
of the data with the calculated metric overlayed (Figure 90 and Figure 91).

def plot_clusters(self,filename,cluster_types):

print(‘Plotting clusters"”)

if all(self.cluster_labels == lNone):
self.cluster_info, self.cluster_labels = self._find_clusters(self.data,
self.algorithm,self.args,self.kwds)

if ‘kmeans’ in str(cluster_types.algorithm).lower():
n_clusters = [d.get('n_clusters’) for d in cluster_types.kwds]
Algorithm = ‘Kmeans (k = "+ str(n_clusters[08]) + ")’
elif "fastcluster’ in str(cluster_types.algorithm).lower():
link = [d.get('link’) for d in cluster_types.kwds]
Algorithm = ‘Hierarchical (Linkage = '+ str(link[@]) + *)°
elif ‘agglomerative’ in str(cluster_types.algorithm).lower():
link = [d.get('linkage’) for d in cluster_types.kwds]
n_clusters = [d.get('n_clusters’) for d in cluster_types.kwds]

Algorithm = ‘Hierarchical (Linkage = '+ str(1link[@]) + (k = "+ str(n_clusters[8]) + ")" ")~
elif ‘meanshift’ in str(cluster_types.algorithm).lower():
Algorithm = "Mean Shift *

elif ‘optics’ in str(cluster_types.algorithm).lower():
min_samples = [d.get('min_samples’) for d in cluster_types.kwds]
Algorithm = "OPTICS (min samples = '+ str(min_samples[0]) + ')’
elif ‘hdbscan’ in str(cluster_types.algorithm).lower():
min_samples = [d.get('min_samples’) for d in cluster_types.kwds]
min_cluster_size = [d.get('min_cluster_size') for d in cluster_types.kwds]
Algorithm ="HDBSCAN (min size = “+str(min_cluster_size[@])+', min samples = ‘+str(min_samples[0])+)"
elif ‘spectral’ in str(cluster_types.algorithm).lower():
n_clusters = [d.get('n_clusters’) for d in cluster_types.kwds]
assign_labels = [d.get('assign_labels’) for d in cluster_types.kwds]
Algorithm = ‘"Spectral (k = "+ str(n_clusters[@]) +', Assignment = * + str(assign_labels[@]) + ")’

Figure 90: Method to plot the clustering solution (1 of 2)

76

ARI = str(round(cluster_types[adjusted_rand_index'].iloc[@],3))

if (cluster_types['VIC stability'].iloc[@] != "Na'):

VIC = str(round(cluster_types['VIC stability'].iloc[0],3))
else:

VIC = cluster_types['VIC stability'].iloc[0]

if (cluster_types[silhouette_coefficient'].iloc[@] != "Na"):

SS = str(round(cluster_types[‘silhouette coefficient'].iloc[0],3))
else:

SS = cluster_types[‘silhouette_coefficient’].iloc[0]

if (cluster_types[density coefficient’].iloc[@] != "Na'):

DBCV = str(round(cluster_types[‘density coefficient'].iloc[@],3))
else:

DBCV = cluster_types['density coefficient'].iloc[@]

pca = PCA(n_components=2)

principalComponents = pca.fit_transform(self.data)

fig, ax = plt.subplots(figsize=(10, 5))

ax.scatter(principalComponents[:,8], principalComponents[:,1],
alpha=0.70, c= self.cluster_labels, zorder = 1)

plt.xlabel('PC1l", fontsize=14)

plt.ylabel('PC2", fontsize=14)

plt.suptitle(Algorithm, fontsize= 14)

textstr = ("ARI:" + ARI + * VIC:" + VIC + * SS:* + SS + " DBCV:" + DBCV)

props = dict(boxstyle="round’, facecolor=‘wheat’, alpha=0.2, zorder = 2)

ylim = list(ax.get_ylim())

ylim[1] += 1

ax.set_ylim(ylim[@],ylim[1])

ax.text(@.5, .95, textstr, transform=ax.transAxes, fontsize=14,
horizontalalignment = ‘center’, verticalalignment='top’, bbox=props,zorder = 18)

directory = os.getcwd() + °/cluster figures’
if not os.path.exists(directory):
os.makedirs(directory)

fig.savefig('cluster_figures/' + filename)

plt.close(fig)

Figure 91: Method to plot the clustering solution (2 of 2)

An example clustering plot is provided in Figure 92.

Hierarchical (Linkage = average(k = 2))
8 ARI:0.002 VIC:1.0 SS:0.641 DBCV:-0.566
6
4
~N 21
&
04
-2
-4
% %) : ; 5
PC1

Figure 92: Example plot of a clustering solution

7

4.1.6 Method: Call Methods

The final method was utilised as a means of calling several of the above methods to
evaluate a single clustering solution simultaneously and plotting the final solution (Figure
93).

def call_methods(self,methods):

self.cluster_info, self.cluster_labels = self._ find_clusters(self.data,
self.algorithm,self.args,self.kwds)

cluster_types = pd.DataFrame(columns=[‘algorithm’, ‘kwds®,
‘adjusted_rand_index’,
"VIC_stability’,
‘silhouette_coefficient’,
"density_coefficient'])

algorithm
kwds

self.algorithm
self.kwds

if ('adjusted_rand_index’ in methods):
adjusted_rand_index = self.adjusted_rand_index()
else:
adjusted_rand_index = '

if ("VIC_stability’ in methods):

VIC stability = self.VIC_ stability()
else:

VIC stability =

if ('silhouette_coefficient’ in methods):
silhouette_coefficient = self.silhouette_coefficient()
else:
silhouette_coefficient = "'

if ('density_coefficient’ in methods):
density_coefficient = self.density_coefficient()
else:
density_coefficient = "’

if ('plot_clusters’ in methods):
cluster_types = cluster_types.append(pd.DataFrame ({ algorithm’: [algorithm], "kwds': [kwds],
‘adjusted_rand_index':[adjusted_rand_index],
"VIC stability’:[VIC_stability],
‘silhouette_coefficient’:[silhouette_coefficient],
‘density_coefficient':[density_coefficient]}))

self.plot_clusters(methods[‘plot_clusters'],cluster_types)
for method in methods:
if method != ‘"plot_clusters’':
methods[method] = eval(method)

methods = {**methods, **{'model’: [self.cluster_info]l}}

return(methods)

Figure 93: Example plot of a clustering solution

78

5 Implementation: Classification

In order to determine if any of the biomechanics of the lower limb and trunk could
predict those who would go on to become injured, six classification models (Naive Bayes,
Elastic Net Logistic Regression, Bagged SVM, Random Forest, Adaboost and a weighted
Stacked Ensemble) were implemented and assessed. The required packages were firstly
loaded (Figure 94).

This script was written for the MSc project entitled 'The identification of foot-strike patterns
using unsupervised learning and their association with injury'. This script represents the implementation
of the classification solutions.

An overview of the steps:
- Data split into train and test folds
- Five classification algorithms trained (Naive Bayes, Elastic Net Logistic Regression,
Bagged SVM, Random Forest, Adaboost):

Initiate models with all features and random grid search of hyperparameters.
Feature selection with a genetic search algorithm and recursive feature elimination.
Tune models with either a greedy grid search or Baysian optimisation.

-Train weighted stacked ensemble of the above algorithms.

-Evaluate and visualise algorithms with 180 bootstrapped measures of Accuracy,
Sensitivity and Specifity on the hold out test set.

-Statistically test with Welch ANOVA and Games-Howell post hoc tests.

Written by Shane Gore 2020 Cotact: Shane.Gore2@gmail.com

import os

import pandas as pd

import numpy as np

from sklearn.feature_selection import VarianceThreshold
from imblearn.over_sampling import SMOTE
from itertools import compress

import itertools

from tqdm import tqdm

from colorama import Fore, Style

from copy import copy

from time import time

from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier

from sklearn.model_selection import RandomizedSearchCV
from sklearn.svm import SVC

from sklearn.linear_model import SGDClassifier

from itertools import combinations

from sklearn.tree import DecisionTreeClassifier

from sklearn.naive_bayes import GaussianNB

from sklearn.ensemble import BaggingClassifier

import pingouin as pg

from imblearn.pipeline import make_pipeline

from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCv
from sklearn.model_selection import cross_val_score
from sklearn.utils import resample

from skopt import BayesSearchCV

from genetic_selection import GeneticSelectionCV
from sklearn.metrics import roc_curve

from scipy import stats

from sklearn.metrics import roc_auc_score

from scipy.stats import sem

import matplotlib.pyplot as plt
import seaborn as sns
import ptitprince as pt

Figure 94: Loading the required modules

79

The required data generated in the general implementation phase was then read in
and split into train and test sets (Figure 95).

os.chdir('D:\MSc Thesis\MSc Files2')

Features_scaled_p = pd.read_csv('Participant_Features.csv')

X_train_p, X_test_p, y_train_p, y_test_p = train_test_split(Features_scaled_p.iloc[:,:-1],
Features_scaled_p.iloc[:,-1],
train_size=0.70,
random_state=42,
stratify= Features_scaled_p.iloc[:,-1])

Features_scaled

= pd.read_csv('Features_scaled_preprocessed_ds.csv")
Features_scaled_t =

Features_scaled.drop([‘Participant_ID'], axis = 1)

Feature_names = list(Features_scaled_t)

selector = VarianceThreshold(0.02)

selector.fit(Features_scaled_t)

Features_scaled_t = Features_scaled_t.iloc[:,selector.get_support()]
Feature_names = list(compress(Feature_names, selector.get_support()))

corr_matrix = Features_scaled_t.corr().abs()

upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))

to_drop = [column for column in upper.columns if any(upper[column] > ©.90)]
Features_scaled_t = Features_scaled_t.drop(Features_scaled_t[to_drop], axis=1)
[Feature_names.remove(drop) for drop in to_drop]

Features_scaled = pd.concat([Features_scaled['Participant_ID'],Features_scaled_t],axis = 1)

X_train = Features_scaled.iloc[Features_scaled['Participant_ID'].isin(X_train_p['Participant_ID']).values,:-1]
y_train = Features_scaled.iloc[Features_scaled['Participant_ID'].isin(X_train_p['Participant_ID']).values,-1]
X_train = X_train.drop([‘Participant_ID'], axis = 1)

stats_corr = []

for i in range(X_train.shape[1]):
stats_corr.append(stats.pointbiserialr(X_train.iloc[:,i].values, y_train.values)[0])

Feature_idx = abs(np.array(stats_corr)) > 0.05

Feature_idx = np.append(Feature_idx,True)

Features_scaled_t = Features_scaled_t.iloc[:,Feature_idx]

Features_scaled = pd.concat([Features_scaled[‘Participant ID'],Features_scaled_t],axis = 1)

X_train_og = Features_scaled.iloc[Features_scaled['Participant_ID'].isin(X_train_p[Participant_ID']).values,:-1]
y_train_og = Features_scaled.iloc[Features_scaled['Participant_ID'].isin(X_train_p[Participant_ID']).values,-1]
X_test_og = Features_scaled.iloc[~Features_scaled['Participant_ID'].isin(X_train_p[Participant_ID']).values,:-1]
y_test_og = Features_scaled.iloc[~Features_scaled['Participant_ID'].isin(X_train_p[Participant_ID']).values,-1]
X_train_og = X_train_og.drop([‘Participant_ID'], axis = 1)

X_test_og = X_test_og.drop(['Participant_ID'], axis = 1)

Figure 95: Loading the data and spliting into train and test sets

80

A set of dictionaries were created to store the hyperparameter tuning grids for each
of the classification models and to store useful metrics when evaluating the algorithms
(Figure 96).

parameters = {}
parameters.update({"naive_bayes": { gaussiannb__var_smoothing': np.logspace(®,-9, num=100)}})

parameters.update({“ElasticlNet”: {"sgdclassifier_ loss”: ['log'],
"sgdclassifier__alpha”: [le-6, le-5, le-4, le-3, le-2, le-1,
8.15, 0.25, ©.35, 0.45, 0.55, 0.65, 0.75, 0.85, 1.0],
"sgdclassifier_ penalty”: ["elasticnet”],
"sgdclassifier_ 11 ratio”:[0.10,0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90,1.0],
"sgdclassifier__n_jobs": [6]

i3y

parameters.update({"RandomForest™: {
"randomforestclassifier_ n_estimators”: [300, 500, 800, 1000],
"randomforestclassifier__max_features”: ["sqrt”, "log2"],
"randomforestclassifier__max_depth™” : [3, 4, 5, 6, 7, 8],
"randomforestclassifier_ min_samples_split”: [0.005, 0.01, 0.05, 0.10],
“"randomforestclassifier_ min_samples_leaf": [0.005, 0.01, 0.05, 0.10],
"randomforestclassifier__ criterion™ :["gini", "entropy”],
"randomforestclassifier_ n_jobs": [6]

)

parameters.update({“AdaBoost": {
"adaboostclassifier_ base_estimator”:[DecisionTreeClassifier(max_depth= ii) for ii in range(1,6)],
"adaboostclassifier_ n_estimators”: [300, 500, 800, 1000],
"adaboostclassifier_ learning_rate”: [0.001, 0.01, 0.05, 0.1, 0.25, 0.50, 0.75, 1.0]

i3

keys, values = zip(*{'C': [0.1,1,10,100],
‘gamma’: [0.1,1,10, 100],
‘kernel’: ["rbf", "poly”, "sigmoid"]}.items())
permutations_dicts = [dict(zip(keys, v)) for v in itertools.product(*values)]
parameters.update({"SVC_bag”: {
"baggingclassifier_ base_estimator™: [SVC(**params) for params in permutations_dicts],
‘baggingclassifier__max_samples': [0.30]}})

classifiers = {}

classifiers.update({"naive_bayes"”: GaussianNB})
classifiers.update({"Elasticllet”: SGDClassifier})
classifiers.update({"RandomForest”: RandomForestClassifier})
classifiers.update({"SVC_bag"”: BaggingClassifier})
classifiers.update({"AdaBoost"”: AdaBoostClassifier})

classifier_prefix = {}
classifier_prefix.update({"RandomForest”: ' randomforestclassifier_ '})
classifier_prefix.update({"SVC_bag": 'baggingclassifier_ '})
classifier_prefix.update({"Elasticlet”: sgdclassifier__ '})
classifier_prefix.update({"AdaBoost": 'adaboostclassifier_ '})
classifier_prefix.update({"naive_bayes": 'gaussiannb_ '})
classifier_results = {}

Figure 96: Storing the hyperparameters to be tested

81

After initialising the models with an appropriate hyperparameter solution using a ran-
dom search of the hyperparameter grid, feature selection was conducted with a genetic
search algorithm followed by recursive feature elimination. In order to enhance gener-
alisability, the model with the smallest number of features within one standard error of
the best solution (maximised area under the receiver operator curve) was chosen (Fig-
ure 97). For the cross-validation procedures, the training folds were rebalanced using
synthetic minority oversampling technique.

for classifier in classifiers:

X_train = copy(X_train_og)
X_test = copy(X_test_og)
y_train = copy(y_train_og)
y_test = copy(y_test_og)

clf = classifiers[classifier]
params = parameters[classifier]

try:
imba_pipeline = make_pipeline(SMOTE(random_state=42),
clf(random_state=42))
except:
imba_pipeline = make_pipeline(SMOTE(random_state=42),
clf())
random_search = RandomizedSearchCV(imba_pipeline, param_distributions= params, cv=3, scoring="roc_auc’,
return_train_score=True, n_iter=35, verbose=7, random_state=42 , n_jobs = 6)
random_search.fit(X_train, y_train)

best_params ={key.replace(classifier_prefix[classifier], "):
random_search.best_params_[key] for key in random_search.best_params_}

c_pipeline = make_pipeline(SMOTE(random_state=42),
clf(**best_params))

selector = GeneticSelectionCV(c_pipeline,
cv=5,
verbose=1,
scoring="accuracy”,
max_features= round(X_train.shape[1]/4),
n_population=50,
crossover_proba=0.8,
mutation_proba=0.2,
n_generations=200,
crossover_independent_proba=0.5,
mutation_independent_proba=0.05,
tournament_size= 3,
n_gen_no_change=35,
caching=True,
n_jobs= 6)

selector = selector.fit(X_train, y_train)

X_train_delim = X_train.iloc[:,selector.support_]

X_test_delim = X_test.iloc[:,selector.support_]

best_score,best_indices = recursive_feature_selection(X_train_delim, y_train,c_pipeline, 1, None)
suitable_scores = best_score > (max(best_score) - sem(best_score))

n_features_to_select = np.where(np.flipud(suitable_scores))[8][@]

best_subset = np.flipud(best_indices)[n_features_to_select]

X_train_delim = X_train_delim.iloc[:,list(best_subset)]

X_test_delim = X_test_delim.iloc[:,list(best_subset)]

Figure 97: Feature selection implementation

82

Given that the scikit-learn recursive feature elimination approach cannot accommod-
ate every algorithm, a custom function was written (Figure 98).

def recursive_feature_selection(train, label,c_pipeline, min_k_features,max_k_features):
if isinstance(train, pd.DataFrame):
train = np.array(train)

if max_k_features == lNone:
dim = train.shape[1]
else:
dim = max_k_features

c_indices = tuple(range(train.shape[1]))
data = pd.DataFrame(train, columns = c_indices[:])

best_score = []
best_indices = []
while dim > min_k_features:
print(Fore.GREEN + ('selecting best features of size ' + str(dim)))
print(Style.RESET_ALL)
scores = []
subsets = []

i=0
for p in tqdm(combinations(c_indices, r= dim - 1)):
i+=1
print(i)
c_data = data.iloc[:,list(p[:])]
score = cross_val_score(c_pipeline, c¢_data, label, cv=3, scoring='roc_auc’, n_jobs = -1).mean()

scores.append(score)
subsets.append(p)
best = np.argmax(scores)
best_score.append(scores[best])
best_indices.append(subsets[best])
c_indices = subsets[best]
dim -= 1
return (best_score,best_indices)

Figure 98: Recursive feature elimination function

83

The final models were then tuned with greedy grid search and Bayesian optimisation
(Figure 99).

if classifier == 'AdaBoost':

params = {'adaboostclassifier_ n_estimators’': [300, 500, 800, 1000],
‘adaboostclassifier_ learning_rate’: [0.001, 0.01, ©.05,0.1,0.25,0.5,0.75,1.0]}

def on_step(optim_result):
score = bayes_grid.best_score_
print("best score: %s" % score)
if score >= 0.90:
print(‘Interrupting!")
return True

bayes_grid = BayesSearchCV(imba_pipeline, search_spaces=params, cv = 3,
scoring="roc_auc’,n_iter=20, verbose = 7, n_jobs = 6, random_state=42)
bayes_grid.fit(X_train_delim, y_train, callback=on_step)
cv_score = cross_val_score(bayes_grid, X_train_delim, y_train, cv=2, verbose = 7).mean()
c_class = classifier_prefix[classifier].replace(’_","")
classifier_results.update({classifier:{
“train_result”: [cv_score],
"model_params”: [bayes_grid.best_estimator_[c_class]],
"features":[list(X_train_delim)]

)
elif (classifier == "SVC_bag’ or classifier == 'naive_bayes’ or classifier == ‘Elasticllet’):

grid_search = GridSearchCV(imba_pipeline, param_grid= params, cv=3, scoring='roc_auc’,
verbose=7, n_jobs = 6)
grid_search.fit(X_train_delim, y_train)
cv_score = np.nanmean(cross_val_score(grid_search, X_train_delim, y_train, cv=2, verbose = 7))
c_class = classifier_prefix[classifier].replace('_ ","")
classifier_results.update({classifier:{
"train_result”: [cv_score],
"model_params”: [grid_search.best_estimator_[c_class]],
"features”:[list(X_train_delim)]
)

else:

def on_step(optim_result):
score = bayes_grid.best_score_
print(“best score: %s" % score)
if score >= 0.90:
print(’Interrupting!"’)
return True

bayes_grid = BayesSearchCV(imba_pipeline, search_spaces=params, cv = 3,
scoring="roc_auc’,n_iter=50, verbose = 7, n_jobs = 1, random_state=42)
bayes_grid.fit(X_train_delim, y_train, callback=on_step)
cv_score = cross_val_score(bayes_grid, X_train_delim, y_train, cv=2, verbose = 7).mean()
c_class = classifier_prefix[classifier].replace('_","")
classifier_results.update({classifier:{
“train_result”: [bayes_grid.best_score_],
"model_params”: [bayes_grid.best_estimator_[c_class]],
"features”:[list(X_train_delim)]

)

Figure 99: Hyperparameter tuning

84

After training the models, they were evaluated using 100 bootstrapped resamples of
the hold out validation set for accuracy, sensitivity and specificity (Figure 100). The
function used to calculate the evaluation metrics is presented in figure 101 while the
function used to carry out the bootstrap resampling is presented in figure 102 - 103.

class_vote = []

AROC = []

classifier_accuracy = []
class_conf =[]

for classifier in classifiers:

X_train, X_test, y_train, y_test = train_test_split(Features_scaled.iloc[:,:-1], Features_scaled.iloc[:,-1],
train_size=0.70,
random_state=42,
stratify= Features_scaled.iloc[:,-1])

X_test_delim = X_test[[*classifier_results[classifier]["features”][0]]]
clf = classifier_results[classifier]['model_params'][@]
accuracy,sensitivity,specificity,class_vote,AROC = bootstrap_evaluation(X_test_delim,

clf,y_test,False,
class_vote,False,AROC,class_conf)

classifier_results[classifier]["test_acc™] = accuracy
classifier_results[classifier]["test_sens”] = sensitivity
classifier_results[classifier]["test_spec”] = specificity

classifier_accuracy.append(accuracy)

Figure 100: Bootstrapped evaluation implementation

def calculate_sensitivity specificity(y_test, y_pred_test):

1
e

actual_pos = y_test
actual_neg = y_test

true_pos = (y_pred_test == 1) & (actual_pos)

true_neg = (y_pred_test == @) & (actual_neg)

accuracy = np.mean(y_pred_test == y test)

sensitivity = np.sum(true_pos) / np.sum(actual_pos)
specificity = np.sum(true_neg) / np.sum(actual_neg)

return sensitivity, specificity, accuracy

Figure 101: Function to calculate evaluation metrics

85

def bootstrap_evaluation (data,algorithm,ground_truth,naive_model,class_vote,ensemble,AROC,class_conf):

n_iterations = 100
n_size = round(len(data) * 0.70)

data = np.column_stack([data,ground_truth])
accuracy =[]

sensitivity =[]

specificity =[]

if naive_model == True:

for i in range(n_iterations):
print(i)
c_data = resample(data, n_samples = n_size, random_state = i)
y_test = c_data[:,-1]
yhat = np.ones_like(y_test)

sens, spec, acc = calculate_sensitivity specificity(y_test, yhat)
accuracy.append(acc)
sensitivity.append(sens)
specificity.append(spec)
yhat_total =[]
auc_total = []
conf_total =[]
elif ensemble == True:

for i in range(n_iterations):

print(i)
c_data = resample(data, n_samples = n_size, random_state = i)
yhat = class_vote.iloc[:,i]

y_test = c_data[:,-1]

sens, spec, acc = calculate_sensitivity_specificity(y_test, yhat)
accuracy.append(acc)

sensitivity.append(sens)

specificity.append(spec)

yhat_total =[]

auc_total = []

conf_total= []

Figure 102: Function to carry out bootstrapped resampling (1 of 2)

86

else:

for i in range(n_iterations):

print(i)
c_data = resample(data, n_samples = n_size, random_state = i)

yhat = algorithm.predict_proba(c_data[:,:-1])
yhat = yhat[:, 1]
y_test = c_data[:,-1]

fpr, tpr, thresholds = roc_curve(y_test, yhat)
auc = roc_auc_score(y_test, yhat)

if auc > 9.53:

J = tpr - fpr
best_thresh = thresholds[np.argmax(J)]

yhat = (algorithm.predict_proba(c_data[:,:-1])[:,1] >= best_thresh).astype(bool)
conf = abs(algorithm.predict_proba(c_data[:,:-1])[:,1] - best_thresh)
else:
yhat = (algorithm.predict_proba(c_data[:,:-1])[:,1] >= 0.5).astype(bool)
conf = abs(algorithm.predict_proba(c_data[:,:-1])[:,1] - 0.5)

sens, spec, acc = calculate_sensitivity specificity(y_test, yhat)

accuracy.append(acc)
sensitivity.append(sens)
specificity.append(spec)

try:

yhat_total = pd.concat([yhat_total,pd.DataFrame(yhat)], axis = 1)
except:

yhat_total = pd.DataFrame(yhat)
try:

conf_total = pd.concat([conf_total,pd.DataFrame(conf)], axis = 1)
except:

conf_total = pd.DataFrame(conf)
try:

auc_total = pd.concat([auc_total,pd.DataFrame(pd.Series(auc))], axis = 1)
except:
auc_total = pd.DataFrame(pd.Series(auc))

AROC . append(auc_total)

class_vote.append(yhat_total)
class_conf.append(conf_total)
return(accuracy,sensitivity,specificity,class_vote,AROC)

Figure 103: Function to carry out bootstrapped resampling (2 of 2)

87

The weighted stacked ensemble model was then calculated in a manner that took into
account the classifier vote, the average classifier performance and the classifier confidence
to optimise Youden’s J statistic (Figure 104). Full details on this algorithm are presented
in section 6.5.

class_vote2 = copy(class_vote)
class_conf2 = copy(class_conf)
class_vote = copy(class_vote2)
tot_accuracy =[]
j_stat = []
for x in range(1,100,5):
class_vote = copy(class_vote2)
class_conf = copy(class_conf2)
for i in range(len(class_vote)):
c_class_vote = class_vote[i].astype(int)
class_vote[i] = c_class_vote.mask(class_vote[i] == False,-1)
class_vote_weighted = (((class_vote[B] * class_conf[8]) * np.tile(np.array(AROC[8]**x),(len(class_vote[8]),1))
+ (class_vote[1] * class_conf[1]) * np.tile(np.array(AROC[1]**x), (len(class_vote[1]),1))
+ (class_vote[2] * class_conf[2]) * np.tile(np.array(AROC[2]**x),(len(class_vote[2]),1))
+ (class_vote[3] * class_conf[3]) * np.tile(np.array(AROC[3]**x), (len(class_vote[3]),1))
+ (class_vote[4] * class_conf[4]) * np.tile(np.array(AROC[4]**x), (len(class_vote[4]),1))) > ©).astype(bool)
accuracy,sensitivity,specificity,class_vote,AROC = bootstrap_evaluation(X_test_delim,clf,y_test,
False,class_vote_weighted,
True,AROC,class_conf)
tot_accuracy.append(np.mean(accuracy))
j_stat.append(np.mean((np.array(sensitivity) + np.array(specificity)) -1))
np.argmax(j_stat)
np.max(j_stat)
np.argmax(tot_accuracy)

tot_accuracy =[]
j_stat = []
class_vote = copy(class_vote2)
class_conf = copy(class_conf2)
for i in range(len(class_vote)):
c_class_vote = class_vote[i].astype(int)
class_vote[i] = c_class_vote.mask(class_vote[i] == False,-1)
class_vote_weighted = (((class_vote[B] * class_conf[8]) * np.tile(np.array(AROC[8]**15),(len(class_vote[08]),1))
+ (class_vote[1] * class_conf[1]) * np.tile(np.array(AROC[1]**15), (len(class_vote[1]),1))
+ (class_vote[2] * class_conf[2]) * np.tile(np.array(AROC[2]**15), (len(class_vote[2]),1))
+ (class_vote[3] * class_conf[3]) * np.tile(np.array(AROC[3]**15), (len(class_vote[3]),1))
+ (class_vote[4] * class_conf[4]) * np.tile(np.array(AROC[4]**15), (len(class_vote[4]),1))) > ©).astype(bool)
accuracy,sensitivity,specificity,class_vote,AROC = bootstrap_evaluation(X_test_delim,clf,y_test,
False,class_vote_weighted,
True,AROC, class_conf)
tot_accuracy.append(np.mean(accuracy))
j_stat.append(np.mean((np.array(sensitivity) + np.array(specificity)) -1))

classifier = 'Stacked Ensemble’
classifier_results.update({classifier:{"test_acc”: ["test_acc']}})
classifier_results[classifier]["test_acc"] = accuracy
classifier_results[classifier]["test_sens”] = sensitivity
classifier_results[classifier]["test_spec”] = specificity

Figure 104: Creating a weigthed stacked ensemble model

88

The naive classifier was then assessed (Figure 105).

accuracy,sensitivity,specificity,class_vote,AROC = bootstrap_evaluation(X_test,clf,y_test,True,class_vote,False,AROC)
classifier = "Naive_majority’

classifier_results.update({classifier:{"test_acc”: ['test_acc']}})

classifier_results[classifier][“test_acc”] = accuracy

classifier_results[classifier][“test _sens”] = sensitivity

classifier_results[classifier][“test spec”] = specificity

for classifier in classifiers:
clf = classifier_results[classifier]['model_params'][0]

if hasattr(clf, ‘coef_'):
classifier_results[classifier]["features”] = list(X_test_delim.iloc[:,np.where(clf.coef_ > 0)[1]])

Figure 105: Evaluating a naive majority classifier

89

The performance of the models over the 100 bootstrapped resamples were then visu-
alised using raincloud plots (Figure 106)

classifiers.update({"Stacked Ensemble”: []})
classifiers.update({"Naive_majority”: []})
classifiers_names = list(['Naive Bayes', 'Elastic Net', 'Random Forest’, ‘SVM Bag’,
*AdaBoost’,"Stacked Ensemble”, ‘Naive Majority'])
ACC_results = pd.DataFrame()
for i, classifier in enumerate(classifiers):
df2 = pd.DataFrame(classifier_results[classifier]["test_acc”], columns = [classifiers_names[i]])
ACC_results = pd.concat([ACC_results,df2], axis=1)
ACC_results = pd.melt(ACC_results)
pal = sns.color_palette(n_colors=1)
dx = "variable"; dy = "value”; ort = "v"; pal = "Set2"; sigma = .2
fig, ax = plt.subplots(figsize=(7, 5))
pt.RainCloud(x = dx, y = dy, data = ACC_results, palette = pal, bw = sigma,
width_box = 0.3, width_viol = .6, ax = ax, orient = ort)
ax.set_xlabel('Model’,fontsize=14);
ax.set_ylabel(‘Bootstrapped Accuracy’,fontsize=14);
plt.xticks(rotation=45)
fig.savefig(' Foot_Boot_Acc.png’,dpi=300, transparent=False, bbox_inches="tight")
ACC_results.to_csv('ACC_results_foot_boot.csv"')

classifiers.pop('Naive_majority’, None)
classifiers_names = list(['Naive Bayes', 'Elastic Net®,'Random Forest®, ‘SVM Bag’,
*AdaBoost’,"Stacked Ensemble™])

SENS_results = pd.DataFrame()

for i, classifier in enumerate(classifiers):
df2 = pd.DataFrame(classifier_results[classifier]["test_sens”], columns = [classifiers_names[i]])
SENS_results = pd.concat([SENS_results,df2], axis=1)

SENS_results = pd.melt(SENS_results)

pal = sns.color_palette(n_colors=1)

dx = "variable"; dy = "value"; ort = "v"; pal = "Set2"; sigma = .2

fig, ax = plt.subplots(figsize=(7, 5))

pt.RainCloud(x = dx, y = dy, data = SENS_results, palette = pal, bw = sigma,

width_box = 0.3,width_viol = .6, ax = ax, orient = ort)

ax.set_xlabel('Model’,fontsize=14);

ax.set_ylabel('Bootstrapped Sensitivity’,fontsize=14);

plt.xticks(rotation=45)

fig.savefig(Foot_Boot_Sens.png’,dpi=300, transparent=False, bbox_inches="tight")

SENS_results.to_csv('SENS_results_foot_boot.csv')

SPEC_results = pd.DataFrame()

for i, classifier in enumerate(classifiers):
df2 = pd.DataFrame(classifier_results[classifier]["test spec”], columns = [classifiers_names[i]])
SPEC_results = pd.concat([SPEC_results,df2], axis=1)

SPEC_results = pd.melt(SPEC_results)

pal = sns.color_palette(n_colors=1)

dx = "variable"; dy = "value"; ort = "v"; pal = "Set2"; sigma = .2

fig, ax = plt.subplots(figsize=(7, 5))

pt.RainCloud(x = dx, y = dy, data = SPEC_results, palette = pal, bw = sigma,

width_box = 0.3, width_viol = 8.6, ax = ax, orient = ort)

ax.set_xlabel('Model’,fontsize=14);

ax.set_ylabel('Bootstrapped Specificity’,fontsize=14);

plt.xticks(rotation=45)

fig.savefig(' Foot_Boot_Spec.png’,dpi=300, transparent=False, bbox_inches="tight")

SPEC_results.to_csv('SPEC_results_foot_boot.csv')

Figure 106: Visualisation of the bootstrapped evaluation metrics.

90

The results were then statistically tested using Welch’s one-way ANOVA followed by
Games Howell post hoc tests. For the accuracy results, a series of one sample welch
t-tests with holm’s correction were used to compare against a value of 50, representing
random classification (Figure 107).

pg.homoscedasticity(dv="value’, group ='variable’, data=ACC_results)
pg.homoscedasticity(dv="value’, group ='variable’, data=SPEC_results)
pg.homoscedasticity(dv="value’, group ='variable’, data=SENS_results)

table = pg.welch_anova(dv="value’, between ='variable’, data=ACC_results)
print(table)

ph = pg.pairwise_gameshowell(dv="value’, between="variable’, data=ACC_results, effsize="cohen")
ph.to_csv('acc_posthoc_foot.csv', index=False)
table.to_csv('acc_anova_foot.csv')

acc_index = np.tile(np.transpose(np.array(range(100))),6)
ACC_results = pd.concat([ACC_results,pd.DataFrame(acc_index)], axis = 1)
ACC_unmelted = ACC_results.pivot_table(index = @, columns='variable’, values = ‘value')
owt = pd.DataFrame()
for i in range(len(ACC_unmelted.T)):
owt = owt.append(pg.ttest(ACC_unmelted.iloc[:,i],0.5, tail = ‘greater’ ,correction="auto’).round(2))
pg.multicomp(np.array(owt[[p-val®]]),method = "holm")

table = pg.welch_anova(dv="value’, between ='variable’, data=SPEC_results)

print(table)

ph = pg.pairwise_gameshowell(dv="value’, between='variable’, data=SPEC_results, effsize="cohen")
ph.to_csv(spec_posthoc_foot.csv', index=False)

table.to_csv(' spec_anova_foot.csv')

table = pg.welch_anova(dv="value’, between ='variable’, data=SENS_results)

print(table)

ph = pg.pairwise_gameshowell(dv="value', between='variable’, data=SENS_results, effsize="cohen")
ph.to_csv(sens_posthoc_foot.csv', index=False)

table.to_csv('sens_anova_foot.csv')

Figure 107: Statistical testing of the bootstrapped evaluation metrics

91

Finally, feature importance was determine using permutation tests and partial de-
pendency analysis (Figure 108).

X_test_delim = X_test[[*classifier_results['RandomForest’]["features”][0]]]
clf = classifier_results[RandomForest’][‘model_params'][@]
forest_perm = permutation_importance(clf, X _test_delim, y test, n_repeats=10,
random_state=42, n_jobs=6)

sorted_idx = forest_perm.importances_mean.argsort()
new_features_tot = [‘Knee flexion Velocity (1-7%)°,

‘Knee rotation velocity (90-100%)°,

‘Thorax frontal plane angle (90-10%)°,

‘Thorax ipsilateral tilt velocity (9@-100%)°,

‘Pelvis sagittal plane tilt (4 -24%)°,

‘Hip extension acceleration (66-82%)°,

‘Ankle plantar flexion velocity (61-71%)°,

‘Ankle frontal plane ROM',

‘Hip sagittal plane acceleration (mean)",

‘Knee transverse plane acceleration (mean)']
fig, ax = plt.subplots()
ax.boxplot(forest_perm.importances[sorted_idx].T,

vert=False, labels=np.array(new_features_tot)[sorted_idx])

ax.set_title("Permutation Importances™)
fig.tight_layout()
fig.savefig(Foot_RF_Perm_import.png’,dpi=300, transparent=False, bbox_inches="tight")

X_test_delim.columns = new_features_tot

new_features = [‘Knee flexion Velocity (1-7%)°, ‘Thorax ipsilateral tilt velocity (90-100%)°,
"Pelvis sagittal plane tilt (4-24%)°,'Hip extension acceleration (66-82%)"]

pdp = plot_partial_dependence(clf, X_test_delim, X_test_delim.columns[sorted_idx[-4:]],

n_jobs=6, n_cols = 2, grid_resolution=20)

pdp.axes_[0,0].xlabel = new_features[@]

pdp.axes_[0,1].xlabel = new_features[1]

pdp.axes_[1,0].xlabel = new_features[2]

pdp.axes_[1,1].xlabel = new_features[3]

fig = plt.gcf()

fig.subplots_adjust(wspace=0.6, hspace=0.4)
fig.tight_layout()
fig.savefig(' foot_partical depnency plot.png’,dpi=300, transparent=False, bbox_inches="tight")

Figure 108: Investigating feature importance for the random forest model

92

6 Additional Material for the Technical Report

6.1 Additional Related Work

6.1.1 Search criteria for foot-strike and injury

Sports Discus and Web of Science databases were searched to identify studies investig-
ating foot strike and running injuries from January 1960 to January 2020. The search
was restricted to studies that were in the English language and conducted with human
subjects. To avoid including potentially confounding factors, studies which included co-
horts from other sports were excluded. Finally reviews, commentaries, opinion articles,
case studies and conference proceedings were excluded from the primary review. The
following search terms were utilised: ‘running” OR “runners” AND “injury” OR “injur-
ies” AND “rearfoot” OR “rear-foot” OR “midfoot” OR “mid-foot” OR “forefoot” OR
“fore-foot” OR “foot contact angle” OR “foot angle” OR “foot strike pattern” OR “foot
strike angle” OR “strike index”.

6.1.2 Prospective risk factors for running related injury

Within the literature there has been considerable interest in the biomechanical risk factors
for running related injuries (Pohl et al.; 2008; Taunton et al.; 2002). While the majority
of research to date has been retrospective in nature, this form of research is limited as it
is unclear if any biomechanical factors identified are causative in nature or a result of the
injury itself (Bahr; 2016). A more robust research design is prospective in nature, where
uninjured participants are tested and the biomechanical factors that were associated with
them becoming injured are assessed.

A total of 16 prospective cohort studies were identified in a recent systematic review
of risk factors for running injury (Ceyssens et al.; 2019). Overall, the risk factors for
running related injury appear to be inconsistent and may be related to the heterogeneity
in study populations and the injuries being studied. When synthesising the findings of
the research, it appears that the majority of risk factors are kinetic in nature (loading
related) (Stefanyshyn et al.; 2006; Dudley et al.; 2017; Brund et al.; 2017; Van Ginckel
et al.; 2009; Thijs et al.; 2008; Napier et al.; 2018; Bredeweg, Buist and Kluitenberg;
2013; Davis et al.; 2016; Bredeweg, Kluitenberg, Bessem and Buist; 2013). This would
make sense since injuries are caused by relative excessive loading. Of the kinematic
(movement) features identified, the foot was most commonly identified as a risk factor
for injury (Dudley et al.; 2017; Kuhman et al.; 2016; Hein et al.; 2014). Interestingly,
despite this, conflicting evidence was observed in ankle eversion velocity (Dudley et al.;
2017; Kuhman et al.; 2016) with inconsistent evidence that peak ankle, rearfoot eversion
and ankle eversion range of motion were related increased risk of running related injury
(Dudley et al.; 2017; Kuhman et al.; 2016; Noehren et al.; 2007; Messier et al.; 2018).
Similarly, limited evidence was presented for smaller ankle dorsiflexion in runners who
go on to develop Achilles tendinopathy (Hein et al.; 2014). Again, conflicting evidence
exists for the knee with one study identifying a smaller peak knee flexion angle as a risk
factor for injury (Hein et al.; 2014) while others reported no significant difference (Messier
et al.; 2018). At the hip, limited evidence was identified for peak hip adduction in female
recreational runners as a risk factor for injury (Noehren et al.; 2007, 2013) Interestingly,
the one study that found opposing evidence was in a mixed sex population (Dudley et al.;

93

2017) suggesting that there may be sex related risk factors for certain injuries. Of par-
ticular note is the fact that none of the research considered the trunk as a risk factor for
injury. This is surprising given that the thorax (including the arms and head) accounts
for up to 68% of the body mass (Winter; 2009) and can have considerable influence on
the loading experienced by the lower limbs (Blackburn and Padua; 2008).

Interestingly, when exploring the methodology of the 16 studies included in the sys-
tematic review, several methodological weaknesses were identified which were not high-
lighted by the author of the review (Ceyssens et al.; 2019). Firstly, six of the studies
investigated univariate risk factors for running injuries with no control for multiple com-
parisons which can lead to inflation of type 1 errors and ignores multivariate relationships
(Noehren et al.; 2007, 2013; Stefanyshyn et al.; 2006; Kuhman et al.; 2016; Hein et al.;
2014; Dudley et al.; 2017). Of the remaining 10 studies, which used logistic regression
(Luedke et al.; 2016; Ghani Zadeh Hesar et al.; 2009; Davis et al.; 2016; Messier et al.;
2018; Van Ginckel et al.; 2009; Thijs et al.; 2008), linear regression (Brund et al.; 2017),
and Cox proportional hazard models (Napier et al.; 2018; Bredeweg, Buist and Kluiten-
berg; 2013; Bredeweg, Kluitenberg, Bessem and Buist; 2013), 5 studies (Messier et al.;
2018; Van Ginckel et al.; 2009; Thijs et al.; 2008; Bredeweg, Buist and Kluitenberg; 2013;
Bredeweg, Kluitenberg, Bessem and Buist; 2013) exclusively utilised univariate feature
selection, which risks excluding potentially important features that can act as covariates
in the final model. In addition, all 10 studies that conducted some form of multivariate
modelling, failed to use any form of out of sample testing and only explored a single
model. This can lead to poor generalisability of the studies’ findings, and as per the no
free lunch theorem (Wolpert; 1996), runs the risk of utilising a non-optimal model for
the data being examined. Finally, all sixteen studies explored in the systematic review
considered discrete biomechanical features which can lead to discarding potentially im-
portant features contained in the whole waveform (Pataky; 2012).

In summary, several prospective risk factors have been identified in the literature, but
with inconsistent findings. While the cause of this inconsistency is unclear, it may be
related to some of the statistical limitations identified in this review.

6.2 Methodology

6.2.1 Biomechanical Waveforms

All biomechanical waveform plots extracted from the motion capture data are presented
below. The plots present the mean + standard deviations for the nomalised stance phase.
The robust key phases identified using the concept of ‘Analysis of Characterising Phases’
are represented by the grey shaded regions (Figure 109 - Figure 114).

94

g6

Foot Angles (°)

50
% foot strike

Foot Velocity (°/s)

increase —

50
% foot strike

Foot Acceleration (“Isz)

109: Biomechanical waveforms for the foot

o 2 w® o

+ 7Joa [ewiBjuy

« uoixayy 1siop

B s & 3 %
“Jo1 [eUIB}X® —+
(o) saibuy apjuy

uoray sepeid —
(o) sapBuy apjuy

100

10

°

% foot strike

% foot strike

g & 8

2 § 3
+ 7Jou [ewiajuy

AN00aA apuy

“Jou [PWIBXE —

3

+ uoisIaAul

Auo0jo apjuy

, _

g 8 8 § &8 8

 uoxaly 1siop uoixayy zejued
Aoojep apjuy

8
8
—

100
100

il
kB4
1

50
% foot strike

E|

“J04 [EUIB)XD ¢1.
(;81:) UoneIB[E0dY BpUY

s
 "Jou jewsajul

% foot strike
50
% foot strike

10

 uoisIaAuy

(;5/,) UoneIROOY Spiuy

100

7

% foot strike
50
% foot strike

"
5 210

o 9
+ uoixal} 1si0p uorxayy sejueid

(481,) UONEIB[ROVY APy

N

96

ical waveforms for the ankle

iomechan

B

110

Figure

8 8 8 e 2
+ 7Joa [ewiBjuy

(,) sojbuy aauy

°

(,) saiBuy auY|

8 © g 8 8 8 R

(,) saiBuy aauY|

“J01 [euIR}x®

N

100

10

100

AR

o

T
snBjea

e 2
uoisua)xa

©
N

©
N

100

10

o

2 §
+ 7Jou [ewiaju

“Jou [PWIBIXE —
(s/.) Aoojap sauy

L
)
2

(s/.) Ao0ap, 93Uy

)

g

5 &
uoisua)xa

(s/.) Aaooap, 99Uy

N

% foot strike

]
kR
i

 "jou jewsajul

3] <
o1 [eue}Xe —
(;81:) UoneIB[E0dY SaUN

« uoxaly

(£51,) uonEI9R00Y Sau

% foot strike

% foot strike

% foot strike

97

ical waveforms for the knee

Biomechan

111

Figure

36

Hip Angles (°)

Hip Velocity

Hip Acceleration (°/s?)

lexion —

=

+ extension

flexion —

2

&

3

®

adduction —
>

Hip Angles (°)

&

+ abduction
&

3
°

3
g

Hip Velocity
adduction —
8

« abduction
g g

°
3
3
8
&

&
8

adduction —
8
8

Hip Acceleration (*/s%)

60 7 80 %0 100

50
% foot strike

Hip Angles (°)

Hip Velocity

Hip Acceleration (°/s?)

internat rot. —

+ external rot.

internat rot. —

+ external rot.

internat rot. —

Figure 112: Biomechanical waveforms for the hip

ae4zue
4 9pIs BAUOD 0} "Jou
(o) safbuy siad

Prospectively Injured
Prospeciively Uninjured

® © <+ o o
+ 9pIS e1ju0d 0} doip

Prospeciively Injured
spectively Uninjured

§ 8 ® e T o ¢
< 31 Jouajue s

(o) saibuy sinad

Ny % @
apis 1sdi 0y doup —
() saibuy sind

® ©

Jousgysod —

% foot strike

s
]
P

Prospecively nkred

8

s
g

3PIS BRUOD 0} Jos

Prospectively Uninjured

3

+ 9pIs BAju0d 0} doip

< 3 Jouajue

F) °

50

apis isdi 0} "Jos —
AoA SInRd

I % & 8
apis 1sdi 0y doup —

AW00A SInRd

00
50

n ._o._ﬂ._n.non lv1.
A00A SIARd

100

50
% foot strike

10

100

foot strike

%

% foot strike

99

hanical waveforms for the pelvis

iomec

B

113

igure

F

8

e
<N

e 2

“ apIs e4UOD 0} oI

< ~ °
< 8pIs eauo2 o) doip

= o

) Jouajue

o
(,) sajbuy xesoy)

o v @ @
apis isdi 0y doap —

() sajbuy xesoyy

e = © < ~ o

B Joudysod —
(,) sajbuy xesoy)

100

10

o

100

7

10

o

£
i
8
=

% foot strike

2

& ° §

opis 1sdi 03 101 =

I
8 8 8 8 R®
+ apis eAuod 0} doip

|
8 8 8 R =°
“— }n Joudjue

(s/,) A100JA X104 L

Joudysod —

% foot strike

% foot strike

% foot strike

100

Biomechanical waveforms for the thorax

Figure 114

6.2.2 Participant Demographics

Basic subject demogrpahics of the participants who partook in this project are presented

in the table below (Table 2).

Table 2: Subject Demographics

Sex N Age (yrs) Height (cm) Mass (kg)
Female 113 424+ 86 164.5+7.6 61.5 + 8.2
Male 169 44.7+94 1779 £ 6.6 79.4 + 10.6

Subject demographics presented as mean + standard deviation.

N = number of participants, yrs. = years, cm = centimetre, kg = kilogram

6.3 Implementation

6.3.1 Data description

The following table provides a list and description of the features that were considered
in this project. It is worth noting that for the clustering implementation, the data was

delimited to the foot movement features.

Table 3: Feature list and description

Feature Name

Description

’AnkleAcceleration_abd__maximum’

’AnkleAcceleration_abd__mean’

’AnkleAcceleration_abd__median’

’AnkleAcceleration_abd__minimum’

’AnkleAcceleration_abd__standard_deviation’

’AnkleAcceleration_abd_16_22’

"AnkleAcceleration_abd_4_13’

’AnkleAcceleration_abd_83_97’

’AnkleAcceleration_fle__maximum’

’AnkleAcceleration_fle__mean’

’AnkleAcceleration_fle__median’

101

Maximum Ankle acceleration in the
frontal plane for the whole stance phase
Mean Ankle acceleration in the frontal
plane for the whole stance phase
Median Ankle acceleration in the
frontal plane for the whole stance phase
Minimum Ankle acceleration in the
frontal plane for the whole stance phase
Ankle acceleration standard deviation
in the frontal plane for the whole stance
phase

Mean Ankle acceleration in the frontal
plane over 16-21% of the stance phase
Mean Ankle acceleration in the frontal
plane over 4-12% of the stance phase
Mean Ankle acceleration in the frontal
plane over 83-96% of the stance phase
Maximum Ankle acceleration in the
transverse plane for the whole stance
phase

Mean Ankle acceleration in the trans-
verse plane for the whole stance phase
Median Ankle acceleration in the trans-
verse plane for the whole stance phase

Table 3 Feature list and description (continued from previous page)

Feature Name

Description

’AnkleAcceleration_fle__standard_deviation’

’AnkleAcceleration_fle_.10_16’

"AnkleAcceleration_fle_31_35’

’AnkleAcceleration_fle_73_85’

"AnkleAcceleration_fle_88_94’

’AnkleAcceleration_rot__maximum’

"AnkleAcceleration_rot__minimum’

’AnkleAcceleration_rot__standard_deviation’

’AnkleAcceleration_rot_0_3’

’AnkleAcceleration_rot_14_28’

’AnkleAcceleration_rot_44_51’

’AnkleAcceleration_rot_5_12’

’AnkleAcceleration_rot_53_59’

’AnkleAcceleration_rot_79_80’

’AnkleAcceleration_rot_90_96’

102

Ankle acceleration standard deviation
in the transverse plane for the whole
stance phase

Mean Ankle acceleration in the trans-
verse plane over 10-15% of the stance
phase

Mean Ankle acceleration in the trans-
verse plane over 31-34% of the stance
phase

Mean Ankle acceleration in the trans-
verse plane over 73-84% of the stance
phase

Mean Ankle acceleration in the trans-
verse plane over 88-93% of the stance
phase

Maximum Ankle acceleration in the
transverse plane for the whole stance
phase

Minimum Ankle acceleration in the
transverse plane for the whole stance
phase

Ankle acceleration standard deviation
in the transverse plane for the whole
stance phase

Mean Ankle acceleration in the trans-
verse plane over 0-2% of the stance
phase

Mean Ankle acceleration in the trans-
verse plane over 14-27% of the stance
phase

Mean Ankle acceleration in the trans-
verse plane over 44-50% of the stance
phase

Mean Ankle acceleration in the trans-
verse plane over 5-11% of the stance
phase

Mean Ankle acceleration in the trans-
verse plane over 53-58% of the stance
phase

Mean Ankle acceleration in the trans-
verse plane over 79-79% of the stance
phase

Mean Ankle acceleration in the trans-
verse plane over 90-95% of the stance
phase

Table 3 Feature list and description (continued from previous page)

Feature Name

Description

’AnkleAcceleration_rot_99_101’

"AnkleAngles_abd__minimum’
"AnkleAngles_abd__standard_deviation’
"AnkleAngles_abd 0_17’
"AnkleAngles_abd_41_80’
"AnkleAngles_abd 95_101
"AnkleAngles_fle__maximum’

"AnkleAngles_fle__mean’

"AnkleAngles_fle__standard_deviation’

"AnkleAngles fle 0_11’
"AnkleAngles fle 28 44’
"AnkleAngles_fle_ 68_80’

"AnkleAngles_fle 93101’

"AnkleAngles_rot__standard_deviation’

"AnkleAngles_rot_34_61
"AnkleVelocity_abd__maximum’
"AnkleVelocity_abd__mean’
"AnkleVelocity_abd__median’

"AnkleVelocity_abd__minimum’

"AnkleVelocity_abd__standard_deviation’

"AnkleVelocity_abd_0_6

103

Mean Ankle acceleration in the trans-
verse plane over 99-100% of the stance
phase

Minimum Ankle angle in the frontal
plane for the whole stance phase
Ankle angle standard deviation in the
frontal plane for the whole stance phase
Mean Ankle angle in the frontal plane
over 0-16% of the stance phase

Mean Ankle angle in the frontal plane
over 41-79% of the stance phase

Mean Ankle angle in the frontal plane
over 95-100% of the stance phase
Maximum Ankle angle in the trans-
verse plane for the whole stance phase
Mean Ankle angle in the transverse
plane for the whole stance phase
Ankle angle standard deviation in the
transverse plane for the whole stance
phase

Mean Ankle angle in the transverse
plane over 0-10% of the stance phase
Mean Ankle angle in the transverse
plane over 28-43% of the stance phase
Mean Ankle angle in the transverse
plane over 68-79% of the stance phase
Mean Ankle angle in the transverse
plane over 93-100% of the stance phase
Ankle angle standard deviation in the
transverse plane for the whole stance
phase

Mean Ankle angle in the transverse
plane over 34-60% of the stance phase
Maximum Ankle velocity in the frontal
plane for the whole stance phase
Mean Ankle velocity in the frontal
plane for the whole stance phase
Median Ankle velocity in the frontal
plane for the whole stance phase
Minimum Ankle velocity in the frontal
plane for the whole stance phase
Ankle velocity standard deviation in
the frontal plane for the whole stance
phase

Mean Ankle velocity in the frontal
plane over 0-5% of the stance phase

Table 3 Feature list and description (continued from previous page)

Feature Name

Description

"AnkleVelocity_abd_11_19’
"AnkleVelocity_abd_45_53’
"AnkleVelocity_abd_63_74
"AnkleVelocity_abd_75_83’
"AnkleVelocity_abd 87 94’
"AnkleVelocity fle__maximum’
"AnkleVelocity fle_mean’

"AnkleVelocity fle__median’

"AnkleVelocity fle__standard_deviation’

"AnkleVelocity fle_13_22’
"AnkleVelocity fle_32_37
"AnkleVelocity_fle 61_71’
"AnkleVelocity fle_73_80’
"AnkleVelocity _fle_83_92’
"AnkleVelocity_fle 98 101’
"AnkleVelocity rot__maximum’

"AnkleVelocity_rot__minimum’

"AnkleVelocity _rot__standard_deviation’

"AnkleVelocity rot_38_46’
"AnkleVelocity rot_63_72’
"AnkleVelocity rot_8_37’

"AnkleVelocity _rot_95_101’

104

Mean Ankle velocity in the frontal
plane over 11-18% of the stance phase
Mean Ankle velocity in the frontal
plane over 45-52% of the stance phase
Mean Ankle velocity in the frontal
plane over 63-73% of the stance phase
Mean Ankle velocity in the frontal
plane over 75-82% of the stance phase
Mean Ankle velocity in the frontal
plane over 87-93% of the stance phase
Maximum Ankle velocity in the trans-
verse plane for the whole stance phase
Mean Ankle velocity in the transverse
plane for the whole stance phase
Median Ankle velocity in the transverse
plane for the whole stance phase
Ankle velocity standard deviation in
the transverse plane for the whole
stance phase

Mean Ankle velocity in the transverse
plane over 13-21% of the stance phase
Mean Ankle velocity in the transverse
plane over 32-36% of the stance phase
Mean Ankle velocity in the transverse
plane over 61-70% of the stance phase
Mean Ankle velocity in the transverse
plane over 73-79% of the stance phase
Mean Ankle velocity in the transverse
plane over 83-91% of the stance phase
Mean Ankle velocity in the transverse
plane over 98-100% of the stance phase
Maximum Ankle velocity in the trans-
verse plane for the whole stance phase
Minimum Ankle velocity in the trans-
verse plane for the whole stance phase
Ankle velocity standard deviation in
the transverse plane for the whole
stance phase

Mean Ankle velocity in the transverse
plane over 38-45% of the stance phase
Mean Ankle velocity in the transverse
plane over 63-71% of the stance phase
Mean Ankle velocity in the transverse
plane over 8-36% of the stance phase
Mean Ankle velocity in the transverse
plane over 95-100% of the stance phase

Table 3 Feature list and description (continued from previous page)

Feature Name

Description

"FootAcceleration_fle._maximum’

"FootAcceleration_fle__mean’

"FootAcceleration_fle__median’

"FootAcceleration_fle__standard_deviation’

"FootAcceleration_fle_0_5’

"FootAcceleration_fle_24_33’

"FootAcceleration_fle_50_61’

"FootAcceleration_fle_6_20’

"FootAcceleration_fle_64_75’

"FootAcceleration_fle_ 91_101’

"FootAngles_fle_mean’

"Foot Angles_fle_median’

"FootAngles_fle__standard_deviation’

"FootAngles_fle_ 0_9’
"Foot Angles_fle_15_26’
"FootAngles_fle 64_79’
"FootAngles_fle 94 101’

"FootVelocity_fle_maximum’

105

Maximum Foot acceleration in the
transverse plane for the whole stance
phase

Mean Foot acceleration in the trans-
verse plane for the whole stance phase
Median Foot acceleration in the trans-
verse plane for the whole stance phase
Foot acceleration standard deviation
in the transverse plane for the whole
stance phase

Mean Foot acceleration in the trans-
verse plane over 0-4% of the stance
phase

Mean Foot acceleration in the trans-
verse plane over 24-32% of the stance
phase

Mean Foot acceleration in the trans-
verse plane over 50-60% of the stance
phase
Mean Foot
verse plane
phase
Mean Foot acceleration in the trans-
verse plane over 64-74% of the stance
phase

Mean Foot acceleration in the trans-
verse plane over 91-100% of the stance
phase

Mean Foot angle in the transverse
plane for the whole stance phase
Median Foot angle in the transverse
plane for the whole stance phase

Foot angle standard deviation in the
transverse plane for the whole stance
phase

Mean Foot angle in the transverse
plane over 0-8% of the stance phase
Mean Foot angle in the transverse
plane over 15-25% of the stance phase
Mean Foot angle in the transverse
plane over 64-78% of the stance phase
Mean Foot angle in the transverse
plane over 94-100% of the stance phase
Maximum Foot velocity in the trans-
verse plane for the whole stance phase

in the trans-
of the stance

acceleration
over 6-19%

Table 3 Feature list and description (continued from previous page)

Feature Name

Description

"FootVelocity fle__mean’
"FootVelocity_fle__median’

"FootVelocity_fle__minimum’

"FootVelocity_fle__standard_deviation’

"FootVelocity_fle_0_10
"FootVelocity_fle_30_40’
"FootVelocity_fle_ 55 67’
"FootVelocity_fle 98101’
"HipAcceleration_abd__maximum’
"HipAcceleration_abd__mean’
"HipAcceleration_abd__median’

"HipAcceleration_abd__minimum’

"HipAcceleration_abd__standard_deviation’

"HipAcceleration_abd_0_8’

"HipAcceleration_abd_15_23’
"HipAcceleration_abd 29 37’
"HipAcceleration_abd_38_46’
"HipAcceleration_abd_54_62’
"HipAcceleration_abd _65_73’

"HipAcceleration_abd_77_87’

"HipAcceleration_fle._maximum’

106

Mean Foot velocity in the transverse
plane for the whole stance phase
Median Foot velocity in the transverse
plane for the whole stance phase
Minimum Foot velocity in the trans-
verse plane for the whole stance phase
Foot velocity standard deviation in the
transverse plane for the whole stance
phase

Mean Foot velocity in the transverse
plane over 0-9% of the stance phase
Mean Foot velocity in the transverse
plane over 30-39% of the stance phase
Mean Foot velocity in the transverse
plane over 55-66% of the stance phase
Mean Foot velocity in the transverse
plane over 98-100% of the stance phase
Maximum Hip acceleration in the
frontal plane for the whole stance phase
Mean Hip acceleration in the frontal
plane for the whole stance phase
Median Hip acceleration in the frontal
plane for the whole stance phase
Minimum Hip acceleration in the
frontal plane for the whole stance phase
Hip acceleration standard deviation in
the frontal plane for the whole stance
phase

Mean Hip acceleration in the frontal
plane over 0-7% of the stance phase
Mean Hip acceleration in the frontal
plane over 15-22% of the stance phase
Mean Hip acceleration in the frontal
plane over 29-36% of the stance phase
Mean Hip acceleration in the frontal
plane over 38-45% of the stance phase
Mean Hip acceleration in the frontal
plane over 54-61% of the stance phase
Mean Hip acceleration in the frontal
plane over 65-72% of the stance phase
Mean Hip acceleration in the frontal
plane over 77-86% of the stance phase
Maximum Hip acceleration in the
transverse plane for the whole stance
phase

Table 3 Feature list and description (continued from previous page)

Feature Name

Description

"HipAcceleration_fle__mean’
"HipAcceleration_fle__median’

"HipAcceleration_fle__minimum’

"HipAcceleration fle__standard_deviation’

"HipAcceleration_fle 012’

"HipAcceleration_fle 25_39’
"HipAcceleration_fle 51 _58’
"HipAcceleration_fle 66_82’

"HipAcceleration fle_ 84 101’

"HipAcceleration_rot__maximum’

"HipAcceleration_rot__mean’
"HipAcceleration_rot__median’
"HipAcceleration_rot__minimum’
"HipAcceleration_rot_0_7’
"HipAcceleration_rot_13_21’
"HipAcceleration_rot_22_29’
"HipAcceleration_rot_47_54’
"HipAcceleration_rot_72_79’
"HipAcceleration_rot_82_91’
"HipAcceleration_rot_93_94’
"HipAcceleration_rot_95_101’

"HipAngles_abd__mean’

107

Mean Hip acceleration in the transverse
plane for the whole stance phase
Median Hip acceleration in the trans-
verse plane for the whole stance phase
Minimum Hip acceleration in the trans-
verse plane for the whole stance phase
Hip acceleration standard deviation in
the transverse plane for the whole
stance phase

Mean Hip acceleration in the transverse
plane over 0-11% of the stance phase
Mean Hip acceleration in the transverse
plane over 25-38% of the stance phase
Mean Hip acceleration in the transverse
plane over 51-57% of the stance phase
Mean Hip acceleration in the transverse
plane over 66-81% of the stance phase
Mean Hip acceleration in the transverse
plane over 84-100% of the stance phase
Maximum Hip acceleration in the
transverse plane for the whole stance
phase

Mean Hip acceleration in the transverse
plane for the whole stance phase
Median Hip acceleration in the trans-
verse plane for the whole stance phase
Minimum Hip acceleration in the trans-
verse plane for the whole stance phase
Mean Hip acceleration in the transverse
plane over 0-6% of the stance phase
Mean Hip acceleration in the transverse
plane over 13-20% of the stance phase
Mean Hip acceleration in the transverse
plane over 22-28% of the stance phase
Mean Hip acceleration in the transverse
plane over 47-53% of the stance phase
Mean Hip acceleration in the transverse
plane over 72-78% of the stance phase
Mean Hip acceleration in the transverse
plane over 82-90% of the stance phase
Mean Hip acceleration in the transverse
plane over 93-93% of the stance phase
Mean Hip acceleration in the transverse
plane over 95-100% of the stance phase
Mean Hip angle in the frontal plane for
the whole stance phase

Table 3 Feature list and description (continued from previous page)

Feature Name

Description

"HipAngles_abd__standard_deviation’
"HipAngles_abd_0_11’
"HipAngles_abd_24_36’
"HipAngles_abd_40_65’
"HipAngles_abd_88_101’

"HipAngles_fle__maximum’

"HipAngles_fle__standard_deviation’

"HipAngles_fle_33_58’
"HipAngles fle_ 79101’
"HipAngles_rot__maximum’

"HipAngles_rot__minimum’

"HipAngles_rot__standard_deviation’

"HipAngles_rot__variance’
"HipAngles_rot_0_12’
"HipAngles_rot_20_31’
"HipAngles_rot_38 51’
"HipVelocity_abd__maximum’
"HipVelocity_abd__mean’
"HipVelocity_abd__median’
"HipVelocity_abd__minimum’
"HipVelocity _abd__standard_deviation’

"HipVelocity_abd_0_10’

108

Hip angle standard deviation in the
frontal plane for the whole stance phase
Mean Hip angle in the frontal plane
over 0-10% of the stance phase

Mean Hip angle in the frontal plane
over 24-35% of the stance phase

Mean Hip angle in the frontal plane
over 40-64% of the stance phase

Mean Hip angle in the frontal plane
over 88-100% of the stance phase
Maximum Hip angle in the transverse
plane for the whole stance phase

Hip angle standard deviation in the
transverse plane for the whole stance
phase

Mean Hip angle in the transverse plane
over 33-57% of the stance phase

Mean Hip angle in the transverse plane
over 79-100% of the stance phase
Maximum Hip angle in the transverse
plane for the whole stance phase
Minimum Hip angle in the transverse
plane for the whole stance phase

Hip angle standard deviation in the
transverse plane for the whole stance
phase

Mean Hip angle in the transverse plane
over -% of the stance phase

Mean Hip angle in the transverse plane
over 0-11% of the stance phase

Mean Hip angle in the transverse plane
over 20-30% of the stance phase

Mean Hip angle in the transverse plane
over 38-50% of the stance phase
Maximum Hip velocity in the frontal
plane for the whole stance phase
Mean Hip velocity in the frontal plane
for the whole stance phase

Median Hip velocity in the frontal
plane for the whole stance phase
Minimum Hip velocity in the frontal
plane for the whole stance phase

Hip velocity standard deviation in the
frontal plane for the whole stance phase
Mean Hip velocity in the frontal plane
over 0-9% of the stance phase

Table 3 Feature list and description (continued from previous page)

Feature Name

Description

"HipVelocity_abd_21_33’
"HipVelocity_abd_36_45’
"HipVelocity_abd_46_63’
"HipVelocity_abd_71_83’
"HipVelocity_abd 92101’
"HipVelocity_fle__maximum’
"HipVelocity fle_mean’
"HipVelocity_fle__median’

"HipVelocity fle_minimum’

"HipVelocity _fle__standard_deviation’

"HipVelocity fle 0_11’
"HipVelocity fle_17_26’
"HipVelocity_fle_31_41’
"HipVelocity _fle_49_58’
"HipVelocity_fle_66_77
"HipVelocity _fle_79_88’
"HipVelocity fle 91 101"
"HipVelocity_rot__maximum’
"HipVelocity_rot__mean’
"HipVelocity_rot__median’

"HipVelocity_rot__minimum’

"HipVelocity _rot__standard_deviation’

109

Mean Hip velocity in the frontal plane
over 21-32% of the stance phase

Mean Hip velocity in the frontal plane
over 36-44% of the stance phase

Mean Hip velocity in the frontal plane
over 46-62% of the stance phase

Mean Hip velocity in the frontal plane
over 71-82% of the stance phase

Mean Hip velocity in the frontal plane
over 92-100% of the stance phase
Maximum Hip velocity in the trans-
verse plane for the whole stance phase
Mean Hip velocity in the transverse
plane for the whole stance phase
Median Hip velocity in the transverse
plane for the whole stance phase
Minimum Hip velocity in the transverse
plane for the whole stance phase

Hip velocity standard deviation in the
transverse plane for the whole stance
phase

Mean Hip velocity in the transverse
plane over 0-10% of the stance phase
Mean Hip velocity in the transverse
plane over 17-25% of the stance phase
Mean Hip velocity in the transverse
plane over 31-40% of the stance phase
Mean Hip velocity in the transverse
plane over 49-57% of the stance phase
Mean Hip velocity in the transverse
plane over 66-76% of the stance phase
Mean Hip velocity in the transverse
plane over 79-87% of the stance phase
Mean Hip velocity in the transverse
plane over 91-100% of the stance phase
Maximum Hip velocity in the trans-
verse plane for the whole stance phase
Mean Hip velocity in the transverse
plane for the whole stance phase
Median Hip velocity in the transverse
plane for the whole stance phase
Minimum Hip velocity in the transverse
plane for the whole stance phase

Hip velocity standard deviation in the
transverse plane for the whole stance
phase

Table 3 Feature list and description (continued from previous page)

Feature Name

Description

"HipVelocity _rot_0_3’
"HipVelocity_rot_16_24
"HipVelocity_rot_27_35’
"HipVelocity _rot_40_57
"HipVelocity_rot_6_14’

"HipVelocity rot_61_69’
"HipVelocity rot_73_83’
"HipVelocity_rot_92_101"
"KneeAcceleration_abd__maximum’
"KneeAcceleration_abd__mean’
"KneeAcceleration_abd__median’
"KneeAcceleration_abd__minimum’
"KneeAcceleration_abd_0_5’
"KneeAcceleration_abd_15_22’
"KneeAcceleration_abd_31_45’
"KneeAcceleration_abd_53_66’
"KneeAcceleration_abd _70_76

"KneeAcceleration_abd_99_101’

"KneeAcceleration_fle__maximum’

"KneeAcceleration_fle_mean’

"KneeAcceleration_fle__median’

"KneeAcceleration_fle__minimum’

110

Mean Hip velocity in the transverse
plane over 0-2% of the stance phase
Mean Hip velocity in the transverse
plane over 16-23% of the stance phase
Mean Hip velocity in the transverse
plane over 27-34% of the stance phase
Mean Hip velocity in the transverse
plane over 40-56% of the stance phase
Mean Hip velocity in the transverse
plane over 6-13% of the stance phase
Mean Hip velocity in the transverse
plane over 61-68% of the stance phase
Mean Hip velocity in the transverse
plane over 73-82% of the stance phase
Mean Hip velocity in the transverse
plane over 92-100% of the stance phase
Maximum Knee acceleration in the
frontal plane for the whole stance phase
Mean Knee acceleration in the frontal
plane for the whole stance phase
Median Knee acceleration in the frontal
plane for the whole stance phase
Minimum Knee acceleration in the
frontal plane for the whole stance phase
Mean Knee acceleration in the frontal
plane over 0-4% of the stance phase
Mean Knee acceleration in the frontal
plane over 15-21% of the stance phase
Mean Knee acceleration in the frontal
plane over 31-44% of the stance phase
Mean Knee acceleration in the frontal
plane over 53-65% of the stance phase
Mean Knee acceleration in the frontal
plane over 70-75% of the stance phase
Mean Knee acceleration in the frontal
plane over 99-100% of the stance phase
Maximum Knee acceleration in the
transverse plane for the whole stance
phase

Mean Knee acceleration in the trans-
verse plane for the whole stance phase
Median Knee acceleration in the trans-
verse plane for the whole stance phase
Minimum Knee acceleration in the
transverse plane for the whole stance
phase

Table 3 Feature list and description (continued from previous page)

Feature Name

Description

"KneeAcceleration_fle__standard_deviation’

"KneeAcceleration_fle_1_10’

"KneeAcceleration_fle_13_21’

"KneeAcceleration_fle_22_29’

"KneeAcceleration_fle_30_37’

"KneeAcceleration_fle_ 4048’

"KneeAcceleration_fle_51_66’

"KneeAcceleration_fle_86_94’

"KneeAcceleration_fle_99_101’

"KneeAcceleration_rot__maximum’

"KneeAcceleration_rot__mean’

"KneeAcceleration_rot__median’

"KneeAcceleration_rot__minimum’

"KneeAcceleration_rot_0_6’

"KneeAcceleration_rot_19_32’

"KneeAcceleration_rot_39_46’

111

Knee acceleration standard deviation
in the transverse plane for the whole
stance phase

Mean Knee acceleration in the trans-
verse plane over 1-9% of the stance
phase

Mean Knee acceleration in the trans-

verse plane over 13-20%
phase
Mean Knee acceleration
verse plane over 22-28%
phase
Mean Knee acceleration
verse plane over 30-36%
phase
Mean Knee acceleration
verse plane over 40-47%
phase
Mean Knee acceleration
verse plane over 51-65%
phase
Mean Knee acceleration

of the stance

in the trans-
of the stance

in the trans-
of the stance

in the trans-
of the stance

in the trans-
of the stance

in the trans-

verse plane over 86-93% of the stance
phase

Mean Knee acceleration in the trans-
verse plane over 99-100% of the stance
phase

Maximum Knee acceleration in the
transverse plane for the whole stance
phase

Mean Knee acceleration in the trans-
verse plane for the whole stance phase
Median Knee acceleration in the trans-
verse plane for the whole stance phase
Minimum Knee acceleration in the
transverse plane for the whole stance
phase

Mean Knee acceleration in the trans-
verse plane over 0-5% of the stance
phase

Mean Knee acceleration in the trans-
verse plane over 19-31% of the stance
phase

Mean Knee acceleration in the trans-
verse plane over 39-45% of the stance
phase

Table 3 Feature list and description (continued from previous page)

Feature Name

Description

"KneeAcceleration_rot_48_55’

"KneeAcceleration_rot_58_64’

"KneeAcceleration_rot_65_71’

"KneeAcceleration_rot_88_95’

"KneeAcceleration_rot_98_101’

"KneeAngles_abd__maximum’
"KneeAngles_abd__standard_deviation’
"KneeAngles_abd_0_19’
"KneeAngles_abd_31.57’
"KneeAngles_abd_73_91’

"KneeAngles fle__mean’

"KneeAngles_fle__minimum’

"KneeAngles_fle__standard_deviation’

"KneeAngles fle_0_8’
"KneeAngles_fle_20_30’
"KneeAngles fle_38_53’

"KneeAngles_fle 90101’

"KneeAngles_rot__standard_deviation’

"KneeAngles_rot_0_16’

112

Mean Knee acceleration in the trans-
verse plane over 48-54% of the stance
phase

Mean Knee acceleration in the trans-
verse plane over 58-63% of the stance
phase

Mean Knee acceleration in the trans-
verse plane over 65-70% of the stance
phase

Mean Knee acceleration in the trans-
verse plane over 88-94% of the stance
phase

Mean Knee acceleration in the trans-
verse plane over 98-100% of the stance
phase

Maximum Knee angle in the frontal
plane for the whole stance phase

Knee angle standard deviation in the
frontal plane for the whole stance phase
Mean Knee angle in the frontal plane
over 0-18% of the stance phase

Mean Knee angle in the frontal plane
over 31-56% of the stance phase

Mean Knee angle in the frontal plane
over 73-90% of the stance phase

Mean Knee angle in the transverse
plane for the whole stance phase
Minimum Knee angle in the transverse
plane for the whole stance phase

Knee angle standard deviation in the
transverse plane for the whole stance
phase

Mean Knee angle in the transverse
plane over 0-7% of the stance phase
Mean Knee angle in the transverse
plane over 20-29% of the stance phase
Mean Knee angle in the transverse
plane over 38-52% of the stance phase
Mean Knee angle in the transverse
plane over 90-100% of the stance phase
Knee angle standard deviation in the
transverse plane for the whole stance
phase

Mean Knee angle in the transverse
plane over 0-15% of the stance phase

Table 3 Feature list and description (continued from previous page)

Feature Name

Description

"KneeAngles rot_32_59’
"KneeAngles_rot_86_101’
"KneeVelocity _abd__maximum’
"KneeVelocity_abd__mean’
"KneeVelocity_abd__median’
"KneeVelocity _abd__minimum’
"KneeVelocity_abd__standard_deviation’
"KneeVelocity _abd_23_47
"KneeVelocity_abd_5_15
"KneeVelocity _abd 5361
"KneeVelocity _abd_67_76
"KneeVelocity_abd _87_101’
"KneeVelocity_fle__maximum’
"KneeVelocity fle_mean’
"KneeVelocity_fle__median’

"KneeVelocity_fle_minimum’

"KneeVelocity fle_standard _deviation’

"KneeVelocity_fle 0.7’

"KneeVelocity fle_11_20’
"KneeVelocity fle 28 37’
"KneeVelocity fle_52_61’

"KneeVelocity fle_63_71’

113

Mean Knee angle in the transverse
plane over 32-58% of the stance phase
Mean Knee angle in the transverse
plane over 86-100% of the stance phase
Maximum Knee velocity in the frontal
plane for the whole stance phase
Mean Knee velocity in the frontal plane
for the whole stance phase

Median Knee velocity in the frontal
plane for the whole stance phase
Minimum Knee velocity in the frontal
plane for the whole stance phase

Knee velocity standard deviation in the
frontal plane for the whole stance phase
Mean Knee velocity in the frontal plane
over 23-46% of the stance phase

Mean Knee velocity in the frontal plane
over 5-14% of the stance phase

Mean Knee velocity in the frontal plane
over 53-60% of the stance phase

Mean Knee velocity in the frontal plane
over 67-75% of the stance phase

Mean Knee velocity in the frontal plane
over 87-100% of the stance phase
Maximum Knee velocity in the trans-
verse plane for the whole stance phase
Mean Knee velocity in the transverse
plane for the whole stance phase
Median Knee velocity in the transverse
plane for the whole stance phase
Minimum Knee velocity in the trans-
verse plane for the whole stance phase
Knee velocity standard deviation in the
transverse plane for the whole stance
phase

Mean Knee velocity in the transverse
plane over 0-6% of the stance phase
Mean Knee velocity in the transverse
plane over 11-19% of the stance phase
Mean Knee velocity in the transverse
plane over 28-36% of the stance phase
Mean Knee velocity in the transverse
plane over 52-60% of the stance phase
Mean Knee velocity in the transverse
plane over 63-70% of the stance phase

Table 3 Feature list and description (continued from previous page)

Feature Name

Description

"KneeVelocity fle_74_86’
"KneeVelocity_fle_94_101’
"KneeVelocity rot__maximum’
"KneeVelocity_rot__mean’
"KneeVelocity rot__median’

"KneeVelocity rot__minimum’

"KneeVelocity rot__standard_deviation’

"KneeVelocity rot_0_9’
"KneeVelocity rot_14 22’
"KneeVelocity rot_24_32’
"KneeVelocity rot_33.41’
"KneeVelocity rot_48_56’
"KneeVelocity _rot_59_68’
"KneeVelocity_rot_85_94’
"KneeVelocity _rot_98_101"
"PelvisAngles_abd__maximum’
"PelvisAngles_abd__mean’
"PelvisAngles_abd__standard_deviation’
"PelvisAngles_abd_0_18’
"PelvisAngles_abd_26_38’
"PelvisAngles_abd_45_60

"PelvisAngles_abd _65_78’

114

Mean Knee velocity in the transverse
plane over 74-85% of the stance phase
Mean Knee velocity in the transverse
plane over 94-100% of the stance phase
Maximum Knee velocity in the trans-
verse plane for the whole stance phase
Mean Knee velocity in the transverse
plane for the whole stance phase
Median Knee velocity in the transverse
plane for the whole stance phase
Minimum Knee velocity in the trans-
verse plane for the whole stance phase
Knee velocity standard deviation in the
transverse plane for the whole stance
phase

Mean Knee velocity in the transverse
plane over 0-8% of the stance phase
Mean Knee velocity in the transverse
plane over 14-21% of the stance phase
Mean Knee velocity in the transverse
plane over 24-31% of the stance phase
Mean Knee velocity in the transverse
plane over 33-40% of the stance phase
Mean Knee velocity in the transverse
plane over 48-55% of the stance phase
Mean Knee velocity in the transverse
plane over 59-67% of the stance phase
Mean Knee velocity in the transverse
plane over 85-93% of the stance phase
Mean Knee velocity in the transverse
plane over 98-100% of the stance phase
Maximum Pelvis angle in the frontal
plane for the whole stance phase
Mean Pelvis angle in the frontal plane
for the whole stance phase

Pelvis angle standard deviation in the
frontal plane for the whole stance phase
Mean Pelvis angle in the frontal plane
over 0-17% of the stance phase

Mean Pelvis angle in the frontal plane
over 26-37% of the stance phase

Mean Pelvis angle in the frontal plane
over 45-59% of the stance phase

Mean Pelvis angle in the frontal plane
over 65-77% of the stance phase

Table 3 Feature list and description (continued from previous page)

Feature Name

Description

"PelvisAngles_abd_93_101’

"PelvisAngles_fle__standard_deviation’

"PelvisAngles_fle_4_24’
"PelvisAngles_fle_40_59’
"PelvisAngles_fle_88_101’

"PelvisAngles_rot__minimum’

"PelvisAngles rot__standard_deviation’

"PelvisAngles_rot_0_6
"PelvisAngles_rot_14_38’
"PelvisAngles_rot_51_66’
"PelvisAngles rot_91_101’
"PelvisVelocity_abd__maximum’
"PelvisVelocity_abd__mean’
"PelvisVelocity_abd__median’

"PelvisVelocity _abd__minimum’

"PelvisVelocity abd__standard_deviation’

"PelvisVelocity_abd_0_9’

"PelvisVelocity _abd_17_28’
"PelvisVelocity_abd_32_42’
"PelvisVelocity_abd_48_57’

"PelvisVelocity_abd_59_70’

115

Mean Pelvis angle in the frontal plane
over 93-100% of the stance phase
Pelvis angle standard deviation in the
transverse plane for the whole stance
phase

Mean Pelvis angle in the transverse
plane over 4-23% of the stance phase
Mean Pelvis angle in the transverse
plane over 40-58% of the stance phase
Mean Pelvis angle in the transverse
plane over 88-100% of the stance phase
Minimum Pelvis angle in the transverse
plane for the whole stance phase
Pelvis angle standard deviation in the
transverse plane for the whole stance
phase

Mean Pelvis angle in the transverse
plane over 0-5% of the stance phase
Mean Pelvis angle in the transverse
plane over 14-37% of the stance phase
Mean Pelvis angle in the transverse
plane over 51-65% of the stance phase
Mean Pelvis angle in the transverse
plane over 91-100% of the stance phase
Maximum Pelvis velocity in the frontal
plane for the whole stance phase
Mean Pelvis velocity in the frontal
plane for the whole stance phase
Median Pelvis velocity in the frontal
plane for the whole stance phase
Minimum Pelvis velocity in the frontal
plane for the whole stance phase
Pelvis velocity standard deviation in
the frontal plane for the whole stance
phase

Mean Pelvis velocity in the frontal
plane over 0-8% of the stance phase
Mean Pelvis velocity in the frontal
plane over 17-27% of the stance phase
Mean Pelvis velocity in the frontal
plane over 32-41% of the stance phase
Mean Pelvis velocity in the frontal
plane over 48-56% of the stance phase
Mean Pelvis velocity in the frontal
plane over 59-69% of the stance phase

Table 3 Feature list and description (continued from previous page)

Feature Name

Description

"PelvisVelocity_abd_73_86’
"PelvisVelocity_abd_97_101°
"PelvisVelocity_fle__maximum’
"PelvisVelocity fle_mean’
"PelvisVelocity_fle__median’

"PelvisVelocity_fle__minimum’

"PelvisVelocity _fle__standard_deviation’

"PelvisVelocity_fle_0_18’
"PelvisVelocity_fle_30_39’
"PelvisVelocity_fle_ 4048’
"PelvisVelocity _fle 52 61’
"PelvisVelocity _fle_77_87
"PelvisVelocity_fle_93_101°
"PelvisVelocity _rot__maximum’
"PelvisVelocity rot__mean’
"PelvisVelocity _rot__median’

"PelvisVelocity _rot__minimum’

"PelvisVelocity _rot__standard_deviation’

"PelvisVelocity_rot_0_7’
"PelvisVelocity_rot_12_25’
"PelvisVelocity rot_33_46’

"PelvisVelocity rot_56_70’

116

Mean Pelvis velocity in the frontal
plane over 73-85% of the stance phase
Mean Pelvis velocity in the frontal
plane over 97-100% of the stance phase
Maximum Pelvis velocity in the trans-
verse plane for the whole stance phase
Mean Pelvis velocity in the transverse
plane for the whole stance phase
Median Pelvis velocity in the transverse
plane for the whole stance phase
Minimum Pelvis velocity in the trans-
verse plane for the whole stance phase
Pelvis velocity standard deviation in
the transverse plane for the whole
stance phase

Mean Pelvis velocity in the transverse
plane over 0-17% of the stance phase
Mean Pelvis velocity in the transverse
plane over 30-38% of the stance phase
Mean Pelvis velocity in the transverse
plane over 40-47% of the stance phase
Mean Pelvis velocity in the transverse
plane over 52-60% of the stance phase
Mean Pelvis velocity in the transverse
plane over 77-86% of the stance phase
Mean Pelvis velocity in the transverse
plane over 93-100% of the stance phase
Maximum Pelvis velocity in the trans-
verse plane for the whole stance phase
Mean Pelvis velocity in the transverse
plane for the whole stance phase
Median Pelvis velocity in the transverse
plane for the whole stance phase
Minimum Pelvis velocity in the trans-
verse plane for the whole stance phase
Pelvis velocity standard deviation in
the transverse plane for the whole
stance phase

Mean Pelvis velocity in the transverse
plane over 0-6% of the stance phase
Mean Pelvis velocity in the transverse
plane over 12-24% of the stance phase
Mean Pelvis velocity in the transverse
plane over 33-45% of the stance phase
Mean Pelvis velocity in the transverse
plane over 56-69% of the stance phase

Table 3 Feature list and description (continued from previous page)

Feature Name

Description

"PelvisVelocity _rot_89_101°
"ThoraxAngles_abd__standard_deviation’
"ThoraxAngles_abd_0_7’
"ThoraxAngles_abd_31_59’

"ThoraxAngles_abd_90_101"

"ThoraxAngles_fle__standard_deviation’

"ThoraxAngles_fle 0_11’
"ThoraxAngles_fle_ 32_56

"ThoraxAngles_fle 90101

"ThoraxAngles_rot__standard_deviation’

"ThoraxAngles_rot_0_9’
"ThoraxAngles_rot_27_55’
"ThoraxAngles_rot_89_101’
"ThoraxVelocity_abd__maximum’
"ThoraxVelocity_abd__mean’
"ThoraxVelocity_abd__median’

"ThoraxVelocity_abd__minimum’

"ThoraxVelocity_abd__standard_deviation’

"ThoraxVelocity _abd_0_7’
"ThoraxVelocity_abd_15_29’

"ThoraxVelocity_abd_37_49’

117

Mean Pelvis velocity in the transverse
plane over 89-100% of the stance phase
Thorax angle standard deviation in the
frontal plane for the whole stance phase
Mean Thorax angle in the frontal plane
over 0-6% of the stance phase

Mean Thorax angle in the frontal plane
over 31-58% of the stance phase

Mean Thorax angle in the frontal plane
over 90-100% of the stance phase
Thorax angle standard deviation in the
transverse plane for the whole stance
phase

Mean Thorax angle in the transverse
plane over 0-10% of the stance phase
Mean Thorax angle in the transverse
plane over 32-55% of the stance phase
Mean Thorax angle in the transverse
plane over 90-100% of the stance phase
Thorax angle standard deviation in the
transverse plane for the whole stance
phase

Mean Thorax angle in the transverse
plane over 0-8% of the stance phase
Mean Thorax angle in the transverse
plane over 27-54% of the stance phase
Mean Thorax angle in the transverse
plane over 89-100% of the stance phase
Maximum Thorax velocity in the
frontal plane for the whole stance phase
Mean Thorax velocity in the frontal
plane for the whole stance phase
Median Thorax velocity in the frontal
plane for the whole stance phase
Minimum Thorax velocity in the
frontal plane for the whole stance phase
Thorax velocity standard deviation in
the frontal plane for the whole stance
phase

Mean Thorax velocity in the frontal
plane over 0-6% of the stance phase
Mean Thorax velocity in the frontal
plane over 15-28% of the stance phase
Mean Thorax velocity in the frontal
plane over 37-48% of the stance phase

Table 3 Feature list and description (continued from previous page)

Feature Name

Description

"ThoraxVelocity_abd_63_78’
"ThoraxVelocity _abd_90_101’
"ThoraxVelocity_fle__maximum’
"ThoraxVelocity _fle__mean’
"ThoraxVelocity_fle__median’

"ThoraxVelocity_fle__minimum’

"ThoraxVelocity fle__standard_deviation’

"ThoraxVelocity_fle_ 0_7’
"ThoraxVelocity_fle_13_26’
"ThoraxVelocity fle_39_49’
"ThoraxVelocity fle_73_85
"ThoraxVelocity_fle 96_101’
"ThoraxVelocity_rot__maximum’
"ThoraxVelocity_rot__mean’
"ThoraxVelocity _rot__median’

"ThoraxVelocity_rot__minimum’

"ThoraxVelocity_rot__standard_deviation’

"ThoraxVelocity_rot_0_8’
"ThoraxVelocity_rot_19_34’
"ThoraxVelocity_rot_47_61’

"ThoraxVelocity_rot_64 82’

118

Mean Thorax velocity in the frontal
plane over 63-77% of the stance phase
Mean Thorax velocity in the frontal
plane over 90-100% of the stance phase
Maximum Thorax velocity in the trans-
verse plane for the whole stance phase
Mean Thorax velocity in the transverse
plane for the whole stance phase
Median Thorax velocity in the trans-
verse plane for the whole stance phase
Minimum Thorax velocity in the trans-
verse plane for the whole stance phase
Thorax velocity standard deviation in
the transverse plane for the whole
stance phase

Mean Thorax velocity in the transverse
plane over 0-6% of the stance phase
Mean Thorax velocity in the transverse
plane over 13-25% of the stance phase
Mean Thorax velocity in the transverse
plane over 39-48% of the stance phase
Mean Thorax velocity in the transverse
plane over 73-84% of the stance phase
Mean Thorax velocity in the transverse
plane over 96-100% of the stance phase
Maximum Thorax velocity in the trans-
verse plane for the whole stance phase
Mean Thorax velocity in the transverse
plane for the whole stance phase
Median Thorax velocity in the trans-
verse plane for the whole stance phase
Minimum Thorax velocity in the trans-
verse plane for the whole stance phase
Thorax velocity standard deviation in
the transverse plane for the whole
stance phase

Mean Thorax velocity in the transverse
plane over 0-7% of the stance phase
Mean Thorax velocity in the transverse
plane over 19-33% of the stance phase
Mean Thorax velocity in the transverse
plane over 47-60% of the stance phase
Mean Thorax velocity in the transverse
plane over 64-81% of the stance phase

6.4 Clustering Models

In line with the no free lunch theorem (Wolpert; 1996), a wide range of clustering models
were explored in this project in order to identify a suitable clustering solution in the foot-
strike patterns. All clustering models with the exception of HDBSCAN were implemented
using scikit-learn (Pedregosa et al.; 2011).

The two most widely studied clustering models are partitional and hierarchical clustering
(Aggarwal and Reddy; 2013). Similarly, within the biomechanics domain, it would appear
the k-means and Hierarchical clustering are the most widely utilised algorithms. As such,
these were the first two models implemented in this project.

K-means: K-means is the most widely used partitional clustering model (Aggarwal and
Reddy; 2013), which aims to minimize the within sum of squares of the clusters. K-means
tends to perform very quickly however it susceptible to noise, it has an assumption of
convex clusters and requires the number of clusters to be defined in advance (VanderPlas;
2016). Within this current project, K-means was implemented using the default scikit
learn algorithm, ‘elkan’ with 300 iterations. To initialise the centroids, the k-means++
algorithm was implemented as this improves both the speed and the accuracy of k-means
in comparison to random initialisation (Arthur and Vassilvitskii; 2007). In order to
account for the variation in the initialisation, this model was implemented 10 times and
the solution with the best inertia was retained. K-means was implemented using k of size
2-5.

Hierarchical clustering: Hierarchical clustering is stable clustering model that does
not necessarily require the number of clusters to be defined in advance and does not have
an assumption of globular or convex clusters (VanderPlas; 2016). However, it can also be
influenced by noise. Within this project, Hierarchical clustering was implemented using
the four linkage options available in the scikit-learn package (‘ward’, ‘complete’; ‘average’
and ‘single’). Rather than subjectively interpreting a dendrogram, hierarchical clustering
was implement using predefined number of clusters to form using k of size 2-5.

Mean-Shift: Mean-shift is a popular nonparametric clustering technique that is both
density based and seen as a variation of the K-means model (Aggarwal and Reddy; 2013).
It aims to determine local maxima present in the density of the data through an iterative
convergence routine. It does not cluster every data point and as such, it is less susceptible
to noise, however, it does aim for globular clusters. Mean-shift has a single key parameter
to select;” bandwidth’, which dictates the size of the region to search through in order to
identify groups of high density. Within this project, the bandwidth was estimated using
the scikit-learn function ‘estimate bandwidith’, which identifies the best bandwidth given
the statistical properties of the dataset.

Spectral Clustering: Spectral clustering is a graph-based method which learns the
clusters in the data by following the underlying manifolds (Aggarwal and Reddy; 2013).
It also does not assume globular clusters, but it is sensitive to noise in the data. Within
this current project Spectral clustering was performed by constructing an affinity matrix
using a radial basis function kernel. The kernel coefficient was set to one, and the number
of eigen vectors was set to the number of clusters as per default in the scikit-learn package.
Cluster labels were assigned using discretization, which is less sensitive to initialization

119

in comparison to k-means. Finally, spectral clustering was assessed using a predefined
number of clusters to form with k of size 2-5.

HDBSCAN: HDBSCAN is a density-based method that is an evolution of the popular
DBSCAN model. Like its predecessor, HDBSCAN does not require clusters to be globular
and is not largely affected by noise (Aggarwal and Reddy; 2013). However, in comparison
to the DBSCAN model, HDBSCAN can handle clusters of varying densities. Within this
project, HDBSCAN was implemented using the HDBSCAN package (Mclnnes et al.;
2017). The two main parameters to select in this algorithm are min cluster size and min
samples which control the minimum cluster size you wish to consider a cluster and how
conservative you want you clustering to be respectively. Within this project, min cluster
size was assessed for 2,4 and 6% of the total sample size (n), while min samples was
assessed from 1 to log(n).

OPTICS: Similar to HDBCSAN, OPTICS is a density-based method that is an evol-
ution of the popular DBSCAN model. However, in comparison to the DBSCAN model,
OPTICS relaxes the requirements to specify a single distance value in which two samples
datapoints are considered neighbours (Aggarwal and Reddy; 2013). OPTICS does not
require clusters to be globular and is not largely affected by noise. Within this current
project, a single clustering parameter (min cluster size), was evaluated for five values
(5,10,15,20,25) which controls the number of samples required for a point to considered
a core point.

Traditional Approach: The final grouping was conducted using the traditional ap-
proach of identifying foot-strike types by the angle of the foot at the instance of initial
contact (Altman and Davis; 2012). Using this approach a forefoot strike would be clas-
sified when the foot angle was <- 1.6°, a rearfoot strike would be classified with a foot
angle of >8.0°, while a mid-foot strike is defined when the foot angle was between these
two thresholds.

6.5 Classification Models

Given that there is no such thing as a universally best machine learning algorithm (Wolp-
ert; 1996), six classification models were assessed in this project. The justification for
there choice and hyperparameters are presented below.

Naive Bayes: Firstly, Naive Bayes was implemented as parametric generative classifier
(Kelleher et al.; 2015), that tends to produce fast and simple classifications with reas-
onable accuracy. In addition, it provides probabilistic predictions that are often easily
interpretable. As such Naive Bayes is commonly implemented as the first initial classifier,
however it is recognised that given the stringent assumptions Naive Bayes makes about
data, other more complicated models may outperform it (VanderPlas; 2016).

Within this project, a single tuning parameter ‘var smoothing ‘was evaluated over 100
log spaced values between 0 and -9. This controls the portion of the largest variance of
all features that is added to variances for calculation stability.

120

Elastic Net Logistic Regression: Logistic Regression was implemented as paramet-
ric discriminative classifier (Kelleher et al.; 2015), that like the Naive Bayes model, tends
to results in a highly interpretable model that is fast to train. However, with increasing
dimensionality of data, there is increased risk of overfitting. To increase the generalisab-
ility of a logistic regression model and reduce its variance, Elastic Net regularisation was
implemented which combines both lasso (L1) and Ridge (L2) regularisations (Zou and
Hastie; 2005).

Elastic net regularization is a linear combination of the lasso (L1) and Ridge (L2) regu-
larization (Zou and Hastie; 2005). Within this current project, 15 regularization values
were tested from le-6 to 1 along with 10 values of the 11 ratio tuning parameters from
0.1 to 1.

Bagged SVM: Support Vector Machines were implemented as a non-parametric dis-
criminative and non-linear classifier (Kelleher et al.; 2015). As they are only affected by
points near the margin of their boundary, they tend to work well with high dimensional
data (VanderPlas; 2016). Despite this, scaling to large number of samples can be com-
putationally prohibitive. As such, within this current project, Support Vector Machines
was implemented using bootstrap aggregated ensembles. The advantage of this approach
is that it speeds up convergence to a suitable solution, and theoretically several weak
learners tend to outperform one strong learner (VanderPlas; 2016).

For the bagged SVM, the hyperparameters were focused on the base classifier. As such,
four values of C and gamma were evaluated (0.1,1,10,100) which control the size of the
hyperplane margin and the level of curvature in the hyperplane respectively. In addition,
three nonlinear kernels were tested [gaussian kernel (rbf), polynomial kernel (ploy) and
sigmoid kernel (sigmoid)].

Random Forest and AdaBoost: Random Forest and Adaboost were implemented
as nonparametric, discriminative ensemble methods (Kelleher et al.; 2015). Both ap-
proaches are ensembles of decision trees. The disadvantage of decision trees is that they
are prone to overfitting the training data. Ensemble learning reduce this bias, by training
multiple weak learners combining the findings for a better classification. Random Forest
is an ensemble of randomised decision trees that are trained in parallel and the results
are aggregated. In contrast Adaboost is an ensemble of decision trees that are trained
sequentially with each subsequent tree increasing the weight of misclassified data points
(Geéron; 2017).

The Random Forest model was tuned with a combination of six hyperparameters.
Four values were evaluated for the min samples per split and min samples per leaf para-
meters (0.005, 0.01, 0.05 and 0.10 multiplied by the number of samples). These control
the minimum required number of observations in a node in order to split it and the
minimum number of observations in a node after splitting it respectively. Six values of
max dept were considered (3, 4, 5, 6, 7, 8) which control the longest path between the
root node and the leaf node in a tree. Four values for the number of estimators were
tested (300, 500, 800, 1000) which control the number of base trees in the random forest.
The maximum number of features to consider when looking for the best split was set at
either the \/(number of features) or log2(number of features). Finally, the measure used
to determine the quality of each split in a tree was evaluated over two metrics (gini and
entropy).

121

For the Adaboost algorithm, the base estimator was set as a decision tree with variations
in its max depth ranging from 1 to 6. Similar to the Random Forest model, the number
of estimators was evaluated over four values (300, 500, 800, 1000). Finally, eight values

controlling the learning rate of subsequent tree iterations were evaluated (0.001, 0.01,
0.05, 0.1, 0.25, 0.50, 0.75, 1.0).

Stacked Ensemble: Finally, a weighted, stacked ensemble model was implemented
which performs a weighted majority classification from the aforementioned models (Geéron;
2017). Given that Scikit-Learn does not directly support weighted stacking, a pragmatic
equation was proposed and utilised in this current project. After firstly transforming
predicted negative classes from zero to minus one, the aggregative classification was cal-
culated as follows:

0 (Z?:l Uge * [ROC, % [ch(l) — jc] * w) <0
obv(x)
1 (ZZ:1 Ve * [ROC, % [pxc(l) — jc] * w) >=0

Each observation (x), is classified as a 0 should the sum of the weighted voting be less
than zero, otherwise it is a 1. Where v, is the class vote for the 2" observation by the c*
classifier. [ROC. is the average area under the receiver operator curve for ¢ classifier

across the one hundred bootstrapped samples. ‘ [Pmc(l) — jc} is the classifier confidence

for the class vote for the 2" observation, where ch(l) is the estimated probability by the
A classifier of the x'" observation being a positive class (1) and j, is the classification
cut off probability as defined by Youden’s J statistic. Finally, w is an exponent weighting
bias, that would increase the weighting placed on the most confident and best predictor
as w increases. Within this current project, w was incremented from 0 -100 in increments
of five, with the aim of optimising the overall Youden’s J statistic.

6.6 Clustering Evaluation

All plots from the evaluated clustering solutions are presented below (Figure 115 - Figure
120).

122

ecl

-2

-4

Kmeans (k = 2)

ARI:-0.0 VIC:1.0 SS:0.292 DBCV:-0.837

-4

-2 0 2 4 3

Kmeans (k = 5)

ARI:0.002 VIC:Na S5:0.269 DBCV:-0.841

.\'\ g °

3 AT 2
-&::-.w' - i,
“Re

L4 % N
. o,
$ oo

Hierarchical (Linkage = complete(k = 4))

ARI:0.002 VIC:Na S5:0.227 DBCV:-0.783
A

Kmeans (k = 3)

ARI:0.002 VIC:Na S5:0.333 DBCV:-0.845

-4 -2

Hierarchical (Linkage = complete(k = 2))

ARI:0.002 VIC:1.0 SS:0.641 DBCV:-0.566

Hierarchical (Linkage = complete(k = 5))

ARI:0.001 VIC:Na S5:0.22 DBCV:-0.789

PC2

-2

Kmeans (k = 4)

ARI:0.001 VIC:Na SS:0.347 DBCV:-0.878

-2

Hierarchical (Linkage = complete(k = 3))

ARI:0.002 VIC:Na SS:0.283 DBCV:-0.788

Hierarchical (Linkage = average(k = 2))

ARI:0.002 VIC:1.0 SS:0.641 DBCV:-0.566

-4

-2 0 2 4 6

-4 -2

Figure 115: Visualising the cluster

solution labels

overlayed on the first two principle components of the data (1 of 6)

4!

PC2

-2

-4

Hierarchical (Linkage = average(k = 3))

ARI:0.002 VIC:Na S5:0.409 DBCV:-0.757

-4 -2 0 2 4 3

Hierarchical (Linkage = ward(k = 2))

ARI:0.003 VIC:0.996 S5:0.24 DBCV:-0.872

Hierarchical (Linkage = ward(k = 5))

ARI:0.002 VIC:Na S5:0.229 DBCV:-0.825

-4 -2 0 2 4 6

Hierarchical (Linkage = average(k = 4))

ARI:0.003 VIC:Na S5:0.363 DBCV:-0.632

.‘.‘. 3 e® °
o, e %o
L I
5% TUIBY ° TS,
%P, o N S e% o
°) o ©
0‘~:‘ g ° o0
e on S,
o Umdome ¥ AN
‘ »"’0 ® ‘:‘r‘ % .f
®e °
®
-4 -2 0 2 4 6
PC1
Hierarchical (Linkage = ward(k = 3))
ARI:0.003 VIC:Na S5:0.253 DBCV:-0.858
-4 -2 [2 4 3

Hierarchical (Linkage = single(k = 2))

ARI:0.0 VIC:Na S$5:0.553 DBCV:Na

-4 -2 0 2 4 6

Hierarchical (Linkage = average(k = 5))

ARI:0.003 VIC:Na S5:0.318 DBCV:-0.633

-4 -2 0 2 4 6

Hierarchical (Linkage = ward(k = 4))

ARI:0.002 VIC:Na S5:0.261 DBCV:-0.859

Fa st C
ﬁ?p % . sza
: ° 8P ° o 0 5%
R Y T
s, P LWt TN
C.)“KDO e ° o °
LIS
i
A h. .f
° %y
P
-4 -2 0 2 4 6
PC1
Hierarchical (Linkage = single(k = 3))
ARI:-0.0 VIC:Na SS:0.534 DBCV:Na o o
fa,
%% o 0.)0
s °, 2L ° 0 o -.:’t
& M .~ S W ‘.0’
*® ° .‘. ° ~.‘ X
°
-4 -2 0 2 4 6

Figure 116: Visualising the cluster

solution labels overlayed on the first two principle components of the data (2 of 6)

acl

-2

-4

Hierarchical (Linkage = single(k = 4))

ARI:-0.0 VIC:Na SS:0.368 DBCV:Na

-2 0 2 4 3

HDBSCAN (min size = 1122, min samples = 3)

ARI:0.0 VIC:nan SS:Na DBCV:0

HDBSCAN (min size = 1122, min samples = 9)

ARI:0.0 VIC:nan SS:Na DBCV:0

-2 0 2 4 6

Hierarchical (Linkage = single(k = 5))

HDBSCAN (min size = 1122, min samples = 1)

ARI:-0.0 VIC:Na SS:0.324 DBCV:Na

ARI:0.0 VIC:nan SS:Na DBCV:0

-4 -2 0 2 4 3

HDBSCAN (min size = 1122, min samples = 5)

-4 -2 0 2 4

HDBSCAN (min size = 1122, min samples = 7)

ARI:0.0 VIC:nan SS:Na DBCV:0

ARI:0.0 VIC:nan SS:Na DBCV:0

HDBSCAN (min size = 1122, min samples = 11)

HDBSCAN (min size = 2244, min samples = 1)

ARI:0.0 VIC:nan SS:Na DBCV:0
LY g*°
°
L)
Ll

PC2

-2

-4

ARI:0.0 VIC:nan SS:Na DBCV:0

BREY

$
Red o
» o

-4 -2 0 2 4 6

-4 -2 0 2 4

Figure 117: Visualising the cluster

solution labels overlayed on the first two principle components of the data (3 of 6)

9¢1

-2

-4

HDBSCAN (min size = 2244, min samples = 3)

ARI:0.0 VIC:nan SS:Na DBCV:0

HDBSCAN (min size = 2244, min samples = 5)

ARI:0.0 VIC:nan SS:Na DBCV:0

HDBSCAN (min size = 2244, min samples = 7)

ARI:0.0 VIC:nan SS:Na DBCV:0

-4

-2 0 2 4 3

HDBSCAN (min size = 2244, min samples = 9)

ARI:0.0 VIC:nan SS:Na DBCV:0

-4

-2 0 2 4

HDBSCAN (min size = 2244, min samples = 11)

ARI:0.0 VIC:nan SS:Na DBCV:0

-4 -2 0 2 4

HDBSCAN (min size = 3366, min samples = 1)

ARI:0.0 VIC:nan SS:Na DBCV:0

HDBSCAN (min size = 3366, min samples = 3)

ARI:0.0 VIC:nan SS:Na DBCV:0

-4

-2 0 2 4 6

HDBSCAN (min size = 3366, min samples = 5)

PC2

-2

-4

ARI:0.0 VIC:nan SS:Na DBCV:0
A
°

-4

-2 0 2 4

HDBSCAN (min size = 3366, min samples = 7)

ARI:0.0 VIC:nan SS:Na DBCV:0

BEY

:.0%‘..
...
‘h

«

-4 -2 0 2 4

Figure 118: Visualising the cluster

solution labels

overlayed on the first two principle components of the data (4 of 6)

Lcl

-2

-4

HDBSCAN (min size = 3366, min samples = 9)

ARI:0.0 VIC:nan SS:Na DBCV:0

-4 -2 0 2 4

OPTICS (min samples = 10)

ARI:0.004 VIC:Na SS:-0.509 DBCV:0.043

Spectral (k = 2, Assignment = discretize)

ARI:0.002 VIC:1.0 SS5:0.646 DBCV:-0.698

-4 -2 0 2 4

-2

-4

HDBSCAN (min size = 3366, min samples = 11)

ARI:0.0 VIC:nan SS:Na DBCV:0

o~
-4
-4 -2 0 2 4 6
PC1
OPTICS (min samples = 15)
ARI:0.003 VIC:Na S5:-0.378 DBCV:0.041 o o

.

.
~
-4

-4 -2 0 2 4 3

Spectral (k = 3, Assignment = discretize)

ARI:0.001 VIC:Na S5:0.613 DBCV:-0.62

-4 -2 0 2 4 6

OPTICS (min samples = 5)

ARI:0.007 VIC:Na S5:-0.466 DBCV:O‘.093
o &
@ 4 [N o o,
) 7”‘ '.’,:o' . ,‘«"4
o® 0‘?‘ & .~' o, °°

-4 -2 0 2 4 6

OPTICS (min samples = 20)

ARI:0.003 VIC:Na S5:-0.286 DBCV:0.034

DR B

Spectral (k = 4, Assignment = discretize)

ARI:0.002 VIC:Na S5:0.513 DBCV:-0.667

-4 -2 0 2 4 6

Figure 119: Visualising the cluster solution labels overlayed on the first two principle components of the data (5 of 6)

8¢l

Spectral (k = 5, Assignment = discretize)

Spectral (k = 2, Assignment = discretize)

Spectral (k = 3, Assignment = discretize)

ARI:0.002 VIC:1.0 SS:0.646 DBCV:-0.698

PC2

ARI:0.001 VIC:Na S5:0.613 DBCV:-0.62

ARI:0.001 VIC:Na S5:0.51 DBCV:-0.674 ¢
6
g 4
®ee
. g
0
-2
4
-2 0 2 4 6 -4

Spectral (k = 4, Assignment = discretize)

-2 0 2 4

Spectral (k = 5, Assignment = discretize)

ARI:0.002 VIC:Na S5:0.513 DBCV:-0.667

ARI:0.001 VIC:Na SS:0.51 DBCV:-0.674

Figure 120: Visualising the cluster solution labels

overlayed on the first two principle components of the data (6 of 6)

6.6.1 Post hoc tests for Adjusted Rand Index

Full post hoc findings for the bootstrapped Adjusted Rand Index (ARI) scores are presen-
ted in table 4. A Games-Howell post hoc test indicated the only approaches that was
not statistically significantly different from another was the Hierarchical vs Spectral com-
parison (p = 0.35, D = 0.26). All other pairwise comparisons were statistically different
with effect sizes ranging from medium to large (p <0.05, D = 0.42 — 4.17).

Table 4: Post hoc pair wise comparison for the bootstrapped ARI results

Comparison Mean Difference p-val Cohen’s D
Hierarchical vs. K-means -0.001 <0.01 -0.91
Hierarchical vs. OPTICS -0.015 <0.01 -3.67
Hierarchical vs. Spectral 0.001 0.35 -0.26
Hierarchical vs. Taditional 0.002 <0.01 1.66
K-means vs. OPTICS -0.013 <0.01 -3.28
K-means vs. Spectral 0.001 0.02 0.42
K-means vs. Taditional 0.003 <0.01 2.47
OPTICS vs. Spectral 0.014 <0.01 3.35
OPTICS vs. Taditional 0.016 <0.01 4.17
Spectral vs. Taditional 0.002 <0.01 1.24

129

6.7 Classification Evaluation

This section presents the full posthoc comparisons for the bootstrap comparisons of ac-
curacy, specificity and sensistivity. Post hoc comparisons were conducted using Games-
Howell tests given the hetrogenity in the variances across the groups. The Games-Howell
test is similar to the Tukey HSD test, in that it uses Tukey’s studentized range distribu-
tion but is based on Welch’s degrees of freedom correction. It is robust to both unequal
variances and non-normality. Standardised effect sizes were reported using Cohen’s D.

6.7.1 Accuracy

Full post hoc findings for the bootstrapped accuracy analysis are presented in table 5.
A Games-Howell post hoc test indicated the only approaches that were not statistically
significantly different from another were AdaBoost vs Naive Majority comparison (p =
0.29, D = 0.31) along with Random Forest vs Stacked Ensemble comparison (p = 0.89,
D = 0.17). All other pairwise comparisons were statistically different with large effect
sizes (p <0.01, D = 1.42 — 27.95)

Table 5: Post hoc pair wise comparison for the bootstrapped accuracy results

Comparison Mean Difference p-val Cohen’s D
AdaBoost vs. Elastic Net 0.06 <0.01 6.86
AdaBoost vs. Naive Bayes 0.03 <0.01 1.73
AdaBoost vs. Naive Majority 0.00 0.29 0.31
AdaBoost vs. Random Forest -0.06 <0.01 -3.51
AdaBoost vs. SVM Bag 0.14 <0.01 19.30
AdaBoost vs. Stacked Ensemble -0.05 <0.01 -3.49
Elastic Net vs. Naive Bayes -0.03 <0.01 -1.42
Elastic Net vs. Naive Majority -0.06 <0.01 -8.50
Elastic Net vs. Random Forest -0.12 <0.01 =717
Elastic Net vs. SVM Bag 0.08 <0.01 11.84
Elastic Net vs. Stacked Ensemble -0.11 <0.01 -7.38
Naive Bayes vs. Naive Majority -0.03 <0.01 -1.68
Naive Bayes vs. Random Forest -0.09 <0.01 -3.86
Naive Bayes vs. SVM Bag 0.11 <0.01 6.06
Naive Bayes vs. Stacked Ensemble -0.09 <0.01 -3.82
Naive Majority vs. Random Forest -0.06 <0.01 -3.86
Naive Majority vs. SVM Bag 0.14 <0.01 27.95
Naive Majority vs. Stacked Ensemble -0.06 <0.01 -3.88
Random Forest vs. SVM Bag 0.20 <0.01 12.77
Random Forest vs. Stacked Ensemble 0.00 0.89 0.17
SVM Bag vs. Stacked Ensemble -0.20 <0.01 -13.39

130

6.7.2 Specificity

Full post hoc findings for the bootstrapped specificity analysis are presented in table 6.
Games-Howell post hoc tests indicated that all methods were statistically significantly
different from one another (p <0.01), with the exception of the Random Forest model
vs Stacked Ensemble comparison (p = 0.71, D = 0.2) and the Naive Bayes vs Random
Forest comparison (p = 0.32, D = 0.3).

Table 6: Post hoc pair wise comparison for the bootstrapped specificity results

Comparison Mean Difference p-val Cohen’s D
AdaBoost vs. Elastic Net -0.03 <0.01 -1.1
AdaBoost vs. Naive Bayes 0.08 <0.01 1.3
AdaBoost vs. Random Forest 0.06 <0.01 1.1
AdaBoost vs. SVM Bag 0.23 <0.01 10.7
AdaBoost vs. Stacked Ensemble 0.04 <0.01 0.9
Elastic Net vs. Naive Bayes 0.11 <0.01 1.8
Elastic Net vs. Random Forest 0.09 <0.01 1.7
Elastic Net vs. SVM Bag 0.26 <0.01 16.8
Elastic Net vs. Stacked Ensemble 0.07 <0.01 1.6
Naive Bayes vs. Random Forest -0.02 0.32 -0.3
Naive Bayes vs. SVM Bag 0.16 <0.01 2.7
Naive Bayes vs. Stacked Ensemble -0.04 <0.01 -0.5
Random Forest vs. SVM Bag 0.18 <0.01 3.7
Random Forest vs. Stacked Ensemble -0.01 0.71 -0.2
SVM Bag vs. Stacked Ensemble -0.19 <0.01 -4.4

131

6.7.3 Sensitivity

Full post hoc findings for the bootstrapped specificity analysis are presented in table 7.
Games-Howell post hoc tests indicated that all methods were statistically significantly
different from one another (p <0.01), with the exception of the Random Forest model vs
Stacked Ensemble comparison (p = 0.78, D = 0.20) and the AdaBoost vs Naive Bayes
comparison (p = 0.9, D = 0.12).

Table 7: Post hoc pair wise comparison for the bootstrapped sensitivity results

Comparison Mean Difference p-val Cohen’s D
AdaBoost vs. Elastic Net 0.11 <0.01 4.38
AdaBoost vs. Naive Bayes 0.01 0.9 0.12
AdaBoost vs. Random Forest -0.12 <0.01 -2.30
AdaBoost vs. SVM Bag 0.09 <0.01 4.65
AdaBoost vs. Stacked Ensemble -0.11 <0.01 -2.19
Elastic Net vs. Naive Bayes -0.10 <0.01 -1.65
Elastic Net vs. Random Forest -0.23 <0.01 -4.49
Elastic Net vs. SVM Bag -0.01 <0.01 -0.89
Elastic Net vs. Stacked Ensemble -0.21 <0.01 -4.54
Naive Bayes vs. Random Forest -0.13 <0.01 -1.68
Naive Bayes vs. SVM Bag 0.09 <0.01 1.47
Naive Bayes vs. Stacked Ensemble -0.11 <0.01 -1.56
Random Forest vs. SVM Bag 0.21 <0.01 4.39
Random Forest vs. Stacked Ensemble 0.01 0.78 0.20
SVM Bag vs. Stacked Ensemble -0.20 <0.01 -4.45

132

References

Aggarwal, C. C. and Reddy, C. K. (2013). Data Clustering Algorithms and Applications,
Chapman and Hall.

Altman, A. R. and Davis, I. S. (2012). A kinematic method for footstrike pattern detection
in barefoot and shod runners, Gait Posture 35(2): 298-300.

Arthur, D. and Vassilvitskii, S. (2007). K-means++: The advantages of careful seeding,
Proc. Annu. ACM-SIAM Symp. Discret. Algorithms, Vol. 07-09-Janu, pp. 1027-1035.

Bahr, R. (2016). Why screening tests to predict injury do not work-and probably never
will.: A critical review, Br. J. Sports Med. 50(13): 776-780.

Barre, A. and Armand, S. (2014). Biomechanical ToolKit: Open-source framework
to visualize and process biomechanical data, Comput. Methods Programs Biomed.
114(1): 80-87.

Blackburn, J. T. and Padua, D. A. (2008). Influence of trunk flexion on hip and knee
joint kinematics during a controlled drop landing, Clin. Biomech. 23(3): 313-319.

Bredeweg, S. W., Buist, I. and Kluitenberg, B. (2013). Differences in kinetic asymmetry
between injured and noninjured novice runners: A prospective cohort study, Gait
Posture 38(4): 847-852.

Bredeweg, S. W., Kluitenberg, B., Bessem, B. and Buist, I. (2013). Differences in kinetic
variables between injured and noninjured novice runners: A prospective cohort study,
J. Sci. Med. Sport 16(3): 205-210.

Brund, R. B., Rasmussen, S., Nielsen, R. O., Kersting, U. G., Laessoe, U. and Voigt, M.
(2017). Medial shoe-ground pressure and specific running injuries: A 1-year prospective
cohort study, J. Sci. Med. Sport 20(9): 830-834.

Ceyssens, L., Vanelderen, R., Barton, C., Malliaras, P. and Dingenen, B. (2019). Biomech-
anical Risk Factors Associated with Running-Related Injuries: A Systematic Review,
Sport. Med. 49(7): 1095-1115.

Christ, M., Braun, N., Neuffer, J. and Kempa-Lichr, A. W. (2018). Time Series Fea-
tuRe Extraction on basis of Scalable Hypothesis tests (tsfresh — A Python package),
Neurocomputing 307: 72-77.

Davis, 1. S., Bowser, B. J. and Mullineaux, D. R. (2016). Greater vertical impact loading
in female runners with medically diagnosed injuries: A prospective investigation, Br.
J. Sports Med. 50(14): 887-892.

Dingwell, J. B., Cusumano, J. P., Cavanagh, P. R. and Sternad, D. (2001). Local dynamic
stability versus kinematic variability of continuous overground and treadmill walking,
J. Biomech. Eng. 123(1): 27-32.

Dudley, R. I., Pamukoff, D. N., Lynn, S. K., Kersey, R. D. and Noffal, G. J. (2017).
A prospective comparison of lower extremity kinematics and kinetics between injured
and non-injured collegiate cross country runners, Hum. Mov. Sci. 52: 197-202.

133

Geéron, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow : con-
cepts, tools, and techniques to build intelligent systems.

Ghani Zadeh Hesar, N., Van Ginckel, A., Cools, A., Peersman, W., Roosen, P., De Clercq,
D. and Witvrouw, E. (2009). A prospective study on gait-related intrinsic risk factors
for lower leg overuse injuries, Br. J. Sports Med. 43(13): 1057-1061.

Handsaker, J. C., Forrester, S. E., Folland, J. P., Black, M. I. and Allen, S. J. (2016). A
kinematic algorithm to identify gait events during running at different speeds and with
different footstrike types, J. Biomech. 49(16): 4128-4133.

Hein, T., Janssen, P., Wagner-Fritz, U., Haupt, G. and Grau, S. (2014). Prospective
analysis of intrinsic and extrinsic risk factors on the development of Achilles tendon
pain in runners, Scand. J. Med. Sci. Sport. 24(3).

Hubert, L. and Arabie, P. (1985). Comparing partitions, J. Classif. 2(1): 193-218.

Kelleher, J. D., Namee, B. M. and D’Arcy, A. (2015). Fundamentals of Machine Learning
for Predictive Data Analytics, The MIT Press.

Kuhman, D. J., Paquette, M. R., Peel, S. A. and Melcher, D. A. (2016). Comparison
of ankle kinematics and ground reaction forces between prospectively injured and un-
injured collegiate cross country runners, Hum. Mov. Sci. 47: 9-15.

Luedke, L. E., Heiderscheit, B. C., Williams, D. S. and Rauh, M. J. (2016). Influence of
Step Rate on Shin Injury and Anterior Knee Pain in High School Runners, Med. Sci.
Sports Exerc. 48(7): 1244-1250.

MeclInnes, L., Healy, J. and Astels, S. (2017). hdbscan: Hierarchical density based clus-
tering, J. Open Source Softw. 2(11): 205.

Messier, S. P., Martin, D. F., Mihalko, S. L., Ip, E., DeVita, P., Cannon, D. W., Love, M.,
Beringer, D., Saldana, S., Fellin, R. E. and Seay, J. F. (2018). A 2-Year Prospective
Cohort Study of Overuse Running Injuries: The Runners and Injury Longitudinal
Study (TRAILS), Am. J. Sports Med. 46(9): 2211-2221.

Moudy, S., Richter, C. and Strike, S. (2018). Landmark registering waveform data im-
proves the ability to predict performance measures, J. Biomech. 78: 109-117.

Moulavi, D., Jaskowiak, P. A., Campello, R. J., Zimek, A. and Sander, J. (2014). Density-
based clustering validation, SIAM Int. Conf. Data Min. 2014, SDM 2014, Vol. 2,
pp. 839-847.

Napier, C., MacLean, C. L., Maurer, J., Taunton, J. E. and Hunt, M. A. (2018). Kinetic
risk factors of running-related injuries in female recreational runners, Scand. J. Med.
Sci. Sport. 28(10): 2164-2172.

Noehren, B., Davis, I. and Hamill, J. (2007). Prospective study of the biomechanical
factors associated with iliotibial band syndrome, Clin. Biomech. 22(9): 951-956.

Noehren, B., Hamill, J. and Davis, 1. (2013). Prospective evidence for a hip etiology in
patellofemoral pain, Med. Sci. Sports Exerc. 45(6): 1120-1124.

134

Pataky, T. C. (2012). One-dimensional statistical parametric mapping in Python, Com-
put. Methods Biomech. Biomed. Engin. 15(3): 295-301.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python, J. Mach. Learn. Res. 12: 2825-2830.

Pohl, M. B., Mullineaux, D. R., Milner, C. E., Hamill, J. and Davis, 1. S. (2008). Bio-
mechanical predictors of retrospective tibial stress fractures in runners, J. Biomech.
41(6): 1160-1165.

Richter, C., King, E., Strike, S. and Franklyn-Miller, A. (2019). Objective classifica-
tion and scoring of movement deficiencies in patients with anterior cruciate ligament
reconstruction, PLoS One 14(7): €0206024.

Richter, C., O’Connor, N. E.; Marshall, B. and Moran, K. (2014). Analysis of charac-
terizing phases on waveforms: An application to vertical jumps, J. Appl. Biomech.
30(2): 316-321.

Rodriguez, J., Medina-Pérez, M. A., Gutierrez-Rodriguez, A. E., Monroy, R. and
Terashima-Marin, H. (2018). Cluster validation using an ensemble of supervised clas-
sifiers, Knowledge-Based Syst. 145: 134-144.

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis, J. Comput. Appl. Math. 20(C): 53-65.

Stefanyshyn, D. J., Stergiou, P., Lun, V. M., Meeuwisse, W. H. and Worobets, J. T.
(2006). Knee angular impulse as a predictor of patellofemoral pain in runners, Am. J.
Sports Med. 34(11): 1844-1851.

Taunton, J. E., Ryan, M. B., Clement, D. B., McKenzie, D. C., Lloyd-Smith, D. R. and
Zumbo, B. D. (2002). A retrospective case-control analysis of 2002 running injuries,
Br. J. Sports Med. 36(2): 95-101.

Thijs, Y., De Clercq, D., Roosen, P. and Witvrouw, E. (2008). Gait-related intrinsic
risk factors for patellofemoral pain in novice recreational runners, Br. J. Sports Med.
42(6): 466-471.

Tibshirani, R. and Walther, G. (2005). Cluster validation by prediction strength, J.
Comput. Graph. Stat. 14(3): 511-528.

Van Ginckel, A., Thijs, Y., Hesar, N. G. Z., Mahieu, N., De Clercq, D., Roosen, P. and
Witvrouw, E. (2009). Intrinsic gait-related risk factors for Achilles tendinopathy in
novice runners: A prospective study, Gait Posture 29(3): 387-391.

VanderPlas, J. (2016). Python Data Science Handbook, O’Reilly Media.

Winter, D. A. (2009). Biomechanics and Motor Control of Human Movement: Fourth
Edition, John Wiley & Sons.

Wolpert, D. H. (1996). The Lack of a Priori Distinctions between Learning Algorithms,
Neural Comput. 8(7): 1341-1390.

135

Zhao, Z. and Liu, H. (2007). Spectral feature selection for supervised and unsupervised
learning, ACM Int. Conf. Proceeding Ser.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net,
J. R. Stat. Soc. Ser. B Stat. Methodol. 67(2): 301-320.

136

	Introduction
	Environmental Configuration
	Hardware Configuration
	Software Configurations
	Vicon Nexus
	MATLAB
	Python

	ICT Implementation (Preprocesing)
	Motion Capture Preprocessing
	Static trial processing
	Dynamic trial processing

	Data extraction and segmentation into stance phases
	Static Trial Metrics
	Event Detection

	Waveform Screening
	Method: LaunchGui
	Method: LoadData
	Method: PlotData
	Method: Next data and Previous data
	Method: Exclude data and Screen data
	Method: Auto Screen

	General Preprocessing
	LandMark Registration
	Analysis of Characterising Phases

	Implementation: Clustering
	Cluster Validation
	Method: Cluster Validation Index
	Method: Silhouette Coefficient
	Method: Density Coefficient
	Method: Adjusted Rand Index
	Method: Plot Clusters
	Method: Call Methods

	Implementation: Classification
	Additional Material for the Technical Report
	Additional Related Work
	Search criteria for foot-strike and injury
	Prospective risk factors for running related injury

	Methodology
	Biomechanical Waveforms
	Participant Demographics

	Implementation
	Data description

	Clustering Models
	Classification Models
	Clustering Evaluation
	Post hoc tests for Adjusted Rand Index

	Classification Evaluation
	Accuracy
	Specificity
	Sensitivity

