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Temperature Estimation in Permanent Magnet
Synchronous Motor (PMSM) Components using

Machine Learning

Kenneth Anuforo
x18190693

Abstract

The ubiquitous adoption of permanent magnet synchronous motors (PMSMs)
as the electric motors of choice for traction drive applications especially in man-
ufacturing and the electric vehicle industries birthed the need for monitoring the
temperatures of its critical components to control the effects of overheating. In
proffering solutions, several techniques have been employed by researchers span-
ning decades. These include the sensor-based method, methods based on classic
thermal theory, electric circuit theory and the hybrid lumped-parameter thermal
networks (LPTNs). These however have deficiencies ranging from requiring expert-
ise for efficient modelling to one or the other of lacking interpretability and not
meeting reliability requirements. Recent studies have seen an increased applica-
tion of machine learning techniques to other fields like healthcare with convincing
results. In this work, several machine learning (ML) models were evaluated on
their estimation error after training on test bench data from a PMSM for the task
of predicting the temperatures of the rotor, stator yoke, stator tooth and stator
winding. Diverse regression algorithms were applied and include linear regression
(LR), k-nearest neighbours (kNN) regression, random forest (RF) and decision tree
(DT). It is observed that the stator yoke records the least error of prediction while
the pm records the highest and in general, the stator components record the least
error compared to the rotor component.

Keywords– permanent magnet synchronous motors, machine learning, linear
regression, temperature estimation, random forests

1 Introduction

An electric motor is an electric machine that converts electrical energy into mechanical
energy through the interaction of the electric current in the rotor windings of the motor
and the stator magnetic field to generate rotational force in the shaft (Tounsi; 2015).
They, like the electric generator, operate on the principle of magnetism except that the
electric generator conversely converts mechanical energy into electric energy.

High torque and power densities together with high efficiency are basic requirements
in most industrial and automotive applications. For this reason, the permanent magnet
synchronous motor (PMSM) is widely used in industrial and automotive applications.
The need to stay competitive and control rising manufacturing costs especially in the
automotive sector often leaves engineers at the risk of compromising safety in materials
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when designing motors. To avoid this, the utilization of the motor must be maximized
during design using a control strategy that reduces the thermal stress on the motor
components with the highest risk of thermal failure. Some of the motor components most
sensitive to failure are the permanent magnets in the rotor which may suffer irreversible
demagnetization from exposure to excessive heat and the stator end windings which may
melt from the effect of high temperatures. This necessitates the measurement and control
of temperatures in these components.

1.1 Background and Motivation

For maximum return on investment in electric motors, the critical components such as
the winding insulation which may melt from high heat and the permanent magnets which
may become irreversibly demagnetized have to be consistently monitored for high thermal
stress due to high temperatures. Temperature is the primary indicator of the presence of
a fault or problem in an electric motor and this further introduces the problem of energy
wastage where 25% of all energy consumption is in industry of which 70% of that energy is
used in motor-based systems (Waide and Brunner; 2011). Also, electric motors find their
biggest applications in industrial settings where they account for two thirds of electrical
energy used and consume 45% of total electric energy consumption and constitute in
industrial settings Waide and Brunner (2011), making it pertinent to control the energy
loss from motors by monitoring the component temperatures.

From 1Figure 1 below , stator related faults together with rotor related faults make
up about 50% of all faults in electric motors. Test bench data containing sensor-based
temperature measurements taken from a PMSM includes data on various factors and the
temperatures of the rotor, stator yoke, stator tooth and stator winding components.

Figure 1: Motor percentage failure by component (Navarro et al.; 2010)

Permanent magnet synchronous motors make up most motors found in industrial
applications due to their ruggedness. Temperature monitoring in electric motors is crucial

1Source: https://www.kaggle.com/wkirgsn/electric-motor-temperature/data
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as it is the main indicator of a fault or problem with an electric motor Nandi et al. (2005).
Several techniques exist for estimating temperature in electric motors and some are not
efficient.

1.2 Research Question

Test bench data taken from a PMSM includes data on various factors such as external
temperatures and motor electrical characteristics affecting the temperature of a motor. It
also includes the corresponding temperatures of four stator and rotor components which
are the rotor, stator yoke, stator tooth and stator winding. Given the available data
with the objective of this research to estimate the temperatures of motor components
by applying ML techniques to the available data, this research proposes to answer the
research question:

”To what extent can the temperatures of the rotor, stator yoke, stator tooth and stator
winding of permanent magnet synchronous motors be accurately estimated from external
temperature factors and motor electrical characteristics using machine learning?”

To answer the research question, the project objectives are outlined below.

1.3 Research Objectives and Contributions

This research work set out with a critical review of literature in the problem domain so as
to understand the scope of the work already done to address this problem and to identify
gaps for further work leading to the research question. Based on this, this work aims to
answer the research question by achieving the following objectives:

• Identify a reliable test bench dataset of a PMSM, perform pre-processing and ex-
ploratory data analysis to understand the data and extract preliminary insights.

• Apply linear regression, k-nearest neighbours regressor, random forest regressor and
decision trees regressor algorithms to estimate the temperatures of the rotor, stator
tooth, stator yoke and stator winding.

• Derive better features from the existing variables through feature engineering.

• Train the models again on the new dataset with derived features.

• Compare and evaluate the results from the two sets of experiments to answer the
research question.

This work contributes to the body of knowledge by identifying the motor component
that can most accurately be estimated from external temperature factors like ambient
temperature and electrical characteristics like voltage and current which indicates the
motor component most affected by these variables.

The rest of this paper follows this structure: section 2 critically reviews the related lit-
erature, section 3 details the modified CRISP-DM methodology adopted in this research,
section 4 shows how the research was implemented, section 5 evaluates and discusses the
results in the context of the stated objectives and finally, the study is concluded in section
6.

3



2 Related Work

Over the years, the importance of monitoring component temperatures as a critical indic-
ator of the performance of electric motors and controlling the consumption of electrical
energy necessitated the deep and extensive study of these electrical machines. Several
techniques have been applied to measure and control temperature, including direct sensor-
based measurements which yield satisfactory results for the stator part (Boglietti et al.;
2009) and is easily implemented on the stator. This is however technically more diffi-
cult and economically infeasible to achieve in the rotor due to the difficulty in accessing
the sophisticated internal structure of the rotor. Other instrument-based temperature
monitoring techniques like infrared thermography (Stipetic et al.; 2011) and the classic
thermocouples apart from lacking in real-time temperature monitoring capabilities are
also not feasible for industrial scale. Also, the high costs of manufacturing and main-
taining these motors in the face of increasing industrial competition further highlight the
need to estimate temperature with acceptable accuracy.

Against this background, several literature have been published, proposing different
approaches including classical methods based on thermodynamic theory and electric cir-
cuit theory. Also, advancements in computational power and knowledge base such as the
application of machine learning techniques to problems where data is richly available has
led to an increase in popularity in the application of data-based modelling techniques like
regression for the estimation and prediction of the temperature of critical components in
a PMSM. The following subsections provide a critical review of related literature going
back over a decade as a justification of the need for this work and its contribution to the
existing body of knowledge.

2.1 A Critical Review of Classical Methods for Temperature
Estimation

Considering the drawbacks in the use of physical instruments like the infrared thermo-
graphy device, including the need for a real-time system, research on estimating rotor
temperatures in the last few decades became model-based where in general the models
are either thermal models or electrical models. Starting with classical thermodynamic
theory, several researchers exploited the heat properties of materials used in motor design
for temperature estimation (Boglietti et al.; 2009).

Demetriades et al. (2009) and (Boglietti et al.; 2009) designed a real-time thermal
model which was able to estimate the temperature of different components of the motor
in transient, steady-state and stall torque operating conditions. They were able to achieve
good measurement performance comparable to temperature transducers with their model
which was built from discreetly calculated parameters abstracting different components of
a PMSM in state-space format and the model order reduced to minimize the complexity.
Despite the satisfactory results presented by using this approach, the authors acknowledge
that the discretization of the model introduces deviations which impact the consistency
and limits its use in industry.

For (Kral et al.; 2013) and (Kral et al.; 2012), a lumped thermal network model for
the estimation of the temperatures of the permanent magnets and stator windings in
an electric motor was developed and located in the stator of the machine. According
to the authors, the model when compared with experimental results from a water-cooled
PMSM highlighted the effectiveness of the model. However, the temperature estimates are
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distorted by the cooling circuit, making the model less reliable for practical applications
where accuracy is expected.

Huber et al. (2014) applied the heat equation finite element analysis (FEA) to develop
a thermal model while Gedlu et al. (2020) conducted their analysis using computational
fluid dynamics (CFD). According to the authors, the two methods recorded high ac-
curacies with good predictions of the thermal behaviours of the motor components during
development. However, the heat equation FEA showed limitations in the modelling of
convection processes making it impracticable in the context of the electric motor since
parts like the motor air-gap and rotating rotor shaft have conventional processes. Despite
the high accuracy of CFD methods in thermal motor modelling, they are limited by the
enormous computational resources, making them unsuitable for real-time monitoring.

In a bid to estimate the temperatures of critical components of a PMSM, Wallscheid
and Böcker (2015) employed a technique named by them as the global identification
technique for linear parameter varying systems on a thermal model of a motor. To
achieve this, they modelled the critical components of the motor i.e., the stator winding,
stator teeth, permanent magnets and stator yoke using a lumped-parameter thermal
network (LPTN) comprising four nodes. The system was designed to extend the scope
of the model beyond the training domain by accounting for the varying parameters and
physical constraints. They were able to achieve a worst-case estimation error of 8oC.

Despite the significant contributions made by these papers aimed at estimating the
temperatures of critical components in PMSMs by modelling their thermal behaviours
based on classical thermodynamic theory, they were limited by the need for expert know-
ledge in the domain and also the impracticality of implementing them for real-time tem-
perature measurements on industrial scales. Seeing the drawbacks of thermal modelling,
research efforts shifted from thermodynamic modelling to electrical modelling using elec-
trical model parameters like current and voltage for generating thermal indicators like
resistance in windings and flux linkage in permanent magnets. Both cases leverage the
thermal properties of parameters in electric models e.g., the flux linkage in permanent
magnets or the resistance in windings.

Some methods work with current injection to obtain resistance in the stator windings
as in (Reigosa et al.; 2015) while others use voltage injection to vary the magnetization
level of the magnets as in (Reigosa et al.; 2010). The authors proposed a method to
estimate the temperature of the magnets in permanent magnet machines by injecting a
high-frequency signal superimposed on the fundamental excitation allowing the estim-
ation of the stator impedance which is an indicator of the stator temperature. Other
methods retrieve the magnet temperature without the need for signal injection or sensors
by using an exact flux linkage observer in the fundamental wave domain as done by Wall-
scheid et al. (2017) and Specht et al. (2014). However, apart from being largely limited by
the low sensitivity in temperature dependent parameters leading to model inaccuracies
and estimation errors, these methods require domain expertise and the models can hardly
be generalized to other cases.

2.2 Data-Based Techniques for Temperature Estimation in elec-
tric Motors

In contrast to the previously discussed approaches which are motivated by physical mod-
els, current research trends have taken a different approach by exploring data-based
models. Unlike the classical thermodynamic and machines theory upon which the model-
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based techniques are heavily dependent, data-based models apply machine learning (ML)
techniques which leverage advancements in computational speed to estimate temperature
from test bench data.

Kirchgässner et al. (2019b) proposed an alternative to the LPTN in the form of a
simple thermal linear model using linear regression on data pre-processed as exponen-
tially weighted moving averages (EWMA). They were able to show that linear regression
performs with similar predictive capability as the LPTNs. Even though linear regression
is already a simple technique, they were able to further reduce the computational com-
plexity observing a predictive performance similar to LPTNs and not requiring expert
knowledge. However, with the advancements in machine learning research which has
seen the development of more advanced techniques for learning from data such as deep
learning algorithms, means even better performing models can be developed.

Following the recent trends in deep learning, Kirchgässner et al. (2019a) evaluated
cutting-edge deep learning frameworks in the form of convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) for predicting component temperatures
in a PMSM. The temperature profiles of the components were modelled with RNN and
CNN techniques using test bench data and the models optimized using Bayesian optim-
ization during training to arrive at optimal hyperparameters. They observed that the
mean squared error and maximum absolute deviation performances of both deep RNNs
and CNNs measure up to those of LPTNs while offering the further advantage of not
requiring domain expertise. These models are however computationally intensive and
take a lot of time to run.

2.3 A Review of Evaluation Metrics for Regression Tasks

Willmott and Matsuura (2005) and Willmott et al. (2009) studied the abilities of two of
the most commonly used measures of model performance in regression tasks which are
the root mean squared error (RMSE) and mean absolute error (MAE). They arrived at
a conclusion that the RMSE is an inappropriate measure of the average performance of
a model as it is a reflection of 3 different sets of errors instead of one (the mean error),
making it an ambiguous measure of average error.

Chai and Draxler (2014) critiqued the claim by Willmott and Matsuura (2005) and
Willmott et al. (2009) about the RMSE metric being inappropriate. Although agreeing
that the MAE is generally a better communicator of average model performance as op-
posed to the RMSE which might be an ambiguous measure of model mean error, Chai
and Draxler (2014) however concluded that the RMSE is a better representation of the
average model performance when a Gaussian error distribution is expected.

Wang and Lu (2018) and Franses (2016) in addition to studying the MAE and RMSE
metrics also studied other regression metrics including the mean absolute scaled error
(MASE) metric. They observed that the biggest advantage of the RMSE over other
metrics including MAE is that RMSEs do not use absolute values which is unrequired
in many mathematical computations. This advantage is however nullified by the RMSE
outlier sensitivity and the probability that these outliers will be present as shown by the
normal distribution.
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2.4 Identified Research Gaps and Contribution of this Research

This work adds to the body of knowledge by exploring the PMSM component temperature
most accurately affected by external temperature factors affecting the temperatures of
PMSM components. All critically reviewed previous publications on this subject aimed
exclusively to either reduce model computational demand or increase the accuracy of the
predictions thereby trading one important quality for another. This work seeks to bridge
this gap by building models of intermediate complexity and computational demand and
evaluated on the mean absolute error (MAE).

3 Methodology

The aim of this research is to identify the motor component among other components
whose temperature can more accurately be predicted from external temperature variables
and electrical characteristics. Machine learning algorithms and techniques were employed
for this task due to their success in the last decade at classification tasks and regression
tasks as in this case. A slightly modified form of the Cross Industry Standard Process for
Data Mining (CRISP-DM) methodology was employed to provide a structured approach
for implementing and evaluating this work to achieve the stated goals (Azevedo and
Santos; 2008). It consists of the first 5 steps of the standard CRISP-DM which take raw
data from the initial point of understanding the task or problem, through implementing
a solution by cleaning and preparing the raw data, modelling and finally evaluating the
solution. The last step is not included as this work will not be deployed after evaluation.

The modified methodology is illustrated in figure 1 below and explained in the fol-
lowing sections.

Figure 2: Modified CRISP-DM
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3.1 Business Understanding

A permanent magnet synchronous motor as with every other type of electric motor is
an electric machine that converts electric energy into mechanical force or torque for
providing traction. High torque and power densities together with high efficiency are
basic requirements in most industrial and automotive applications; for this reason, the
permanent magnet synchronous motor (PMSM) is most widely used in industrial and
automotive applications. The need to stay competitive and control rising manufacturing
costs especially in the automotive sector often leaves engineers at the risk of compromising
safety in materials when designing motors. To avoid this, the utilization of the motor
must be maximized during design using a control strategy that reduces the thermal stress
on the motor components with the highest risk of thermal failure. Some of the motor
components most sensitive to failure are the permanent magnets in the stator which
may suffer irreversible demagnetization from exposure to excessive heat and the rotor
windings which may melt from the effect of hot temperatures. This necessitates the
accurate and real-time measurement, monitoring and control of temperatures of these
components which has seen the application of several techniques as discussed in the
literature review. The task of estimating temperature which is a continuous numerical
quantity is a regression task and this understanding guides the data understanding and
preparation.

3.2 Data Understanding

With an understanding of the problem from the first stage of the procedure, a dataset
containing features relevant to the prediction of the temperature of electric motor com-
ponents was sourced from Kaggle 2 in a single csv file named pmsm temperature data.csv
containing 998070 observations and 13 features. The data is comprised of external tem-
perature variables, motor electrical characteristics and target temperature variables to be
predicted. To gain proper understanding of the dataset and its properties, initial activ-
ities on the dataset sought to create familiarity with the dataset, including identifying
data quality issues and exploratory data analysis to uncover first insights and discover
interesting patterns if any to aid in answering the research question.

3.3 Data Preparation

Based on the knowledge gained from the business and data understanding stages, this
stage of the project cycle involves a series of activities focusing on cleaning, preparing
and transforming the raw data to a form more suitable for analysis and model building.
The activities include pre-processing and feature engineering which is a technique for
improving the performance of the machine learning models.

3.4 Modelling

Several algorithms are applied to know if the prediction accuracy from the data is affected
by the choice of algorithm. To build the models for prediction, linear regression, k nearest
neighbours regression, random forest regressor and decision tree algorithms are chosen

2https://www.kaggle.com/wkirgsn/electric-motor-temperature/data
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for their performance on regression tasks, explainable models and use of relatively less
computational resources (Zheng and Dagnino; 2014).

3.4.1 Ordinary Least Squares (OLS) Linear Regression

Ordinary Least Squares (OLS) is a linear regression method for developing a model
which seeks to estimate a target variable from data features by minimizing the distance
between the predicted data and the actual data measured by the sum of the squared
errors (Kirchgässner et al.; 2019b). A smaller distance indicates a better performance of
the model.

3.4.2 K Nearest Neighbours Regression

The k nearest neighbours regression is an algorithm that estimates a numerical target
by getting the average of the k nearest neighbours where the nearest neighbours are
determined by a distance function (Dagnino and Cox; 2014). Since the variables in the
dataset for this research are continuous, this work uses Euclidean distance,

Distance, d =

√√√√ k∑
i=1

(xi − yi)2 (1)

3.4.3 Random Forest Regressor

Random forest regression applies random forests which are an ensemble of learning meth-
ods for regression tasks. It works by training several decision trees on different subsets
of the data and returning the mean of the predictions of the individual decision trees
(Kirchgässner et al.; 2019b).

3.4.4 Decision Trees Regression

Decision trees offer the advantage of less computational demand in addition to high
performance, although models built with decision trees are prone to overfitting but this
can easily be handled (Kirchgässner et al.; 2019a).

3.5 Evaluation

The objective of this project as a regression task is the estimation of temperatures which
are numerical quantities as accurately as possible. The built models will be evaluated on
a test dataset using the mean absolute error (MAE) evaluation metric which measures
the average of the absolute estimation errors i.e., the average of the difference between
the estimated values and the actual values irrespective of the direction of the differ-
ence(Kirchgässner et al.; 2019b). This is given mathematically as,

MSE =
1

n

∑
| yi − ŷi | (2)

where yi is the actual value and ŷi is the predicted value.
The MAE is an indicator of the quality of an estimator; it is always non-negative

and the closer the value is to zero, the better. Hence, the objective is to minimize the
evaluation errors as the lower the MAE, the better the model performance. 10-fold cross
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validation (CV) is applied in each experiment prior to calculating the MAE to account
for generalizability of the models. This is done by shuffling the dataset and splitting in
10 equal parts with equal sizes and training and testing is carried out 10 times, each time
using a different 90% of the data for training and 10% for testing.

4 Implementation

The implementation process flow of this research is illustrated in the diagram below. All
the experiments were done in Jupyter Notebook in the Anaconda environment using the
Python programming language.

Figure 3: Implementation process flow

4.1 Data Collection and Description

The raw dataset with a size of 127MB is publicly available and was downloaded from
Kaggle 3 in a zipped folder. The folder was unzipped to extract the pmsm temperature data.csv
file which was used as the raw data in this work. The dataset contains standardized meas-
urements including temperature readings of different components collected by aggregating
several sensor data from a German OEM’s prototype permanent magnet synchronous mo-
tor (PMSM) deployed on a test bench. It is mildly anonymized by standardization and
the original dataset where the temperature values are in degrees Celsius can be arrived
at if the mean and standard deviation of each column is given using the standardization
formula:

3https://www.kaggle.com/wkirgsn/electric-motor-temperature/data
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StandardizedV alue =
OriginalV alue−Mean

Std Dev

The negative values are a result of the standardization.

4.2 Data Pre-processing

The extracted data was loaded into the Jupyter Notebook environment using the Pandas
package and basic properties of the dataset are returned using Pandas commands showing
it contains 998070 observations and 13 variables. Data quality checks were carried out on
the data to ensure the data is in a suitable format for the analysis. The data was checked
for missing values in each column and overall to reveal that the dataset contains no missing
value in any of the columns and a check on the data types of each column showed that all
the variables are numerical and continuous. Since the data contained no missing values, no
missing data input technique was applied. Basic descriptive statistics were then computed
on the dataset to get an initial understanding of the values and how they are distributed.
The mean showing the average value of each variable, the 25th, 50th and 75th quartiles
showing the interquartile ranges, the standard deviation showing the spread of the values
around the mean in each variable and the minimum and maximum values indicating
the full range of values and giving insight into the presence of outliers. The presence
of outliers is however visualized during the exploratory analysis using boxplots to verify
this observation. Since the dataset was collected for the purpose of estimating any of the
temperature values or the torque from the other features, the torque variable was removed
as this work is focused on the estimation of the four temperature variables (Wallscheid
et al.; 2017). The data was not standardized as the raw form is standardized since the
data was mildly anonymized using standardization during collection. After establishing
that data passes the preliminary data quality checks, exploratory data analysis is carried
out next.

4.3 Exploratory Data Analysis

The data was analytically explored to gain preliminary insights and uncover hidden pat-
terns if they exist in the data. to start with, a correlation analysis was performed to
understand the relationships between the variables. From the correlation matrix in Fig-
ure 3 below, a perfect positive linear correlation is observed between i q and torque while
u d is observed to be highly negatively correlated with torque and i q. The former can
be explained by electric drive theory, where either higher torque is exclusively dependent
on i q in case of similar sized inductances in d-axis and q-axis or increasing with higher
i q and slightly decreasing i d elsewise (more common in practice). The high correlation
of torque further corroborates the decision to drop it.

There also exists very strong positive correlations between the stator variables i.e.,
stator yoke, stator tooth and stator winding. This is expected as these are the temper-
atures of components in close proximity and sometimes in contact in an electric motor.
This is however inconsequential as each of these was considered a response variable to be
estimated from other variables in the absence of the other temperature variables.
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Figure 4: Features correlation matrix

4.4 Feature Engineering

From the correlation analysis carried out during the exploratory data analysis, high cor-
relations were identified which was handled by removing unwanted features. To improve
the performance of the models, new features were engineered from the existing ones.
Arroba et al. (2015) strongly suggested the creation of new features from existing ones
by combining old features mathematically or through a theoretical understanding of the
problem. Hence, in this work, the voltage and current components were combined ac-
cording to (Van Zon et al.; 2004) to obtain their effective magnitudes. The voltage in the
d-axis component, ud and the q-axis component, uq were combined according to equation
2 to obtain the actual voltage magnitude under which the motor was operating.

V oltage magnitude, u =
√

u2
d + u2

q

Similarly, the d-axis component current, id and the q-axis component current, iq were
combined to obtain the actual current magnitude supplied to the motor at the point the
measurement was taken as shown below.

Current magnitude, i =
√

i2d + i2q

Furthermore, the apparent power which represents all power consumed by the motor
i.e., the power consumed by the motor and that dissipated in operation was computed
from the voltage magnitude and current magnitude as shown below.

Apparent power, S = u ∗ i

The table below shows the features with the derived inputs.
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INPUT PARAMETERS Symbol

Ambient temperature -
Liquid coolant temperature -
Actual d-axis voltage component ud

Actual q-axis voltage component uq

Actual d-axis current component id
Actual q-axis current component iq
Motor speed n

DERIVED INPUT PARAMETERS Symbol

Voltage magnitude u
Current magnitude i
Apparent power S

TARGET VARIABLES Symbol

Permanent magnet temperature representing rotor temperature pm
Stator yoke temperature stator yoke
Stator tooth temperature stator tooth
Stator winding temperature stator winding

Table 1: Data description including derived features

4.5 Modelling

The sklearn library of machine learning packages was employed for the modelling as
it already has optimized implementations of almost all machine learning algorithms as
packages containing functions. Implementing any ML algorithm only requires calling the
respective algorithm function and supplying the appropriate parameters.

To start implementation, all required packages and functions were imported from the
sklearn library into the Jupyter notebook environment using import statements. An in-
stance object of the estimator corresponding to each of the ML algorithm was created for
training. For efficient training and model generalizability, the models were trained and
evaluated using the k-fold cross validations technique with the value of k=10. This splits
the data into 10 equal folds and in the first train-test cycle, trains the algorithm on the
first nine parts of the data while testing and evaluating on the 10th part. This process is
repeated 9 more times, each time reserving a different tenth fold for testing and evaluation
after training with the remaining 9 splits. To implement this, the cross val score() func-
tion is called from the sklearn.model selection package and required parameters passed
as arguments to it. The parameters are the algorithm instance already created, the train
dataset, the target variable, the number of folds i.e., 10 and the metric for scoring i.e.,
mean absolute error (MAE). The model is trained and evaluated on the MAE while the
MAE is returned as an indication of the performance of the model. For experiment 1,
the independent variables were as obtained in the original dataset while for experiment
2, the independent variables also include the features derived from feature engineering.
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5 Evaluation

The performance of the models was evaluated on their MAEs after training. K-fold cross
validation with K = 10 was applied during model training and testing to estimate the
errors of the estimated values from the models on various holdouts of the test set (Fushiki;
2011). A value of 10 was chosen for K as it is observed that no significant improvement is
made on the model performance for values of K greater than 10 (Yadav and Shukla; 2016).
This was performed to ensure the accuracy of the obtained results and avoid overfitting
or underfitting. The results of the research experiments are presented in below. They
show the MAEs of each model for each of the target variables (component temperatures).

5.1 Experiment 1: Model Results from Original Dataset

The performance of the models from experiment 1 are shown in the table below.

MODEL pm stator tooth stator yoke stator winding

LR 0.58 0.44 0.31 0.49
kNN 0.71 0.54 0.40 0.59
RF 0.68 0.55 0.41 0.61
DT 0.78 0.64 0.52 0.72

Table 2: Model MAEs from original dataset

5.2 Experiment 2: Model Results from Dataset with Derived
Features

The performance of the models from experiment 2 are shown in the table below.

MODEL pm stator tooth stator yoke stator winding

LR 0.59 0.43 0.31 0.48
kNN 0.73 0.56 0.41 0.63
RF 0.67 0.55 0.41 0.61
DT 0.80 0.66 0.51 0.73

Table 3: Model MAEs from dataset with derived features

5.3 Discussion

Tables 2 and 3 show the results of the experiments conducted to answer the question posed
in this research. Table 2 shows the MAEs of the predictions from the first experiment for
each of the models built for each of the target variables from the original dataset while
Table 3 shows the MAEs of the predictions from the second experiment for each of the
models built for each of the target variables from the dataset with derived features. In
each of the experiments, the models for predicting each of the four target variables were
trained on the training data with four algorithms and evaluated on the test data. This
was done 10 times in each case using k-fold cross validation with k=10. The MAEs are
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computed 10 times for each run of the experiment and the scores recorded. The average
of these is obtained and recorded as seen in tables 2 and 3 for comparison.

Figure 5: Comparison of model results

The analysis of the results in Tables 2 and 3 are summarized in Figure 5. From
the figure, there appears to be no significant change in the performance of each model
between experiment 1 and experiment 2 for each of the target variables as shown by their
nearly constant MAEs. For target variable pm, there is an increase of 0.1 in each of
the models in experiment 2 over experiment 1 except for the random forest (RF) model
which shows a decrease of 0.1. For the stator yoke, the linear regression (LR) model
shows no change over the two experiments and while there was an increase of 0.1 in the k
nearest neighbours (KNN) model, there was however a decrease of 0.1 in the decision tree
(DT) model. For the other target variables (stator tooth and stator winding), a similar
pattern is observed where there is a small increase in the performance of one model from
experiment 1 to experiment 2 but a decrease in another while others remain constant.
These patterns suggests that the derivation of new features from existing ones does not
have any significant effect on the performance of the models. However, among the four
target variables, the stator yoke consistently shows the best performance across each of
the models applied both for experiment 1 and experiment 2 with a MAE of 0.31 for LR
and 0.41 for RF while the pm shows the worst performance in terms of the MAE with a
MAE of 0.58 for LR in experiment 1 and 0.68 in experiment 2.

Having established from the results the insignificance of the engineered features on the
performance of the models, with the estimations of the stator yoke consistently performing
better than the other target variables irrespective of the applied model or the combination
of features, it shows that of the four target variables, the temperature of the stator yoke
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is the most accurately estimated from data containing external temperature variables
(ambient temperature and coolant temperature) and electrical characteristics of the motor
(voltage, current and power) while the pm is the least accurately predicted.

A possible interpretation of the better performance of the stator target variables over
the rotor is the ease of heat transfer across

6 Conclusion and Future Work

In this paper, test bench data from a permanent magnet synchronous motor (PMSM)
was used to estimate the temperatures of the rotor, the stator yoke, the stator tooth
and the stator winding in the PMSM by applying machine learning techniques. Linear
regression (LR), k nearest neighbours (kNN), random forest (RF) and decision tree (DT)
algorithms were employed on the dataset in two different experiments with an object-
ive of determining the extent to which these temperatures can be accurately estimated.
The models had varying performances on the task with performance measured by the
mean absolute errors (MAEs) of the predictions where a lower MAE indicates a better
performance. In the first experiment, models were trained for each of the four target
variables using training data and evaluated on the test data using the MAEs, where the
dataset was split using k-fold cross validation with k=10. The same process was repeated
in experiment 2 with the data however containing derived features.

Comparing by experiment, no significant change in the performance of the models
was observed between experiment 1 and experiment 2 for all the target variables while
comparing by target variable, the stator yoke shows the best model performance while
pm shows the worst performance.

The scope of this work was restricted to the application of simple machine learning
algorithms to a PMSM due to data availability. Future work could however aim to gen-
eralize across different motor types which will require collecting data more representative
of the diverse types of motors.
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