Configuration Manual

MSc Research Project
MSc. Data Analytics

Shantanu Deshpande
Student ID: x18125514

School of Computing
National College of Ireland

~

National
Collegef
Ireland

Supervisor: Dr. Vladimir Milosavljevic

National College of Ireland National

Project Submission Sheet College of
School of Computing Ireland
Student Name: Shantanu Deshpande
Student ID: x18125514
Programme: MSc. in Data Analytics
Year: 2019
Module: MSc Research Project
Supervisor: Dr. Vladimir Milosavljevic
Submission Due Date: 12/12/2019
Project Title: Corporate Bankruptcy Prediction using Machine Learning
Techniques
Word Count: 1052
Page Count: [13

I hereby certify that theinformation contained in this (my submission) isinformation
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 11th December 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). Q
Attach a Moodle submission receipt of the online project submission, to | Q
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | Q
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

CONFIGURATION MANUAL

Corporate Bankruptcy Prediction using

Machine Learning Techniques

Shantanu Deshpande
X18125514
MSc. Data Analytics
National College of Ireland

1. Introduction

The purpose of this document is to give a brief information about the steps involved in
implementing this project. The aim of this project was to evaluate the performance of a classifier
in predicting corporate bankruptcy using a novel data pre-processing technique involving a
feature selection strategy and a resampling strategy. The second objective was to compare the
performance with few other classifiers and evaluate which model gave better prediction
performance. The tools and techniques that were used for achieving the specified objectives
have been mentioned in the remaining part of this manual.

2. System Specifications

The system configuration on which this research project has been carried out is mentioned
below:

e Qperating System: Windows 10 Home
e Installed Memory (RAM): 8.0 GB
e Hard Drive: 1024 GB HDD

e Processor: Intel® Core™ i5-3337U CPU @ 1.80GHz

3. Tools/Technologies

For implementing this project, Python programming language has been used whereas Jupyter
Notebook has been used as the Integrated Development Environment (IDE). The visualizations
have been performed on Tableau. The specific versions of respective platform/language is
mentioned below:

e Python3.7.2
e Jupyter Notebook Server v. 6.0.2
e Tableau Desktop v. 2018.2.0 64-bit

4. Environment Setup

The initial and foremost step in the execution of the project is the installation of the required
platform and languages.
e Python has been downloaded and installed using the following link. *

Files

Version Operating System Description MD5 Sum File Size GPG
Source release 02a75015f7cd845e27b85192bb0ca4ch 22897802
Source release df6ec36011808205beda239c72f947ch 17042320
Mac OS X for Mac OS X 10.6 and later d8ff07973bc9c009de80c269fd7efcca 34405674 SIG
Mac 0S X for 0S X 10.9 and later 0fc95e9f6d6b4881f3b499da338a9a80 27766090
Windows 941b7d6279c0d4060a927a65dcab88c4 8092167
Windows for AMD64/EM64T/x64 f81568590bef56e5997e63b434664d58 7025085
Windows for AMDG4/EM64T/x64 ff258093f0b3953c886192dec9f52763 26140976
Windows for AMD64/EM64T/x64 8de2335249d84feleeb61ec25858bd82 1362888
Windows 26881045297dc1883a1d61baffeecafd 6533256
Windows 38156b62c0cbcb03bfddeb86e66c3a0f 25365744

eb-based installer Windows 1e6¢626514b72€21008f8cd53f945f10 1324648

e Jupyter has been installed by following the installation guide given on following link?. To
start the Jupyter Notebook, we need to enter following command in CMD prompt.

EX Command Prompt

fersion

yrporation.

e After execution of complete project, the results were visualized using a visualization
software, Tableau, the steps for downloading and installation is given in following link.3

5. Data Collection

Data for this project has been collected from UCI Machine Learning Repository* which is a public
repository. The data description is given as below:

Lhttps://www.python.org/downloads/release/python-372/

2 https://jupyter.org/install

3 https://www.tableau.com/products/desktop/download

4 https://archive.ics.uci.edu/ml/datasets/Polish+companies+bankruptcy+data

https://www.python.org/downloads/release/python-372/
https://jupyter.org/install
https://www.tableau.com/products/desktop/download
https://archive.ics.uci.edu/ml/datasets/Polish%2Bcompanies%2Bbankruptcy%2Bdata

Polish companies bankruptcy data Data Set
Download Data Folder Data Set Description

Abstract: The datasetis about bankruptey prediction of Polish companies. The bankrupt companies were analyzed in the period 2000-2012, while the stil aperating companies were evaluated from 2007 to 2013.

Data Set Characteristics: ‘ Mulivariate || Number of Instances: ‘ 10503 || Area: ‘ Business

=

Attribute Characteristics: ‘ Real Number of Attributes: ‘6 Date Donated ‘2016-04-11

Associated Tasks: Classification | Missing Values? || Yes || Number of Web Hits: | 86596

Source:

Creator: Sebastian Tomezak . _ " g
- Department of Operations Research, WrocA,aw University of Science and Technology, wybrzeAe Wyspiadskiego 27, 50-370, WrocA aw, Poland

Donor: Sebastian Tomezak (sebastian tomezak ‘@)’ pwr.edu pl), Macie] Zisha (macijzieba '@ pur.edu pl), Jakub M. Tomezak (jakub.tomezak ‘@) puredu pl), Tel (+48) 71320 4453

Data Set Information:

The dataset is about bankruptcy prediction of Polish companies. The data was calleted from Emerging Markets Information Service (EMIS, [Web Link]), which is a database containing information on emerging markets around the world. The bankrupt companies
were analyzed in the period 2000-2012, while the stil operating companies were evaluated from 2007 to 2013

Basing on the collected data five classfication cases were distinguished, that depends on the forecasting period:

- 1stYear €' the data contains financial rates from 1t year of the forecasting period and coresponding class label that indicates bankruptcy status after 5 years. The data contains 7027 instances (fnancial statements), 271 represents bankrupted companies, 6756
firms that did not bankrupt in the forecasting period

- IndYear &€" the data contains financial rates from 2nd year of the forecastin period and corresponding class label that indicates bankruptcy status after 4 years. The data containg 10173 ingtances (financia statements), 400 represents bankrupted companies,
9773 fims that did not bankrupt in the forecasting period.

- rdYear &€ the data contains financial rates from 3rd year of the forecasting period and corresponding class label that indicates bankruptcy status after 3 years. The data contains 10503 instances (financial statements), 495 represents bankrupted companies,
10008 firms that did not bankrupt in the forecasting period

- dih\Year &€ the data contains financialrates from 4th year of the forecasting period and corresponding class [abel that indicates banknuptey status after 2 years. The data containg 9792 instances (fancia statements), 515 represents bankrupted companies, 9277
firms that did not bankrupt i the forecasting period

- EthYear 4€" the data contains financial rates from 5th year of the forecasting period and corresponding class label that indicates bankruptey status after 1 year. The data contains 5910 instances (financial statements), 410 represents bankrupted companies, 5500
firms that did not bankrupt in the forecasting period

e The dataset contained 64 financial attributes and a dichotomous categorical variable
depicting the class of company whether bankrupt or non-bankrupt.

Attribute Information:

X1 net profit / total assets

X2 total liabilities / total assets

X3 working capital / total assets

X4 current assets / short-term liabilities

X5 [(cash + short-term securities + receivables - short-term liabilities) / (operating expenses -
depreciation)] * 365

X6 retained earnings / total assets

X7 EBIT / total assets

X8 book value of equity / total liabilities

X9 sales / total assets

X10 equity / total assets

X11 (gross profit + extraordinary items + financial expenses) / total assets
X12 gross profit / short-term liabilities

X13 (gross profit + depreciation) / sales

X14 (gross profit + interest) / total assets

X15 (total liabilities * 365) / (gross profit + depreciation)
X16 (gross profit + depreciation) / total liabilities

X17 total assets / total liabilities

X18 gross profit / total assets

X19 gross profit / sales

X20 (inventory * 365) / sales

X21 sales (n) / sales (n-1)

X22 profit on operating activities / total assets

X23 net profit / sales

X24 gross profit (in 3 years) / total assets

X25 (equity - share capital) / total assets

X26 (net profit + depreciation) / total liabilities

X27 profit on operating activities / financial expenses

X28 working capital / fixed assets

X29 logarithm of total assets

X30 (total liabilities - cash) / sales

X31 (gross profit + interest) / sales

X32 (current liabilities * 365) / cost of products sold

X33 operating expenses / short-term liabilities

X34 operating expenses / total liabilities

X35 profit on sales / total assets

X36 total sales / total assets

X37 (current assets - inventories) / long-term liabilities

X38 constant capital / total assets

X39 profit on sales / sales

X40 (current assets - inventory - receivables) / short-term liabilities
X41 total liabilities / ((profit on operating activities + depreciation) * (12/365))
X42 profit on operating activities / sales

X43 rotation receivables + inventory turnover in days

X44 (receivables * 365) / sales

X45 net profit / inventory

X46 (current assets - inventory) / short-term liabilities

X47 (inventory * 365) / cost of products sold

X48 EBITDA (profit on operating activities - depreciation) / total assets
X49 EBITDA (profit on operating activities - depreciation) / sales
X50 current assets / total liabilities

X51 short-term liabilities / total assets

X52 (short-term liabilities * 365) / cost of products sold)

X53 equity / fixed assets

X54 constant capital / fixed assets

X55 working capital

X56 (sales - cost of products sold) / sales

X57 (current assets - inventory - short-term liabilities) / (sales - gross profit - depreciation)
X58 total costs /total sales

X59 long-term liabilities / equity

X60 sales / inventory

X61 sales / receivables

X62 (short-term liabilities *365) / sales

X63 sales / short-term liabilities

X64 sales / fixed assets

6.1

mplementation:

The complete code for this project is available on the following GitHub repository:

https://github.com/shantanudeshpande94/bankruptcy-prediction

The various processes involved in the implementation of this project are discussed step by step
below-

A] Data Preparation and Storage

The data folder contained individual files that have been separated in five classification cases based

on the forecasting period.

All the files were in an ARFF format and to use it for further study, an openly available
Python code® has been used to convert it into CSV format.

For this study, the data file ‘5" Year’ has been used that contained financial attributes from
5% year and the class label showing bankruptcy status after a year.

We set the seed first for our code here as this will preserve the data samples and the results
that will be obtained.

The data file was then stored in CSV format on Github and then imported in GitHub using
the below code.

In [1]:

M #importing necessary packages
import scipy as sp
import numpy as np
import pandas as pd
import pandas_profiling as pp
from sklearn import datasets, linear model
from sklearn.model_selection import train_test_split
from imblearn.metrics import classification_report_imbalanced
from matplotlib import pyplot as plt
import random

#set seed
random. seed(420)

#loading csv into dataframe
url = "https://rau.githubusercontent.com/shantanudeshpanded4/bankruptcy-prediction/master/Syear. csv'
bankruptcy _df = pd.read_csv(url)

B] Exploratory Data Analysis

Befo

re beginning with our pre-processing stage, it is important to understand the dataset so that

5 https://github.com/haloboy777/arfftocsv

https://github.com/shantanudeshpande94/bankruptcy-prediction
https://github.com/haloboy777/arfftocsv

we are aware of the further steps to be undertaken as part of cleaning and preprocessing.

To check the class distribution, a bar graph was plotted which gives a clear picture about
the number of instances in both the classes. The seaborn package was imported for this.

M import seaborn as sns

sns.countplot(bankruptcy df[" class"])

<matplotlib.axes. subplots.fxesSubplot at @x23c3893cda8>

a0 -
4000 -

000 -

count

2000 -

1000 -

In [151: M

out[15]:

As the dataset consisted of 64 variables, there can be a possibility that few of these
variables may be correlated with each other. This may reduce the performance of the
model and also increase the computational time and resources. Thus, the
multicollinearity test was performed using the following code-

#correlation analysis

corrmat = bankruptcy_df.corr()
corrmat.to_csv("correlaticn-analysis-S.csv")
#plotting correlation graph

import seaborn as sns

f, ax = plt.subplots(figsize =(15, 15))
sns.heatmap(corrmat, ax = ax, cmap ="Y1GnBu", linewidths = 2.1)

<matplotlib.axes._subplots.AxesSubplot at ©x2738a7b3cfs>
ARTT -y ——— =] Laliag it =1 [
s HEEES GBS SEENISSNSSEEEN SR8
Aard ill i u
Aes
2nrs NN

as

a4

o
=i

E;j i

-~ a0

e Further, individual variables were explored in more detail for missing values and
skewness using pandas_profiling package. The code for the same is mentioned below-

[]: M import pandas_profiling as pp
#icheck profile report of the dataset

profile = bankruptcy df.profile report(title='Pandas Profiling Report')
profile.to file(output file="output.html")

C] Data Cleaning

Before proceeding with the model building phase, we must clean our data and perform
transformations so that the model can give optimum performance. The various steps involved in
this activity include converting datatype of variables, removal of duplicate rows, dropping
variables with high multicollinearity, removing columns with large number of missing values and
imputing missing values with mean in rest of the columns etc. The code for each step is shown in
the below images-

e Replace special characters (‘?’) with NA values
#to replace '?" with NA values
bankruptcy df.replace({'?"': None},inplace =True)

e Converting all variables to numeric datatype

M #converting from object to Float6d

bankruptcy_df["Attrl’] = pd.to_numeric({bankruptcy_df["Attrli"])
bankruptcy _df["Attr2’'] = pd.to_numeric({bankruptcy_ df[" Attr2"])
bankruptcy df["Attr3’'] = pd.to_numeric{bankruptcy_ df[Attr3"])
bankruptcy_df["Attr4’'] = pd.to_numeric{bankruptcy_df[Attrd"])
bankruptcy_df["aAttr5'] = pd.to_numeric{bankruptcy_df[Attr5'])
bankruptcy_df[*aAttre'] = pd.to_numeric{bankruptcy_df['attre'])
1 "1
1 1
1 1

bankruptcy_df["attr7'] = pd.to_numeric({bankruptcy_df[' attr?
bankruptcy df['Attrg’'] = pd.to_numeric{bankruptcy_ df['Attrs
bankruptcy df['Attre’'] = pd

bankruptcy_ df["Attrie’] pd.to_numeric({bankruptcy_ df["Attria’])
bankruptcy_ df["Attrill’] pd.to_numeric({bankruptcy df["Attril’])
bankruptcy df["Attrl2’] pd.to_numeric({(bankruptcy df["Attril2’'])
bankruptcy df["Attril3’] pd.to_numeric({(bankruptcy df["Attril3’'])
bankruptcy_df["Attrid’] pd.to_numeric{(bankruptcy_df["Attrid4’])
bankruptcy_df["Attril5’] pd.to_numeric(bankruptcy_df['Attril5"])
bankruptcy_df["Attrise’] pd.to_numeric(bankruptcy_df['Attrils"])
bankruptcy_df["Attr17 "] pd.to_numeric(bankruptcy_df['Attrl7"])
bankruptcy_ df["Attrils’] pd.to_numeric({bankruptcy df["Attrls’'])
bankruptcy_ df["Attrio’] pd.to_numeric({bankruptcy_ df["aAttrio’])
bankruptcy_ df["Attr2e’] pd.to_numeric({bankruptcy_ df["Attr2e’])
bankruptcy_ df["Attr21°] pd.to_numeric({bankruptcy df["Attr21°])
bankruptcy df["Attr22"] pd.to_numeric({(bankruptcy_ df["Attr22'])

e Dropping duplicate rows, imputing missing values by mean, removing columns with high

multicollinearity

]
]
]
1
1
1
%
.to_numeric{bankruptcy_df['Attre’]
a
1
2
3
A
5

M # dropping duplicate values

bankruptcy_df.drop_duplicates(keep=False,inplace=True)

M #delete because of large number of missing values

del bankruptcy df["Attr37"]

M #imputing missing values by mean
bankruptcy df.fillna(bankruptcy df.mean(), inplace=True)
#number of missing values

bankruptcy_df.isna().sum()

M #delete because of high correlation

bankruptcy_df = bankruptcy_df .drop(['Attrll',"Attrl6', 'Attrl8', 'Attr22', 'Attr23', 'Attr2e", Attr3l", 'Attr33’,
‘Attr3d’,Attr3s', 'Attri8’, 'Attrd’, 'Attrd@’,'Attrdd’,'Attrdd’, 'Attrdd', Attrdd’, 'Attr5e’, 'Attr5d’,
"AttrSe’,'Attr6@’, Attr62', Attre3d’, 'Attrsd’, Attr7', Attrs'], axis = 1)

e Feature Selection using Random Forest:

One of the novel approach we have followed is the use of Random forest feature
selection technique for reducing the number of features. The packages used for
implementing this are RandomForestClassifier and SelectFromModel. The code is
mentioned below-

M from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectFromModel

M # Create a List of feature names
feature_labels = ["Attr1’,'Attr2’,'Attr3’','Attr5', 'Attré6’, "Attro’, 'Attrie’,

‘Attri2’, 'Attri3’, 'Attri14’, "Attri5’, Attrl7’', 'Attrio’, 'Attr20’,

‘Attr21’, 'Attr24', 'Attr25', 'Attr27', 'Attr28°, 'Attr29°', 'Attr3e’,

‘Attr32', 'Attr36', 'Attr3o’,

"Attr4l’, ‘Attr42°, 'Attrd3’, 'Attra5’, ‘Attra7’,

‘Attr51’, 'Attr52°, "Attr53°’, "Attr55°, "Attr57’, 'Attr58’', "Attrs9’,
"Attroel’]

M #Create X from the features
X = bankruptcy_df[feature_labels].values

Create y from output
y = bankruptcy_df[’'class’].values.ravel()

Create a random forest classifier
rf_clf = RandomForestClassifier(n_estimators=16686, random_state=8, n_jobs=-1)

Train the classifier
rf_clf.fit(X, y)

Print the name and gini importance of each feature
for feature in zip(feature_labels, rf_clf.feature_importances_):
print(feature)

M # Create a selector object that will use the random forest classifier to identify
features that have an importance of more than .63
sfm = SelectFromModel(rf_clf, threshold=0.83)

Train the selector
sfm.Fit(X, y)

M #Print the names of the most importaent features

for feature_list_index in sfm.get_support(indices=True):
print(feature_labels[feature_list_index])

M X_imp_features = sfm.transform(X)

M | #converting X filtered to Dataframe

X_imp_features = pd.DataFrame(data=X_imp_features,
index=np.arange(1, 5791),
columns=np.arange(1, 8))

D] Modelling

This is the most important phase of the data mining process. To address the issue of class
imbalance, a rarely used SMOTEENN resampling technique has been used on 4 different
classifiers each time with Stratified K fold cross validation. To evaluate the improvement in
results, same models are implemented without SMOTEENN resampling. The packages and codes
are mentioned below one by one-

¢ SMOTEENN + Random Forest Classifier
Packages used:
o StratifiedKFold
SMOTEENN
Cross_val_score
recall_score
accuracy_score
confusion_matrix

o O O O O O

RandomForestClassifier

from imblearn.combine import SMOTEENN
from sklearn.model_selection import cross_val_score
from sklearn.metrics import recall_score

M from sklearn.model_selection import StratifiedKFold
from imblearn.combine import SMOTEENN
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix

tn =[]
fp =11
fn =[]
tp =]

< |

cv = StratifiedKFold(n_splits=5)

for train_idx, test_idx, in cv.split(X_imp_features, y):
X_train, y_train = X[train_idx], y[train_idx]

X_test, y_test = X[test_idx], y[test_idx]

X_train, y_train = SMOTEENN().fit_resample(X_train, y_train)
clf = RandomForestClassifier(n_estimators=1668e, random_state=©, n_jobs=-1)
clf.fit(X_train, y_train)

y_rf_pred = clf.predict(X_test)

accuracy_score(y_test, y_rf_pred)

tn, fp, fn, tp = confusion_matrix(y_test, y rf_pred).ravel()
t_n.append(tn)

f_p.append(fp)

f_n.append(fn)

t_p.append(tp)

print(”"True Negatives: ",tn)
print("False Positives: ",fp)
print("False Negatives: ",fn)
print("True Positives: ",tp)

return np.array(t_n)
return np.array(f_p)
return np.array(f_n)
return np.array(t_p)

M Avg_tn = round(sum(t_n)/len(t_n))
Avg fp = round(sum(f_p)/len(f_p))
Avg_fn = round(sum(f_n)/len(f_n))
Avg tp = round(sum(t_p)/len(t_p))

M import math

#Accuracy
Accuracy_rf = (Avg_tp+Avg_tn)/(Avg_tp+Avg_ tn+Avg fp+Avg fn)
print(“Accuracy {:08.2f}".format(Accuracy_rf))

#Specificity
Specificity_rf = Avg_tn/(Avg_tn+Avg fp)
print("Specificity {:0.2f}".format(Specificity_rf))

#Recall
Recall_rf = Avg_tp/(Avg_tp+Avg_fn)
print("Recall / Sensitivity {:@.2f}".format(Recall _rf))

#Precision
Precision_rf = Avg_tp/(Avg_tp + Avg_fp)

#aGMean
GM_rf = math.sqrt(Specificity_rf*Recall_rf)
print("Geometric Mean Score {:0.2f}".format(GM_rf))

Accuracy ©.89

Specificity @.9@

Recall / Sensitivity ©.66
Geometric Mean Score ©.77

e SMOTEENN + Decision Tree
Packages Used:
o DecisionTreeClassifier

from sklearn.model_selection import StratifiedKFold
from imblearn.combine import SMOTEENN

from sklearn.metrics import accuracy_score

from sklearn.metrics import confusion_matrix

from sklearn.tree import DecisionTreeClassifier

tn_dt = []
fp_dt = []
fn_dt = []
tp_dt = []

cv = StratifiedKFold(n_splits=5)
for train_idx_dt, test_idx_dt, in cv.split(X_imp_features, y):
X_train_dt, y_train_dt = X[train_idx_dt], y[train_idx_dt]
X_test_dt, y_test_dt = X[test_idx_dt], y[test_idx_dt]
X_train_dt, y_train_dt = SMOTEENN().fit_resample(X_train_dt, y_train_dt)

dt = DecisionTreeClassifier()
dt.fit(X_train_dt, y_train_dt)
y_dt_pred = dt.predict(X_test_dt)
accuracy_score(y_test_dt, y_dt_pred)
tn, fp, fn, tp = confusion_matrix(y_test_dt, y_dt_pred).ravel()
tn_dt.append(tn)
fp_dt.append(fp)
fn_dt.append(fn)
tp_dt.append(tp)
print("True Negatives: ",tn)
print(“False Positives: ",fp)
print(“False Negatives: ",fn)
print("True Positives: ",tp)

return np.array(tn_dt)

return np.array(fp_dt)

return np.array(fn_dt)

return np.array(tp_dt)

e SMOTEENN + K Nearest Neighbour
Packages Used:
o Neighbours
o KNeighborsClassifier

M from sklearn import neighbors
from sklearn.neighbors import KNeighborsClassifier

tn_knn = []
fp_knn = []
fn_knn = []
tp_knn = []

cv = StratifiedKFold(n_splits=5)
for train_idx_knn, test_idx _knn, in cv.split(X_imp_features, y):
X_train_knn, y_train_knn = X[train_idx_knn], y[train_idx_knn]
X_test_knn, y_test_knn = X[test_idx_knn], y[test_idx_knn]
X_train_knn, y_train_knn = SMOTEENN().fit_resample(X_train_knn, y_train_knn)

clf_knn = KNeighborsClassifier(n_neighbors=5, metric='euclidean’)
clf_knn.fit(X_train_knn, y_train_knn)

y_knn_pred = clf_knn.predict(X_test_knn)
accuracy_score(y_test_knn, y_knn_pred)
tn, fp, fn, tp = confusion_matrix(y_test_knn, y_knn_pred).ravel()
tn_knn.append(tn)
fp_knn.append(fp)
fn_knn.append(fn)
tp_knn.append(tp)
print("True Negatives: ",tn)
print("False Positives: ",fp)
print("False Negatives: ",fn)
print("True Positives: ",tp)

return np.array(tn_knn)

return np.array(fp_knn)

return np.array(fn_knn)

return np.array(tp_knn)

e SMOTEENN + AdaBoost
Packages Used:
o AdaBoostClassifier
o LabelEncoder

M from sklearn.ensemble import AdaBoostClassifier
from sklearn.preprocessing import LabelEncoder

tn_ada = []
fp_ada = []
fn_ada = []
tp_ada = []

cv = StratifiedKFold(n_splits=5)
for train_idx_ada, test_idx_ada, in cv.split(X_imp_features, y):
X_train_ada, y_train_ada = X[train_idx_ada], y[train_idx_ada]
X_test_ada, y_test_ada = X[test_idx_ada], y[test_idx_ada]
X_train_ada, y_train_ada = SMOTEENN().fit_resample(X_train_ada, y_train_ada)

ada_classifier = AdaBoostClassifier(
DecisionTreeClassifier(max_depth=1),
n_estimators=260)
ada_classifier.fit(X_train_ada, y_train_ada)

y_ada_pred = ada_classifier.predict(X_test_ada)
accuracy_score(y_test_ada, y_ada_pred)
tn, fp, fn, tp = confusion_matrix(y_test_ada, y_ada_pred).ravel()
tn_ada.append(tn)
fp_ada.append(fp)
fn_ada.append(fn)
tp_ada.append(tp)
print("True Negatives: ",tn)
print(“False Positives: ",fp)
print("False Negatives: ",fn)
print("True Positives: ",tp)
return np.array(tn_ada)
return np.array(fp_ada)
return np.array(fn_ada)
return np.array(tp_ada)

e Similarly, these models were built without performing SMOTEENN. The code for one of
the model, Random Forest, is shown below. Similar type of code was written for other
classifiers as well without SMOTEENN.

M from sklearn.model_selection import StratifiedKFold
from imblearn.combine import SMOTEENN
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix

v = StratifiedKFold(n_splits=5)
for train_idx, test_idx, in cv.split(X imp_features, y):
X_train, y_train = X[train_idx], y[train_idx]
X_test, y_test = X[test_idx], y[test_idx]
#X_train, y train = SMOTEENN().fit_resample(X_train, y_ train)
clf = RandomForestClassifier(n_estimators=1680@, random_state=8, n_jobs=-1)
clf.fit(X_train, y_train)
y_rf_pred = clf.predict(X_test)
accuracy_score(y_test, y_rf_pred)
tn, fp, fn, tp = confusion_matrix(y_test, y_rf_pred).ravel()
t_n.append(tn)
f_p.append(fp)
f_n.append(fn)
t_p.append(tp)
print("True Negatives: ",tn)
print("False Positives: ",fp)
print("False Negatives: ",fn)
print("True Positives: ",tp)
return np.array(t_n)
return np.array(f_p)
return np.array(f_n)
return np.array(t_p)

Further to the implementation of all the models, the performance of these models was evaluated
based on different metrics. These metrics were chosen based on literature review and were
compared with one another visually by plotting a bar graph. The code for which is given below-

e Accuracy Plot

M Accuracy_comparison = {'Random Forest': Accuracy_rf, 'Decision Tree': Accuracy_dt, 'KNN': Accuracy_knn, ‘Adaboost': Accuracy

1 14

M Accuracy_comparison

2]: {'Random Forest': ©.8861087144089732,
‘Decision Tree': ©.8556611927398444,
"KNN': ©.7409326424870466,
'Adaboost’: ©.8807260155574762}

M plt.bar(range(len(Accuracy_comparison)), list(Accuracy_comparison.values()), align='center’')

plt.xticks(range(len(Accuracy_comparison)), list(Accuracy_comparison.keys()))

plt.show()

e Sensitivity Plot

M Sensitivity comparison = {'Random Forest': Recall _rf, ‘Decision Tree': Recall_dt, 'KNN': Recall_knn, ‘Adaboost': Recall_ada}

M Sensitivity comparison

2]: {'Random Forest': ©.6585365853658537,
'Decision Tree': ©.654320987654321,
"KNN': ©.6849382716049383,
'Adaboost’: ©.7283950617283951}

M plt.bar(range(len(Sensitivity_comparison)), list(Sensitivity_ comparison.values()), align='center')
plt.xticks(range(len(Sensitivity comparison)), list(Sensitivity comparison.keys()))

plt.show()

e Specificity Plot

M Specificity comparison = {'Random Forest': Specificity rf, 'Decision Tree': Specificity dt, 'KNN': Specificity knn, 'Adaboost

4 »

M Specificity_ comparison

i]: {'Random Forest': ©.903435468895879,
'Decision Tree': ©.870817843866171,
‘KNN': ©.7511606313834726,
'Adaboost’: ©.8921933085501859}

M plt.bar(range(len(Specificity comparison)), list(Specificity comparison.values()), align='center')
plt.xticks(range(len(Specificity comparison)), list(Specificity_comparison.keys()))

plt.show()

e Geometric Mean of Specificity & Sensitivity Plot

M Gmean_comparison = {'Random Forest': GM_rf, ‘Decision Tree': GM_dt, 'KNN': GM_knn, ‘Adaboost': GM_ada}

M Gmean_comparison

]: {'Random Forest': ©.7713269791628996,
'Decision Tree': ©.7548472637994519,
"KNN': ©.6740962043428721,
'Adaboost’: ©.8061446520662862}

M plt.bar(range(len(Gmean_comparison)), list(Gmean_comparison.values()), align="center')
plt.xticks(range(len(Gmean_comparison)), list(Gmean_comparison.keys()))

plt.show()

7. Conclusion

Through the information mentioned in the above sections, the complete implementation process
of this project has been explained in a concise, detailed and sequential manner. The necessary
packages that were required have also been mentioned wherever they were used and the entire
code has been published on GitHub repository, the link for which is mentioned in the
Implementation section.

	National College of Ireland Project Submission Sheet School of Computing
	2. System Specifications
	3. Tools/Technologies
	4. Environment Setup
	5. Data Collection
	6. Implementation:
	A] Data Preparation and Storage
	B] Exploratory Data Analysis
	C] Data Cleaning
	• Feature Selection using Random Forest:

	D] Modelling
	• SMOTEENN + Random Forest Classifier
	• SMOTEENN + Decision Tree
	• SMOTEENN + K Nearest Neighbour
	• SMOTEENN + AdaBoost

