~

“—-
\ National
College

Ireland

Bot detection using Behavioral Analysis in

MMORPG

MSc Research Project
MSc Data Analytics

Vino Wilson
Student ID: x18124801

School of Computing
National College of Ireland

SUpervisor: Prof. Jorge Basilio

National College of Ireland National
Project Submission Sheet College of

School of Computing Ireland

Student Name:

Vino Wilson

Student ID: x18124801

Programme: MSc Data Analytics

Year: 2019-20

Module: MSc Research Project

Supervisor: Prof. Jorge Basilio

Submission Due Date: 23/04/2019

Project Title: Bot detection using Behavioral Analysis in MMORPG
Word Count: 4862

Page Count: 2

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Date:

26th May 2020

PLEASE READ THE

FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). v

Attach a Moodle submission receipt of the online project submission, to | v/
each project (including multiple copies).

You must ensure that

a copy on computer.

your own reference and in case a project is lost or mislaid. It is not sufficient to keep

you retain a HARD COPY of the project, both for | v

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Bot detection using Behavioral Analysis in MMORPG

Vino Wilson
x18124801

Abstract

Gaming is one of the popular industries among all the others, especially online
and MMORPG games and people around the globe are spending money on different
games. Every game has its own features and gameplay and to increase the user-
experience has been a challenging factor for the companies as Bots among the
humans have populated in most of the games. For this purpose, the paper focuses
on the behavioral of the player to detect and differentiate between human and bot
players. Feature selection methods was used by which features were selected as per
the rank importance for training the data. Algorithms such as Random Forest,
Naive Bayes, Ensemble technique and Generalized Liner Model were used to fit
the data. Random forest indicated the best performance with an accuracy of 96
percent.

Keyword: Feature Selection, Classification algorithm, Machine Learning, MMORPG

1 Introduction

Gaming sector is one of the largest and growing industry. The global gaming market
have a net worth of 152 billions dollar including all the platform with 68.5 billion part
directly from Mobile games sector. Millions of people across the globe are attracted to
Massively Multiplayer Online Role-Playing Games and Batchelors 2018. Adding millions
of participants one can imagine the amount of players creating their own way of being
popular over the internet for the game or making some money over winning. As there
is increase in number of players online games have offered monthly/yearly subscription
which offers extra benefits and points giving users the better experience than the normal
users. So, it is a challenging part for the developers of the game to meet the nearby
expectation of the user.

As there is increase in humans in gaming sector there is also increase in bots which has
been a difficult part for the companies to deal with it. Giant company such as Blizzard
Entertainment have already started releasing the games which include anti-cheat software.
This software is Valve-Anti Cheat which detects whether it is bot or human by checking
if there is any code executed by the user and automatically bans the user from entering
the game. But there is a disadvantage that is the software only looks for the exact code
which is been entered into their system and if there is any changes will not be detected
by the software. (McCracken, 2018)

There is great increase in bot activity used by the users in tactic way. Bots are been
deployed in games to gain experience counts, in-game money (which is gold) and to
increase level this method is called FARMING. Humans tend to play 10-12 hours a day
which will gain half the experience count as compared to bots which plays 24 hours the

whole year and gain double the experience against humans which directly makes user
experience less and more higher level player spawns in time. Bots are increasing on day
to day note in games and which have been reported by many gamers and to detect these
bots there are many software which are developed to restrict the entry in game by the
developers but there is always a new way to breach this anti-cheat engines.

2 Research Question

1. Will using multiple models help to increase the detection rate?

2. To what point the bot detection false positive rate can be reduced?

3 Literature Review

Bot is a gaming term which is used to define a character that is controlled by the computer
code system (Techopedia, 2019). In other words, bots are Non-player characters (NPCs)
which are controlled by the program created by third-party. They involve in fights and
other activity which are generally done by the humans and against other bots as well.

(Lee, et al., 2016) states that bots are deployed by the players which intent to gain
more experience and rating as compared to the rest of the players which is nowadays
widely used in MMORPG games which is a disadvantage to the original players.

Cheat codes were created during the time of making video games. The developers
themselves have created the cheat codes for the testing purpose which gives whole access
to unlimited count of all the features to see the mechanism of working in order to make
the difficulty of the game accordingly. There are multiple ways of cheating. Aimbots
is a type of cheating where enemies can direct take a headshot, or the body part shot
which take high damage this is mostly done in war games which this option is available
in some games or one uses cheat software. Cheat software also contains many other level
exploiting techniques where a player can see through the walls where the opponents are
spawned. The other one more way is by gaining more experience in terms of points or in
game cash which allows player to buy or enter into royal features which a normal player
can’t access. (Wendel, 2012).

There are many approaches proposed for bot detection in game. These approaches
can be classified into server-side client-side and network side. Client-side servers are used
by most of the gaming companies by the disadvantage is that it can decrease the system
performance by increase in bot developed. Network side creates problem such as lag in
game due to overload and high network traffic which effects the gaming experience of
the user. As there is increase in bot on client side, data mining techniques are used in
server-side method which detects whether the user is bot or human and directly bans the
bot on client side without executing any kind of code or program. (Kang, et al., 2016)

Based on the analysis check carried out by Action analysis it is noticed that bots are
more as compared to humans in the game. This approach shows accuracy rate high but
the negative part is that it does not show or confuses in between the actual players who
play for a long time and the bots which are tend to play for a longer time. (Kang, etal.,
2016).

The other analysis was on social activity based which uses different features based on
the social network to compare between humans and bots. The results are analyzed based

on the graphs generated by social networks. It is observed that bots and humans use
social network links for different purpose, bots may use it for information or for exchange
of currency as humans use this network for multiple purpose. The drawback to this
approach is that it can only detect bots in group or multiple party squad and not in solo
mode. (Kang,et al., 2016). Another approach was proposed which is based on similarity
analysis which finds the routine of the humans and bots. Bots tend to have same routine
all day in terms of in game activity like taking similar steps in pattern or same action
during any event, where else actual players have different approach or strategy in every
game. The drawback to this approach is that it should have enough data collected having
same behavior to differentiate. (Kang, et al., 2016).

(Pao, et al., 2010) proposed an approach which used trajectory analysis defining the
movements and patterns carried by the bots and is indicated as their signature moves. For
dimension reduction Isomap is used which is then followed by classification algorithms.
The models produce higher accuracy but the drawback to this approach is that it only
focuses on the movement of character which can be easily reduced in the programmed
bots.

(Chung, et al., 2013) proposed a model which was based on the behavioural analysis
to detect bots. This was based on three different actions which are Battle, Collect and
Move. The users were then divided into groups based on the similar actions and a model
was created was each of the following groups. The model showed high accuracy rate of
detection but the drawback to this model if there is increase in number of players that will
make new groups and have to increase models as well. (Suznjevic, et al., 2011) presented
a model which uses combination of previously used model with user behaviour to get more
details about the network model with higher accuracy. This model can be implemented
in couple of MMORPG game, but changes have to be made to Markov chain values as
per the game.

(Park, et al., 2019) presented a technique for bot detection in game with Long short
-Term Memory (LSTM) using leveraging analysis. It mainly focused on the financial
status or activities of the player and stated that a bot would not be down in terms
of financial pattern as it is always on-line and would be easy to detect. The earlier
approaches gave higher accuracy due to topological network as compared to this model
but in terms of efficiency it better as deployment and cost resources are required less
due to Neural Networks. So, to increase the accuracy rate of this mode, two or more
model should be combined. To get better results than the previous approaches applied,
we propose to use behavioural characteristic to detect bots in games.

4 Methodology

The data has to be extracted from a MMORPG company which was a difficult task as
the companies does not publish dataset as it contains details of the player. The players
and company sign and agreement before the start of the game stating the policy where
the data will not be published outside the company. Some companies give APIs where it
is an disadvantage, because the data extracted from API does not have the quality. The
dataset used in the research is taken from HCR Labs by signing an NDA form.

4.1 Data Acquisition

The dataset had 4 sheets out of which attributes of network measure were removes as
it was less important feature and contribution of this attribute towards the result gave
less accuracy. In this research for every model different feature selection method were
used. As both input and output were known Supervised learning method was used and
classification algorithm was used as the variable to be predicted was in form of binary. The
algorithm was then implemented, and the results were compared based on the accuracy
rate and the best was chosen from the one of them.

The dataset on MMORPG game called Aion was used for analysis. The dataset
contains 47,739 observations and 7702 were marked as ‘bot’. The observations contain
the log of 88 days details from 9th April to 5th July 2010 overall. The dataset is of integer
and numerical type with 43 variables.

All the missing values were removed, the dataset network measure was not included.
As the data was redundant and the contribution of this dataset towards the overall ac-
curacy and prediction rate was been less. It had 113 variables which was likely impossible
to compute.

Actor A_AcCC Login_day_count Logout_day_count Playtime playtime_per_day avg_money Login_count ip_count Max_level

1 1047 6482393 46 42 764520 18202.857 26576.5613 97 27 51

2 1049 6275719 16 16 48300 3018.750 902. 5117 32 13 47

3 1120 6596993 4 4 37867 9466.750 60.9084 8 G 19

4 1164 66706E6 9 9 34592 3843.556 127755.7357 9 G 50

5 1184 4220231 11 11 117686 10698.727 7589.3723 37 8 40

6 1257 4458955 26 26 113372 4360.462 455, 3869 66 14 42
collect_max_count Sit_ratio Sit_count sit_count_per_day Exp_get_ratio Exp_get_count exp_get_count_per_day

1 G 1.0430 1012 24,0952 15.5210 15060 358.5714

2] 3.5570 141 8.8125 13.6226 540 33.7500

3 3 4.,9882 190 47.5000 15.6734 597 149,2500

4] 0.8581 30 3.3333 17.8776 625 69,4444

5 4 4,2667 215 19,5455 18.0194 908 B2.5455

6 690 1.7386 279 10.7308 20,1845 3239 124.5769
Item_get_ratio Item_get_count item_get_count_per_day Money_get_ratio Money_get_count money_get_count_per_day

1 6.2847 6098 145.1905 10,2010 9898 235. 66667

2 6.9122 274 17.1250 7.5429 299 18.68750

3 13.5994 518 129.5000 9.7926 373 93.25000

4 6. 8650 240 26. 6667 13.5584 474 52.66667

5 B8.0572 406 36.9091 9.2876 468 42.54545

6 18.4957 2968 114.1538 5.1972 834 32.07692
Abyss_get_ratio abyss_get_count abyss_get_count_per_day Exp_repair_count Exp_repair_count_per_day Use_portal_count

1 11.0636 10735 255.5952 66 1.5714 2

2 2.8507 113 7.0625 3 0.1875 2

3 0.0000 0 0.0000 15 3.7500 V]

4 8.0950 283 31.4444] 0.0000 V]

5 1.2502 63 5.7273 3 0.2727 V]

6 1.4458 232 8.9231 10 0. 3846 V]
uUse_portal _count_per_day Killed_bypc_count kKilled_bypc_count_per_day killed_bynpc_count Killed_bynpc_count_per_day

1 0.0476 690 16.4286 172 4.0952

2 0.1250 30 1.8750 16 1.0000

3 C.0oo0] 0.0000 20 5.0000

4 C.0oo0 26 2. 8889 4] 0.6667

5 C.0oo0 5] 0.5455 17 1.5455

6 C.0oo0 15 0.5769 g 0.3077
Teleport_count Teleport_count_per_day Reborn_count Reborn_count_per_day Social_diversity Avg_PartyTime cuildact_count

1 1051 25.0238 2 0.0476 0. 6407 6760. 206 1

2 118 7.3750] 0. 0000 1.3499 4792.692 2

3 37 9.2500] 0. 0000 0.6931 5341.333 V]

4 61 6.7778] 0. 0000 0.9345 4584.714 V]

5 54 4.9091] 0. 0000 0.9736 6350, 500 V]

6 131 5.0385] 0. 0000 1.3656 3977. 500 V]
Guildloin_count Type

1 0 Human

2 0 Human

3 0 Human

4 0 Human

5 0 Human

6 0 Human

Dimension and summary of the dataset:

ErNvDOO|

ratio
0000
0000
1987
5390
3279
L7240

0
653

3456
4388
5774
1476725

[1] 49739 43
= summary(all_features_data)

Actor A_AccC Login_day_count Logout_day_count Playtime playtime_per_day
Min. 1047 Min. : 0 Min. : 0.00 Min. : 1.00 Min. 10802 Min. : 136.7
1st qQu. :272154 1st Qu.: BE7ES66 1st qQu.: 8.00 1st Qu.: 8.00 1st qQu.: 36657 1st Qu.: 3941.2
Median :400583 Median : 8290550 Median :22.00 median :22.00 Median : 148651 Median : 8935.4
Mean 1344941 Mean : B483737 Mean 130,86 Mean 130,67 Mean 576831 Mean : 16363.6
3rd Qu. :442201 3rd qu.:10433334 3rd Qu. :49.00 3rd Qu. :49.00 3rd Qu.: 575728 3rd qu.: 18016.7
Max. 1472898 Max. 111369388 Max. :88.00 Max. (BE.00 Max. 17334033 Max. 1160935.0

avg_money Login_count ip_count Max_level collect_max_count sit_ratio
Min. : 0.0 Min. : 0.0 Min. 0.0 Min. : 1.0 Mmin. 0.0 mMin. : 0.0000
1st qu.: 811.6 1st Qu.: 16.0 1st qu.: 3.0 1st Qu.:23.0 1st qu.: Q.0 1st Qu.: 0.4688
Median : 4536.2 Median : 48.0 Median : 7.0 Median :36.0 Median : 2.0 Median : 1.3127
Mean 19138.7 Mean 107.2 Mean : 11.8 Mean 134.8 Mean 248.2 Mean : 2. 2898
3rd Qu.: 17177.6 3rd Qu.: 124.0 3rd Qu.: 16.0 3rd qu.:50.0 3rd qQu.: 72.0 3rd qQu.: 2.8573
Max. 12524605, 2 Max. 114865.0 Max. 1205.0 Max. 155.0 Max. :13529.0 Max. 145.3627

Sit_count sit_count_per_day Exp_get_ratioc Exp_get_count exp_get_count_per_day Item_get_ratio
Min. : o wMmin. : 0.000 Min. : 0.00 Min. : 0 Min. : 0.0 Min. : 0.000
1st qu.: 35 1st Qu.: 3.125 1st qQu.:11.92 1st Qu.: 468 1st qu.: 51.6 1st Qu.: B.5387
Median : 188 Median : 11.929 Median :15.97 Median : 2188 Median : 140.0 Median :12.810
Mean 1962 Mean 57.606 Mean :15.62 Mean 135681 Mean 423.6 Mean :13.031
3rd qQu.: 908 3rd Qu.: 30.785 3rd qQu. :19.08 3rd qu.: 10400 3rd Qu.: 306.7 3rd qQu. :16.607
Max. 1219363 Max. 16011, 300 Max. 179.41 Max. 1562944 Max. 122019.7 Max. 148,961
Item_get_count item_get_count_per_day Money_get_ratio Money_get_count money_get_count_per_day Abyss_get
Min. : o Mmin. : 0.0 Min. : 0,000 Min. o wMin. : 0.00 Min.
1st qu.: 408 1st Qu.: 41.4 1st qQu.: 2.315 1st qQu.: 141 1st qu. : 12.60 1st qu.
Median : 1848 Median : 108.1 Median : 6.338 Median : 629 Median : 48.26 Median
Mean 13540 Mean 421.0 Mean 6.382 Mean 4389 Mean 136.98 Mean
3rd qQu.: 8743 3rd Qu.: 247.9 3rd Qu.: 2.160 Ird Qu.: 3200 3rd qQu.: 115.39 3rd qu.
Max. 11076296 Max. t13798.7 Max. 143,481 Max. 1332142 Max. :14819.12 Max.
Abyss_get_count abyss_get_count_per_day Exp_repair_count Exp_repair_count_per_day Use_portal_count
Min. : 1] Min. H 0.000 Min. 0.00 Min. : 0.0000 Min. : 0.0000
1st qu.: 1] 1st Qu.: 0.000 1st qu.: 0.00 1st Qu.: (.0000 1st Qu.: 0.0000
Median : 29 Median : 1.308 Median : 5.00 Median : 0.3220 Median : 0.0000
Mean 2337 Mean 43,254 Mean 20.33 Mean 0. 8091 Mean : 0.9879
3rd Qu.: 1094 3rd qu.: 39.306 3rd Qu.: 21.00 3rd Qu.: 1.0000 3rd qu.: 0.0000
Max. 1132445 Max. t4282.000 Max. 11464, 00 Max. 1146, 0000 Max. 191. 0000
use_portal_count_per_day Killed_bypc_count killed_bypc_count_per_day killed_bynpc_count Killed_bynpc_count_per_day
Min. :0. 00000 Min. H Q.00 Min. : 0.0000 Min. : Q.00 Min. Q. 000
1st qu. :0. 00000 1st Qu.: Q.00 1st qQu.: 0.0000 1st qu.: 3.00 1st Qu.: (.320
Median :0.00000 Median : 3.00 Medfan : 0.1538 Median : 19.00 Median : 1.385
Mean :0.02382 Mean 95. 89 Mean 1.9654 Mean 94,06 Mean 2.585
3rd Qu. :0. 00000 3rd qu.: 45.00 3rd qQu.: 1.4304 3rd Qu.: 95.00 3rd qu.: 3.414
Max. 1 3. 80000 Max. (7388.00 Max. :174.4500 Max. 14552, 00 Max. 1101. 667
Teleport_count Teleport_count_per_day Reborn_count Reborn_count_per_day Social_diversity Avg_PartyTime
Min. 0.0 Min. : 0.000 Min. 0. 000 Min. : 0. 00000 Min. :0. 0000 Min.
1st qu.: 26.0 1st Qu.: 3.0586 1st qu.: 0. 000 1st Qu.: 0.000300 1st Qu.:0.4101 1st qu.
Median : 117.0 Median : 7.700 Median : 0.000 Median : 0.00000 Median :0.8148 Median
Mean 453.4 Mean : 11.948 Mean 4,297 Mean 1 0.07567 Mean (0.7288 Mean
Ird Qu.: 48%.0 3rd qQu.: 16.015 3rd Qu.: 1.000 3rd Qu.: 0.02615 3rd qu.:1.0822 3rd qu.
Max. :14336.0 Max. 1268.000 Max. :1869. 000 Max. 123.18180 Max. 1.8095 Max
Guildact_count Guildioin_count Type
Min. : 0.0000 Min. :0.000 Bot @ 6250
1st qu.: 0.0000 1st Qu. :0.000 Human:43489
Median : 0.0000 Median :0.000
Mean 0.7467 Mean 10,279
3rd qQu 1. 0000 3rd qu.:1.000

5 Modelling Implementation

e Naive Bayes:

The motive behind this implementation was to predict between two labels that is Human
and Bot which is been achieved by using classification algorithm.

As the dataset is larger with 43 variables, this algorithm is best for the big dataset. It

is easy to understand and can be built easily as the algorithm is not sensitive to feature
that are irrelevant. It is often used in deploying real time system as it can handle real
discrete data.

1. Caret (Classification and Regression training) package is installed as it is the
most powerful package in R which is used to split the data, variable importance
and for feature selection.

2. ‘rpart’ was used to establish a relation between the variables and was also used

for training the data. To visualize data plot() function was used.
c_ data <= tra1nnType~ E data = all_data, method = "rpart”

3. The important varibales are plotted using varlmp().

= imp_data =- wvarImp{c_data)
- imp_data
rpart variable importance

only 20 most important variables shown (out of 42)

overall
playtime_per_day 100. 000
item_get_count_per_day 95.991
exp_get_count_per_day 91.055
Item_get_ratio 70.937
sit_count_per_day 62.900
Reborn_count_per_day 2.019
Item_get_count 1.994
Reborn_count 1.933
collect_max_count 0. 000
Teleport_count_per_day 0.000
Money_get_ratio 0.000
Killed_bypc_count 0.000
Abyss_get_count 0.000
Killed_bypc_count_per_day 0.000
Abyss_get_ratio 0.000
Sit_count 0. 000
PlayTime 0.000
AcCtor 0.000
ip_count 0.000
abysz get_count_per_ day 0.000

4. Another package which is ‘dplyr’ is 1nstalled which is a powerful package as caret
but is used for manipulating the data when the data frames are in memory and out
of memory.

5. The data is then split into ratio of 75:25 of which 75 percent is of training set
by using createDatapartion() function.

6. As the algorithm is used for prediction and plotting. Another R package ‘€1071’
is installed. It is generally used when one used SVM (support Vector machine)

algorithm.

split_data <- createbpatapartition(all_dataiType, p=0.73, 1ist = FALSE)
trainbData =- all_data[split_data,]

testData <- all_data[-split_data,]

¢ Random Forest

This algorithm shows better accuracy rate and performance as compared to decision
tree. As both can be used for regression purpose and classification, But, for this purpose,
we are using Random forest for classification. Random forest is considered to be the
best learner whereas, each single tree in random forest is considered to be weak learner.
The limitation or drawback of this algorithm is that it is biased with features with larger
number of classes.

1. Package name ‘boruta’ is installed. This name is taken from a demon who lived
in pine forests (Dutta, 2016) in Slavic mythology from ancient. The package is used for
selecting variables.

2. Package name ‘ranger’ is installed which act as a catalyst for Random forest to increase
the speed of the implementation process.

3. Using package ‘boruta’ the data was trained and maxRun was kept to 11 due to
lack of hardware resource as random forest uses high computational power.
4. The data was split into same ratio of 75:25.

b_data «<- Boruta(Type~., all_features_data, doTrace = 1, maxRuns = 11}
names (b_data)
b_significant «<- getselectedattributes(b_data, withTentative = TRUE)

b_significant

tent_fix «<- TentativeRoughFix(b_data)
b_significant «<- getselectedattributes(tent_fix)
b_significant

5. Variables are sorted and ordered and a mean importance of the variable is generated.

e GLM (Generalized Linear Model)

GLM is used to check the relationship between the response variable and the features
available. It is also considered best for curve fitting. Therefore, it is used to project the
relation between the selected feature and the target variable which is ‘Type’. There is
multiple package installed while implementing GLM technique.

set.seed(123)

install. packages ("mlbench™)
install.packages (“"caret”)
install.packages("lattice”)
install.packages ("ggplot2™)
install. packages ("dplyr™)
install. packages ("ROCR")
Tibrary(mlbench)
Tibrary(caret)
Tibrary(lattice)
Tibrary(ggplot2)

Tibrary (dplyr)
Tibrary(ROCR)

1. Mlbench — A framework which is used in distributed Machine Learning. It is
mainly used to enhance or improve the robustness, transparency, reproducibility and to
give good measures. (Github, 2018)

2. GGplot2 — It is generally used for creating graphs in the system.

After the variables are defined and mapped with graphical primitive, rest part is done by
ggplot2. (Wickham, 2016)

3. Lattice — It is used for plotting multivariate data and for data visualization.

4. ROCR — It is basically used to get the ROC curve recall and precision. It is also used
to display the relation between the specificity and sensitivity.

5. Correlation Matrix is generated using cor() function with a cutoff of 0.5.

highlyCorrelated <- findcorrelation{cor(all_rFeatures), cutoff = 0.53)
highlyCorrelated

6 Evaluation

Through confusion matrix accuracy, sensitivity and specificity of each model is calculated
and evaluated.

e 1.Naive Bayes Matrix

The result below is confusion matrix which is generated through caret package.

Confusion Matrix and statistics

Reference
Prediction Eot Human
BoOtT 1023 142
Human 539 10730

Accuracy @ 0.9452
93% CI : (0.9411, 0.9492)
No Information Rate : 0.8744
P-value [acc = WNIR] : <= 2.Z2e-16

kKappa @ 0.7202

Mchnemar's Test P-value < 2.2e-16
sensitivity : 0.65493
specificity : 0.98694
Pos Pred value 0.87811
Neg Pred value : 0.95217
Prevalence 0.12562
Detection Rate 0.08227
Detection Prevalence : 0.09369
Balanced accuracy : 0.82093

'Positive’ Class : Bot

The result above shows the accuracy rate of 94.52 percent. Calculating the precision
of this model by TP /TP+FP which is 0.681 and recall is calculated by TP/TP+FN
which gives 0.872.

e 2. Generalized Linear Model

FALSE TRUE
0 1035 539
1 134 10726
= acc <- sum{diag(gim_table)/sum{gim_table))
> ACC
[1] 0.9458742

From the above the accuracy of the model is 94.58 percent whereas,

= preci{gim_table)
[1] 0.9521527

= recall(gim_table)
[1] 0.9876611

Here the Precision of GLM is 95.21 percent and Recall is 98.76 percent. Comparing
this model with Naive Bayes it does not show such good performance apart from
the Recall rate.

Below is the ROC curve for the above model

(=T r -
o | | @
o o
z
@ o | | @
(] (= (=]
=
=
o
=%
o T _] | =
2 © o
'_
o | (o]
o o
g _| o
T T T T T T
00 02 04 06 08 1.0

False positive rate

¢ 3.Random Forest

Contusion Matrix and statistics

rReference
prediction Eot Human
BOT 1130 432
Human 109 10763

Accuracy : 0.9565
95% CI : (0.9528, 0.96)
No Information Rate : 0.9004
P-value [AcC = NIR] : <= 2.2e-16

Kappa : 0.7827

Mcnemar's Test P-value : < 2.2e-16
Sensitivity : 0.91203
specificity : 0.96141

Pos Pred value : 0.72343

Neg Pred value 0.98997
Prevalence 0.09965

Detection Rate 0.09088
Detection Prevalence : 0.12562
Balanced Accuracy : 0.93672

‘positive’ Class : BoOT

The above chart shows the accuracy rate of the model which is 95.99 percent. In
this model, the precision rate is higher as compared to the recall rate which states
that many numbers of positive examples have been missed which are false negative,
but the predicted positive are exact.

Comparison Table

Model Precision Recall F1-Score Accuracy
Naive Bayes 0.681 0.872 0.764 94.52
Generalized Linear | 0.952 0.987 0.966 94.58
Model

Random Forest 0.921 0.743 0.822 95.65

7 Discussion

Detailed explanation is mentioned discussing about the results of the model that is been
used in the process and future work with limitations of the research.

This model is proposed to lower the damage that is causing the user experience and
the game provider. From the behavioural observation, it shows that game bots perform
same steps and actions which allow them to gain an unfair points against the actual user.
They do not interact with the actual players and only transmit assets with each other.
A discriminative model is been proposed after evaluating these behavioural features. The
model gives accuracy of 95.99 which can be used to detect and ban the bots.

The motive behind the research is to find the best predictive model, for that the
dataset has been trained with 3 different algorithms. Before splitting the data, feature
selection method is used for every model trained keeping the ratio same for all. From
the table, Generalized Liner Model have the best Precision and Recall rate but overall,
the accuracy is lower than other two models. For accuracy Random Forest have given
the best accuracy i.e. 95.99 percent, therefore we select this model as the best fit for the
dataset.

False positive error is nothing but predicting an ID to be bot, but they are not actually
a bot. This would be a challenge while bot detection. It is ok to predict a bot as human
but not human as not. Therefore, decreasing the false positive number is the main thing
in detecting the bots. The trained models gave higher precision rate where positively
predicted are true. GLM shows higher precision rate but the accuracy rate is low.

8 Conclusion and Future Work

Online games have gathered from all the geographical location to play with each other
or against, which allows them to gain in game currencies by defeating the enemies and
the earned currency can be converted to real money as well.

Bot detection technique using behavioral analysis was accomplished using the dataset
which consist of players information from AION game. This dataset was then used
with different classification algorithm. From the models that have been used Random
forest gave the best accuracy rate. We were successfully able to reduce the false positive
prediction where it gave good results, but the accuracy was reduced.

Each day a new software is in the market for the bot detection method and this
method is a continuous process. For every game that is different because each game have

10

its own different design so the main motive or idea is to make a general detection method
which will be useful for all the MMORPG games even if the design is different.

Further goal is to study the different style of the game bot, this can be done by
reinforcement learning where bots can be deployed in every strategically different game
to know the style of the game and the data can be collected where using these methods
we can create a counter wall which can be used against the bot. More variations can be
used with the techniques which would increase the accuracy rate and would also decrease
the false positive.

9 Acknowledgement

Sincere thanks to My Mentor/Guide Professor. Jeorge Basillo who guided me helped,
suggested me all through the way to the right path. In each meeting My Mentor without
hesitation replied to all my queries with even good ideas. I would also thank my Friends
and Family who all supported me all through this time.

11

References

1.

10.

11.

12.

Batchelor, J., 2018. Games Industry. [Online| Available at: https://www.gamesindustry.biz
/articles /2018-12-18-global-games-market-value-roseto- usd134-9bn-in-2018

. Chen, K.-T.et al., 2009. Identifying MMORPG Bots: A Traffic Analysis Approach.

EURASIP Journal on Advances in Signal Processing, Volume 2009.

Chung, Y. et al., 2013. A Behavior Analysis-Based Game Bot Detection Approach
Considering Various Play Styles. Etri Journal, 35(6).

Github, 2018. MLBench. [Online] Available at: https://mlbench.github.io/2018/09/07

/introducing-mlbench/ ; A. R., . H. K. K., A. M. . S. H. J., 2016. SpringerPlus.
[Online] Available at: https://springerplus.springeropen.com/articles/10.1186 /s40064-
016-2122-8rightslink

Kim, H. K. Hyukmin, K., 2011. Self-similarity based Bot Detection System in
MMORPG. s.l., s.n.

. Lee, E. et al.; 2016. You are a Game Bot!: Uncovering Game Bots in MMORPGs

via Self-similarity in the Wild. s.l., s.n. | J., 2018. Datacamp. [Online] Available
at: https://www.datacamp.com/community/tutorials/logistic-regression-R

Pao, H.-K., Chen, K.-T. Chang, H.-C., 2010. Game Bot Detection via Avatar
Trajectory Analysis. IEEE Transactions on Computational Intelligence and Al in
Games, 2(3), pp. 162-175.

McCracken, G., 2018. Bot Detection in Online Games through Applied Machine
Learning and Statistical Analysis of Mouse movements.

. Techopedia, 2019. Techopedia. [Online] Available at: https://www.techopedia.com

/definition /19278 /farming

Suznjevic, M., Stupar, I. Matijasevic, M., 2011. MMORPG player behavior model
based on player action categories. Ottawa, s.n.

Wickham, H., 2016. In: ggplot2: Elegant Graphics for Data Analysis. s.l.:Springer-
Verlag New York.

Wendel, E., 2012. Cheating in Online Games.

12

	Introduction
	Research Question
	Literature Review
	Methodology
	Data Acquisition

	Modelling Implementation
	Evaluation
	Discussion
	Conclusion and Future Work
	Acknowledgement

