
Neural Text-to-Text Generation System
using Generative Adversarial Network and

Monte Carlo Policy Gradient

MSc Research Project

Data Analytics

Seemanthini Narasimha Moorthy
Student ID: X18141447

School of Computing

National College of Ireland

Supervisor: Dr. Vladimir Milosavljevic

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Seemanthini Narasimha Moorthy

Student ID: X18141447

Programme: Data Analytics

Year: 2019-20

Module: MSc Research Project

Supervisor: Dr. Vladimir Milosavljevic

Submission Due Date: 12/12/2019

Project Title: Neural Text-to-Text Generation System using Generative Ad-
versarial Network and Monte Carlo Policy Gradient

Word Count: 5760

Page Count: 18

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 28th January 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Neural Text-to-Text Generation System using
Generative Adversarial Network and Monte Carlo

Policy Gradient

Seemanthini Narasimha Moorthy
X18141447

Abstract

Text-to-text generation is a fundamental task in natural language processing.
Traditional models rely on standalone recurrant neural networks like Long Short
Term Memory(LSTM) and Gated Recurrent Units(GRU). Generative Adversarial
Networks (GAN) have found little success in generating discrete valued data like
text. Major drawbacks lies in the failure to pass discrete output from generator
model to discriminator model, and the inability of the discriminator model to assess
incomplete sentences. This research strengthens the use of Generative Adversarial
Networks combining it with Monte Carlo Policy Gradient, where the gradient policy
update comes directly from the discriminator model and is passed back as the
reward signal by using Monte Carlo Search algorithm. The results show that by
combining Generative Adversarial Networks and Reinforce Algorithm, significant
results can be obtained comparative to baseline models using evaluation metric
called Bilingual Evaluation Understudy Score -N (BLEU-N). A BLEU score of 0.3
was achieved overall through different experiments.

Keywords: Natural Language Processing, Long Short Term Memory(LSTM), Gated Re-
current Units(GRU), Generative Adversarial Networks(GAN), Monte Carlo Policy Gradi-
ent

1 Introduction

1.1 Background and motivation

Language modelling has been a key aspect in natural language processing domain. It has
further catapulted into advancement with the growth and development of deep learning.
With innovative ways of text-to-text generation models emerging that matches state of the
art, cross domain approaches are being applied to check if they can be tweaked to match
the benchmarks of existing language models.Growth in big data has made quality text
data corpus the need of the hour. Applications of natural language generation include
text-to-speech generation,grammar and text correction, machine translation(Sutskever
et al. (2011)), dialogue and poem generation and sequence prediction (Bahdanau et al.
(2019)).

Neural text-to-text generation is the process of taking text data as input, and the
model produces authentic text output. This is performed on the input text considering

1



several factors like structural integrity, syntactic and semantic analysis, and the over-
all meaning of the entire text corpus. Neural text-to-text generation language models
have found positive success with traditional recurrent neural networks like long short
term memory, variational autoencoders, gated recurrent units and Bidirectional Encoder
Representations from Transformers (Devlin et al. (2018)). Goodfellow et al. (2014) intro-
duced Generative Adversarial Networks (GAN) presenting a combination of two models:
generator that creates new images from input and a discriminator that identifies if the
text input is real (from input data), or fake (generated by the generator).

Reinforcement Learning is the area of machine learning in which an entity or agent
is put in an environment and has to learn to accumulate reward points with suitable
actions or get penalised for incorrect actions. Monte carlo policy gradient is a reinforcent
policy gradient algorithm which used training samples to update the policy parameters. It
considers the complete trajectory of training samples, reducing the gradient variance but
keeping bias unaltered (Plaat et al. (2015)). Previous research shows the implementation
of using GAN with reinforcement algorithms for neural text generation but had issues
such as mode collapse, vanishing and exploding gradients. Generative adversarial network
and reinforcement learning have succeeded independently in the past in varying degrees
for text generation.

This research introduces a novel approach for neural text-to-text generation with
the use of the successful image synthesis model Generative Adversarial Network. The
drawbacks of GAN include difficulty in generation of discrete valued data and inability
of discriminator to identify real versus generated text on the basis of partial output.
These drawbacks will be worked on with the use of Monte carlo policy gradient with
continuous reward feedback during generator training. The evaluation of newly gener-
ated/synthesized text output is evaluated on the basis of conventional language model
metric like BLEU-N

The report is organised as the following sections: Section 2 provides the review on
state of the art models and literature existing in the field of neural-text-to-text generation
models, Section 3 discusses the methodology followed for the research implementation,
Section 4 describes the design and implementation of the language modelling using GAN
and Monte carlo policy gradient, Section 5 presents the evaluation of the implemented
model and weighs in on the performance of the implementation with existing models,
Section 6 presents the conclusion and future work.

1.2 Research Question

”Can text-to-text generation using deep learning be enhanced by combining Generative Ad-
versarial Network and Monte carlo policy gradient in comparison to traditional Recurrent
Neural Network models?”

2



2 Literature Review

This section consists of literature present in the domain of neural text generation. Nu-
merous machine learning models have been implemented, which can mainly be put into
three main categories.

2.1 Implementation using Recurrent Neural Networks

Recurrent neural networks have successfully been implemented for generation of discrete
data like text and speech. Shedko (2018) utilised an RNN long short term memory
model for text generation for synthesizing Baron style poem creation using Gutenberg
text corpus. The text synthesis succeeded, with the emotional and author style mimicry
carried out with the help of traditional bag of words model. This work could be improved
upon with the addition of after-processing network model to improve output. Zhang et al.
(2019) proposed the Self Labelling Conditional Variational AutoEncoder consisting of a
labelling model network indicating the perfect encoder for the selected decoder. This
experiment was conducted on EGOODS dataset. There were several models tried with
the dataset, but it worked best for one to many text generation. The quality of text
improved with the inclusion of encoder-decoder model, offering similar accuracy scores
in comparison to baseline sequence-to-sequence models. Similar work has been carried
out by Xu et al. (2018) called TextDream where semantic space search is performed
with initial randomised seed input. This performs better in comparison to conditional
variable auto-encoder model as semantic search performs better than text generated
using single tokenized label. The ability of text generation switching to different fields
indicates the diversity of TextDream model and is reflected in the discinct text output
scores. Ruan et al. (2019) went a step further and proposed Condition-Transforming
Variational AutoEncoder- a VAE model with a latent variable taken as input and non-
linear transformation performed on it by encoder. This model has good evaluation scores
for the subjectivity by providing topic-relevant responses and domain ease.

There have been research performed where the implementation works on multiple
tasks for the same dataset. Wang and Wu (2018) utilised VAE for binary classification and
text generation tasks. Long short term memory with self-attention for the enhancement
of autoencoder output. The objective of the experiment was successful with fixed length
and compact text generated resonating the meaning of the input corpus. The only reason
this could not compete with the baseline DCNN and SVM model are the vanishing KL
problem and high error rate. Chen, Wu, Jia, Zheng and Huang (2019) is another sequence
to sequence model in which headlines generation is considered as a summarization task
with Keyword Enhanced Diverse Beam Search(KEDBS), where a CNN-RNN model is
used to generate semantically relevant text output with altogether good ROUGE scoring.
Wang et al. (2019) implemented a conversational dialogue agent where dialogue history
is integrated with sequence-to-sequence convolutional neural network model providing
external knowledge to gain relevant text output. The Ubuntu dialogue corpus was used
for this model. Absence of provided background information in the generated output
and constant variability with fluctuation resulted in lower BLEU scores as less as 0.07.
Budhkar et al. (2019) utilised a word embeddings model presented at train time. The
advantage of this model is the irrelevance of vocabulary size in generating text output.
With random noise fed into the discriminator, classification is done on the basis of it
being real or artificial. Discrete nature of text input is ignored by the use of semantic

3



information.
Recurrent neural networks have a few problems despite good results like gradient

explosion and vanishing which have been mitigated with GAN methods for text genera-
tion.

2.2 Language modelling using Generative Adversarial Network

Goodfellow et al. (2014) introduced the GAN model with impeccable abilities for image
synthesis. Several researches have been conducted on implementation of GAN in the field
of natural language processing. Li et al. (2018) introduced Text-to-Text GAN which re-
creates paraphrased sentences of word embeddings from continuous space input. Words
with closest meaning to the input text space are replaced in the paraphrased output,
retaining its core semantic meaning. This appears to create authentic sentences. Signific-
ant text corpus used in this implementation include Chinese and English movie reviews.
High output text diversity was displayed in Chinese, with good ROUGE scores and the
adaptability nature of model to multiple languages. Remarkable changes in this research
includes word embedding comparison with output text using euclidian distance, which
seamlessly produces continuous text output from input. Fedus et al. (2018) proposed
a popular language model named Conditional-GAN, with the principle functionality of
blank with a word of similar meaning, gauging some knowledge of words surrounding
the blank space. This process is termed as masking. The hidden state is filled with
the meanings of words the model has come across until the time step. Typical datasets
like Penn treebank and IMDB movie review datasets were used to train and test this
implementation. This implementation performs better on hidden vector space encoding
in comparison Yu et al. (2016) with a significant increase of 6% in ROUGE scores.

Chen, Li, Jin, Zhang, Dai, Chen and Song (2019) introduces a model which is
similar to Yu et al. (2016) SEQGAN model, sans the off-policy policy gradient. The
generator model sequentially generates part of the output with the ability to multitask,
i.e. work on the complete and partially generated output at the same time. Sub-samples
are taken before the complete output is evaluated, in comparison of halting the reward
evaluation system until the complete output is obtained.One drawback of sub-sequence
sampling is the sub-sequence vector being sparse. Due to the sub-sequence sampling, the
discriminator receives both complete and partial output samples provides authenticity
prediction. This implementation has an edge over other models due to better feedback
count and better feedback analysis of partial outputs. This reduces the risk of mode
collapse with smaller text outputs in comparison to the scenario where the discriminator
needs to wait for the entire output to be generated, and proportional evaluation time
being indicative of discriminator output. This also improves long output dependency.
EMNLP2017 WMT news dataset is used for this research.

Li et al. (2015) describe the model as a conversational system with the use of an
objective function named Maximum Mutual Information (MMI). MMI extrapolates the
information between source and destination, magnifying the knowledge held on during
training. Twitter conversation and Opensubtitles are the datasets used for training, keep-
ing in mind the conversational nature of the model. The model is rewarded poorly for
uninteresting responses. Evaluation metrics used are BLEU scores and human assess-
ment. Zhang et al. (2017) introduced TextGAN, where long short term memory RNN
model is used as generator and convolutional neural network model is used as discrim-
inator. A high dimentional feature list is presented with a discrepancy metric to which

4



the kernel is applied, which matches authentic and synthetic data. The moments in
generated output is matched to the latent vector space, making the moment matching
a kernel-based approach. Improving long output behavior is the one drawback of this
model. Lin et al. (2017) introduces RankGAN in which appropriate ranks or positions
are presented to both machine generated and human written texts in place of bifurcating
the data set and limiting it to a binary grouping classification. Chinese poem dataset and
Shakespeare’s text corpus are fed into the model. As the input text contains more than
two ranks, the discriminator has a better probability of recognising synthesized output
by giving it a broader berth at recognition., this in return helps generator create better
and authentic text outputs.

Until this point, there are several models which produces syntactically and semantic-
ally understandable outputs. There is a lack of the emotion and feeling that comes with
a real human’s work which lacks in artificially generated text. Wang and Wan (2018)
introduced SentiGAN, with a complex architecture containing multiple generators and
one multi-class discriminator model. Several generators are provided with unsupervised
training to produce sentimental text. Every generator is allocated a sentiment, with
multiple datasets being worked on at the same time. In comparison to variational auto-
encoder and SeqGan, SentiGAN performs better with almost 5% higher accuracy. This
model provides compact sentences filled with the required sentiments, coming very close
to mimicking human emotion. Guo et al. (2017) has an implementation similar to Fedus
et al. (2018) as the discriminator purposefully seeps out information about its knowledge
on current time step learnings to the generator model. This strengthens the generator
output in the future. The concept of manager and worker modules are introduced, where
the additional seeped information from the discriminator to generator is passed onto the
manager module and the worker module receives the features that have been extracted
from the leaked information. A big advantage of this implementation is that unsuper-
vised training can be performed on the manager and worker module to produce text.
Haidar and Rezagholizadeh (2019) implemented TextKD-GAN brought out a combina-
tion model containing variational auto-encoder and generative adversarial networks. This
is a knowledge distillation approach in which weakened information is moved from the
VAE model known as teacher model to the generator known as the student model. The
one hot encoded representation from real data is compared with the softmax output of
the student model, which nullifies the necessity of pretraining. GAN generators function
best with pretrained settings, but due to its absence, the VAE is pretrained. Vanishing
gradient is the main drawback of this implementation.

Despite the success of generative adversarial networks in neural text generation,
there are still multiple shortcomings with regards to long text output generation, hold-
ing syntactic and semantic integrity when compared to input text, where reinforcement
algorithms fare better when combined with GAN.

2.3 Implementation using Generative Adversarial network with
Reinforcement learning algorithms

Reinforcement learning policy gradient algorithms alleviate several issues existing in pure
GAN text generation models. Appropriate actions performed by the agent is rewarded,
else penalised. Reward optimisation is performed best by policy gradient algorithms in
comparison to other implementations of reinforcement learning. There are several works
illustrating advantages of combining the novel concepts. Li et al. (2017) introduced a

5



dialogue generation system for public domain utilising reinforcement learning. The dis-
criminator classification output is fed back to the generator as usual. REGS or Reward
for Every Generation Step is calculated at every step, and adversarial reward estimation
and evaluation is performed. Credit assignment is done for mean-squared loss for every
pair of authentic and estimated reward. Monte carlo tree search is used for intermedi-
ate reward assignment and rewards for discriminator are restricted sequences used for
decoding with the help of teacher training. This model has 18% better accuracy when
compared to plain reinforcement language model. The model which presented itself as
a baseline model for future language models is the Sequential Generative Adversarial
Network or SeqGAN. This model makes use of a typical GAN model with reinforcement
learning to improve throughput. BLUE score is the metric used to evaluate quality of
output text generated. This model comparatively has a higher BLEU score with reference
to other baseline models. Political speeches of previous American president Mr. Barack
Obama has been used along with quantrains in Chinese language for testing compatibility
and variability with change in language. The model failed to provide lengthy outputs,
which happens to be a major drawback. Xu et al. (2019) implemented a model where
feature learning for the successor happens during training with the help of reinforcement
learning. The model also includes token generator which is based on maximum likelihood
estimator. The incomplete output is taken and the estimator determines the next value
to be filled in for the output to be complete. The value function input is divided into
two parts: a successor map and reward predictor which works on the current and future
time step word prediction at the same time. This is the major difference between this
implementation and other implementations with reinforcement learning. Vanishing and
exploding gradients were still major issues that were left unresolved with this proposal.

Rajeswar et al. (2017) used the GAN objective function as the baseline, and the
proposed the discriminator network provide continuous valued input producing discrete
outputs with syntactic and semantic accuracy executed on the Chinese poem dataset.
The LSTM generator model BLEU score of 87% is the highest in comparison to other
baseline models. Zheng et al. (2017) introduces a comment generation model for news
websites, preserving the semantic relevance of both news and previous comments. With
knowledge of sentiments present, this shows a similarity to the implementation by Wang
and Wu (2018)’s SentiGAN. Gated attention mechanism is implemented, with random-
ised samples being fed the generator for diversity in generated comments. Adversarial
learning is introduced to this model with the inclusion of reinforcement learning. The
news comments are web scrapped from the news website 163.com, which is used as the
input text corpus. Word and character level text generation models are implemented.
Performance degradation is the major pitfall of this model, Where diversity in senti-
ments makes the discriminator fail to classify comments. The solution to this could be
to combine both word and character level modelling. citeLi20182 implements a model
named CS-GAN in which RNN generator is assembled with reinforcement learning al-
gorithm. With the knowledge of current character input and input semantic space, the
generator has to predict the next suitable character for the output. The main advantage
of this model is the use of categorical information stored to make labelled data. RNN
helps in learning and retaining the sentence structure. Low volume data obstructs the
performance of the supervised learning model.

6



3 Methodology

Several methodological approaches exist for machine learning problems. Looking into
the natural language processing and language modelling aspect of the implementation,
Cross-Industry Standard Process for Data Mining also known as CRISP-DM is gauged
to be the optimal approach that provides the full understanding of this research and its
objectives. All phases and steps for the methodology are visualised in Figure 1

Figure 1: CRISP-DM methodology

3.1 Business Understanding

Neural text generation has been existent in some form or the other since the internet
was created. Graves (2013) has implemented traditional RNN for long text generation
with text input from Shakespeare’s work. Not just in the literary world, text-to-text
generation systems are also faring well in the tech industry with deep learning models
generating latex and C code from sample input codes. It has been stretched to as far as
generating baby names, with considerable success. 1. The process of software learning to
imitate input style reflects upon the human learning process. Humans read novels, news
and other literary articles. They understand how sentences have to be constructed and
words morphologically placed to present to the world the best group of words together
that shows how they are feeling.

Text-to-text generation has been used in news reporting as well where Dušek et al.
(2020) talks a ”robot journalist” that reported a small earthquake within three minutes
of its occurrence with details like intensity, location and time. Criticality of the situation
makes to the data being generated faster at a higher stakes. Rival newspapers took more
time than a software whose work was to publish information on events as and when it is
happening.

Language models could save human workload and create textual or literary work
in a considerably less amount of time. This elevates the humans to utilise their time

1http://karpathy.github.io/2015/05/21/rnn-effectiveness/

7



supervising the software and give inputs for creativity and emotions, where the software
clearly lags behind.

3.2 Data Selection

Due to the nature and complexity of language modelling where the model implementation
has to have the ability to understand the features of input text, data selection plays a
bigger part in comparison to data understanding. Hence, data selection plays a key role
in this implementation. In text-to-text generation problems, it is important to have large
data corpus for the model to thoroughly understand the nature, syntactic and semantic
complexity of the output text to be generated. Gutenberg website 2 is an online open
source digital library with over 60,000 books in various languages. This implementation
will be working on literary works written in English. Lahiri (2014) has provided a portion
of the Gutenberg dataset after performing some pre-processing steps such as removing
data from the digital articles not relevant for model input like meta data. This dataset
has a total of 3037 novels from 142 authors. Looking at the selected data from an
ethics perspective, the Gutenberg dataset has been used in multiple language model
implementations, as it happens to be a open source dataset. Digital works of literature
including fiction and non-fiction with over 60,000 books is publicly available. Due to the
absence of personal information, it is GDPR compliant.

3.3 Data Preparation

The data corpus obtained from Lahiri (2014) has taken care of the pre-processing tasks
including removal of metadata, author license information and transcription notes in each
literary work. Due to the nature of language modelling, the punctuation are retained to
maintain the quality of output text generation. The pre-processing and data preparation
steps are explained below:

• After anaylsis, unidentified or wrongly encoded characters were found to be absent

• All characters were converted to lower case for uniformity

• Tokenization: It is the process of taking the text corpus and breaking it down to
distinct individual words. The token ’ BEGIN’ is added to mark the beginning of
tokenization vector.

• Word embedding: Tokenised words are mapped onto real number vector represent-
ation, also known as indexing , where each word has a corresponding real number
which acts as it’s index. This is useful during output generation for mapping the
index back to word

3.4 Modelling

Unsupervised deep learning is the data mining algorithm implemented in this research
due to the selection of unstructured/ unlabelled data for the purpose of neural text
generation. The research implementation has 2 major components:

1. Generative Adversarial Networks

2https://www.gutenberg.org/

8



2. Monte Carlo Policy Gradient

3.4.1 Generative Adversarial Networks

The generative adversarial network has two main components:

1. Generator: A deep learning model which takes input, studies its features and at-
tributes and provides output which tries to mimic the input. This works well with
unstructured data like images, text and speech.

2. Discriminator: A deep learning model which receives input and returns either true
or false based on authenticity. It is fed with data from the generator (synthes-
ized input) and data from text corpus(real input) in random order. Due to this,
discriminator helps in creating better outputs from generator.

In this implementation, a variation of recurrent neural network called Gated Recurrent
Unit (GRU) has been used as both generator and discriminator.

Gated Recurrent Unit : Proposed by Hendrickx et al. (2015), GRU is a type of
RNN with two gates: an update gate and reset gate. These gates work as the vectors
holding information that has to be passed onto the output. Data retention is high and
eliminates the necessity to manually remove irrelevant data with multiple time steps. The
update gate decided the proportion of present input to be passed onto the future. The
reset gate determines the proportion of data to be eliminated with passing time steps.
GRU does not require memory units, making it easier to train.

3.4.2 Monte Carlo Policy Gradient

Policy gradient algorithms are often used in reinforcement learning implementations. The
optimisation of expected rewards drives the agent to avoid getting penalised. To achieve
this, the overall rewards should be equal to the product of a trajectory step and the
corresponding step reward. The state and actions depends on the task at hand. The
objective for this implementation is to provide the best text output by the generator.

Monte carlo rollouts is the algorithm which plays out the entire scenario considering
the past and current states, to see the total reward obtained in the end. This calculates the
exact value of the trajectory predicted for the current time step. This shows monte carlo
rollouts have high variance and zero bias, because even a small change in the input can
change the entire course of the future for reward estimation (Browne et al. (2012)).Plain
GAN model for neural text generation allows the discriminator to provide unsupervised
training to the generator. To reduce the variance during reward assignment, generator
training alternates between supervised and unsupervised.

3.5 Evaluation and Deployment

After data modelling, it is necessary to evaluate the results presented by the research.
Evaluation of results with current text input gives better understanding for business
understanding over future iterations. The metric being used for evaluation are as follows:

9



3.5.1 BLEU Score

BiLingual Evaluation Understudy or BLEU is the evaluation metric for various natural
language processing problems. First introduced by Papineni et al. (2002), it rose to pop-
ularity with machine translation and summarisation tasks. BLEU measures the number
of n-grams in the output(neural text generation model output) that also appears in the
input text. BLEU is similar to precision metric, as a reference in the output is tried to
be found in the input. In simple words, it gives a measure of how close a model text
output is to the input text. BLEU score can range from 0 to 100, 100 being the score of
sentence very close to meaning with input sentence.

4 Design and Implementation

The implementation is the most most important aspect of any research. The literature re-
view has indicated some imporvements over existing models, which will be experimented
in this implementation.
The overview of design architecure for the implementation is depicted in Figure 2 below:

Figure 2: Architecture design

The implementation is performed using python on Anaconda Spyder because the IDE
conveniently helps in training the model by providing all necessary packages. Tensorflow
is the open source library used for the deep learning tasks and programming. 3 The
dataset provided by Lahiri (2014) is utilised in varying forms for model training. The
input files are created based on case studies and fed as input to the model. All the ne-
cessary installations and packages are already done before model training. As mentioned
in Section 3.3, the input file is converted to lower case, tokenised to create an integer
index vector for ease of output generation. Tensorflow works best with numbers rather
than text. Tokenisation helps in optimising the model performance. A ’ BEGIN’ token
is added to mark the beginning of the input file. Before feeding the processed data to
the model, a preliminary sanity check is performed on the tokenised dataset to check
the number of tokenised characters, and number of bigrams in the dataset. A bigram
is the number of unique pair of words which will be used for evaluation of output using
BLEU score.BLEU scores have various forms like unigram(BLEU-1), bigram (BLEU-
2), trigram(BLEU-3) and N-Gram(BLEU-N) scoring. For this implementation, BLEU-2
score will be used for evaluation.It checks for the number of bigrams in the output that

3https://www.tensorflow.org/

10



are present in the input. The data is then fed into the GAN-monte carlo policy gradient
model for training and the overview of process flow is depicted in Figure 3:

Figure 3: Execution flow

The generator and discriminator are alternatively made to optimise their objectives.
Monte carlo policy gradient helps the generator in selecting the most appropriate dis-
crete valued character at each time step.Through Figure 3, we see that with every epoch,
the pretraining is performed which lets the generator produce output. Words are formed
character by character, and for each epoch the character limit is set to 100. Due to the
textual nature of input, embedding dimension has to be mentioned for the deep learning
model. Embedding dimension is used after tokenization, being used during generation
process. After pretraining generation, presence of bigrams leads the model to perform
supervised learning of generator. Absence of bigrams leads to the Monte carlo policy
gradient to be activated which provides the feedback reward and unsupervised learning
is performed on the generator. Bigram detection is the standard set for sentence quality,
and is proportional to the number of times Monte carlo policy gradient will be applied on
the generator. After supervised or unsupervised generator step, discriminator training is
performed. The discriminator step count is kept configurable to check model performance
under varying discriminator steps. Discriminator model will be trained depending on the

11



number of discriminator steps. With every step, the discriminator gives the output of
true or false. True output carries the meaning that the discriminator thinks the input
provided comes from real dataset, and false means the input was synthesized by the gen-
erator. Discriminator loss depends on the correctness of the logits set by its output.
The epocs determine number of training steps for generator and discriminator. Another
parameter used is the switch rate, which helps in tweaking the switch between supervised
and unsupervised training. Adam optimiser is used for both generator and discriminator
optimisation.4 After the training, the discriminator, superviser generation and unsuper-
vised generation training loss is plotted per epoch. This helps in model training progress
and validation. As this is unsupervised learning based model, there is no separate valid-
ation or test step. The trained model is checked for output generation and output text
quality of evaluated using BLEU scores. BLEU scores are calculated for every output text
generated per epoch. The BLEU scores for supervised text generation and unsupervised
text generation is plotted per epoch.
The configurable parameters to check model performance are epochs and discriminator
steps, which have been discussed in the next section.

5 Evaluation

The model parameters are tweaked as per the case studies, which will be discussed in
detail in this section. The dataset is large and is divided in two ways for performance
evaluation:

• Full file: All 3037 novels are consolidated into a single file

• Half file: 1513 novels are consolidated into a single file

5.1 Performance based on discriminator step count

This experimental case study is performed to check the if the discriminator step count
variations has any affect on model performance.

The full file has been considered for this study. For checking the magnitude of
variation, the epoch has been considered in proportion to discriminator step count. First
setup takes the full file with 140 epochs and 3 discriminator steps. The second setup takes
the full file with 300 epochs with 6 discriminator steps. The smaller epoch is paired with
smaller discriminator step. From Figure 4 in the training loss graphs, we observe that
the supervised generator loss has stabilised to a value around 2, and the unsupervised
generator and discriminator loss has consistently remained low despite minor fluctuations.
The BLEU score graphs show the highest BLEU score obtained for both setups is around
0.3.

4https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/

12



Figure 4: Model performance with varying discriminator step count and epochs

5.2 Performance based on input text size with respect to epochs

For this study, a slight variation has been introduced. The size of the file is considered
inversely proportional to the epoch size. After executing the model training, it was
noticed the supervised generator failed at epoch 50 consistently as seen from Figure 5.
Several tweaks were performed for other parameters like switch rate and discriminator
steps. The root cause of this generation failure was mode collapse at epoch 50. The mode
collapse could be overcome by reducing the switch rate. Initially, the two models for this
use case were run on switch rate of 0.2, but after checking with smaller values, the optimal
switch rate with considerable output text happened with switch rate of 0.001 as seen in
Figure 6. With the switch rate set to 0.2, we see the the supervisor generation loss drop,
whereas unsupervised generator and discriminator low stayed low as seen in above study.
With the full file, we see that BLEU score almost constantly has BLEU score of 0.3 for
unsupervised generation and goes up to 0.2 for supervised generation. For the half file,
once again the unsupervised output gives BLEU score of 0.3 but the supervised output
has a stabilised score of 0.07 till epoch 20, then raises till 0.15 and falls to zero. When
the switch rate is changed to 0.001, we see there is not much change in the loss graph
other than the fact that the mode collapse has been eliminated. The BLUE score shows
some consistency with both supervised and unsupervised output. Table 1 shows samples
of output generated, and maximum BLEU score is obtained with this experiment.

13



Figure 5: Model performance based on file size, epoch and switch rate

Figure 6: Model performance based on file size, epoch and tweaked switch rate

6 Discussion

Overall evaluation shows BLEU score of 0.3 is obtained through various experiments.
Table 1 gives a few sample outputs obtained through the experiments along with their
BLEU scores. In the first setup, with the variation in discriminator steps,Figure 4 shows
there is not much change observed in model performance, other than minor fluctuations.
With the second setup as seen from Figure 5, we see there is mode collapse irrespective of
input file size. This is seen to be rectified by changing the switch rate of supervised and
unsupervised training of generator. The changes made through mode collapse is seen in
the improvement in BLEU score as observed in Figure 6. We could also observe that the
unsupervised output text consistently have BLEU scores more than supervised output
text. This is directly the effect of using MCPG, with constant rewards being sent to the
unsupervised generator step. We also notice that the generator discriminator switch does
not affect the loss of either generator or discriminator. With the sanity search of bigrams
in input text, we get clarity of what to expect in the output text. We observe from Figure

14



Table 1: Text outputs generated through experiment
Case Text output BLEU score

1

the doopare kiny, nonse asuine
fabloniop of yound, whander,
amaled to the, to hele wond
herserys, e

0.297

2

uuirs, glir tore had she bangsed
teure they of this, sound hirdm
stoopk haing ady bis sousanteed,
wa

0.294

3
eeer ind that lalcey tueco as don-
cancon tho t”e boichon the wechz
merset morses ans to ad the seseve

0.23

4
5rsirpahuy w ewn ioe a,mc ai snf-
htoec itagnssre fcm ree wia wean
a”ooh inehdfasrsmtgeedncslehyt l

0.24

5
bec was the boays hi lumt rraney
to theis hint, hathed fure rinting
was tabayter a tereded a seailm

0.317

6 that we obtain the best results with big data input and epoch and small switch rate.

7 Conclusion

This research has implemented a text-to-text generation model using an image synthesis
method known as Generative adversarial network with Monte carlo policy gradient. The
implementation was performed on a small subset of Gutenberg dataset. The model has
succeeded in overcoming the major drawback of the reason GAN fail to work with dis-
crete data. The implementation of reinforcement learning algorithm has proven beneficial
for much higher BLEU scores in comparison with regular supervised text output scores.
The Monte carlo policy gradient has shown considerable improvement in text output gen-
eration with unsupervised genreation BLEU score always being higher than supervised
output BLEU scores.With 2 case studies showing performance of model with discrimin-
ator step count and effect of input file size, epoch count and switch rate, we see better
outputs when reinforcement algorithm is applied. The BLEU score of 0.3 was obtained
overall, proving this is a moderately good text generation model.

7.1 Future Work

Altogether, the implementation has shown moderate performance considering the data
corpus and other factors. Future work could include working with larger and more di-
verse datasets. It can also be extended to non-literary text generation like programming
code generation. Currently, this model has been implemented based on Monte carlo re-
inforcement algorithm, future works could consider use of other on-policy and off policy
reinforcement algorithms. More control over switch rate between supervised and unsu-
pervised generation could be brought in to avoid mode collapse.

15



Acknowledgements

I would first like to thank my thesis advisor Dr. Vladimir Milosavljevic. He has constantly
allowed this research to be my own work, led me in the right direction and gave valuable
feedback and advice. I would also like to thank my family, partner and friends for their
undying support.

References

Bahdanau, D., Brakel, P., Xu, K., Goyal, A., Courville, A., Pineau, R. L. J. and Ben-
gio, Y. (2019). An actor-critic algorithm for sequence prediction, 5th International
Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings
(2015): 1–17.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S. and Colton, S. (2012). A survey of Monte
Carlo tree search methods, IEEE Transactions on Computational Intelligence and AI
in Games 4(1): 1–43.

Budhkar, A., Vishnubhotla, K., Hossain, S. and Rudzicz, F. (2019). Generative Ad-
versarial Networks for text using word2vec intermediaries, (2).

Chen, J., Wu, Y., Jia, C., Zheng, H. and Huang, G. (2019). Customizable Text Generation
via Conditional Text Generative Adversarial Network, Neurocomputing (2019).

Chen, X., Li, Y., Jin, P., Zhang, J., Dai, X., Chen, J. and Song, G. (2019). Adversarial
Sub-sequence for Text Generation, pp. 1–10.

Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2018). BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding, (Mlm).
URL: http://arxiv.org/abs/1810.04805

Dušek, O., Novikova, J. and Rieser, V. (2020). Evaluating the state-of-the-art of end-to-
end natural language generation: The e2e nlg challenge, Computer Speech Language
59: 123 – 156.
URL: http://www.sciencedirect.com/science/article/pii/S0885230819300919

Fedus, W., Goodfellow, I. and Dai, A. M. (2018). MaskGAN: Better Text Generation via
Filling in the .

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A. and Bengio, Y. (2014). Generative Adversarial Networks, pp. 1–9.

Graves, A. (2013). Generating sequences with recurrent neural networks, CoRR
abs/1308.0850.
URL: http://arxiv.org/abs/1308.0850

Guo, J., Lu, S., Cai, H., Zhang, W., Yu, Y. and Wang, J. (2017). Long Text Generation
via Adversarial Training with Leaked Information.

Haidar, M. A. and Rezagholizadeh, M. (2019). TextKD-GAN: Text Generation using
KnowledgeDistillation and Generative Adversarial Networks.

16



Hendrickx, T., Cule, B., Meysman, P., Naulaerts, S., Laukens, K. and Goethals, B.
(2015). Mining association rules in graphs based on frequent cohesive itemsets, Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) 9078(3): 637–648.

Lahiri, S. (2014). Complexity of Word Collocation Networks: A Preliminary Structural
Analysis, Proceedings of the Student Research Workshop at the 14th Conference of the
European Chapter of the Association for Computational Linguistics, Association for
Computational Linguistics, Gothenburg, Sweden, pp. 96–105.
URL: http://www.aclweb.org/anthology/E14-3011

Li, C., Su, Y. and Liu, W. (2018). Text-To-Text Generative Adversarial Networks, Pro-
ceedings of the International Joint Conference on Neural Networks 2018-July: 1–7.

Li, J., Galley, M., Brockett, C., Gao, J. and Dolan, B. (2015). A Diversity-Promoting
Objective Function for Neural Conversation Models.

Li, J., Monroe, W., Shi, T., Jean, S., Ritter, A. and Jurafsky, D. (2017). Adversarial
Learning for Neural Dialogue Generation.

Lin, K., Li, D., He, X., Zhang, Z. and Sun, M.-T. (2017). Adversarial Ranking for
Language Generation, (Nips).

Papineni, K., Roukos, S., Ward, T. and Zhu, W. J. (2002). Bleu: a method for automatic
evaluation of machine translation.

Plaat, A., Van Den Herik, J. and Kosters, W. (2015). Advances in computer games:
14th international conference, acg 2015 leiden, the netherlands, july 1-3, 2015 revised
selected papers, Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) 9525: 1–11.

Rajeswar, S., Subramanian, S., Dutil, F., Pal, C. and Courville, A. (2017). Adversarial
Generation of Natural Language.

Ruan, Y.-P., Ling, Z.-H., Liu, Q., Chen, Z. and Indurkhya, N. (2019). Condition-
transforming Variational Autoencoder for Conversation Response Generation,
pp. 7215–7219.

Shedko, A. Y. (2018). Semantic-map-based assistant for creative text generation, Procedia
Computer Science 123: 446–450.

Sutskever, I., Martens, J. and Hinton, G. (2011). Generating text with recurrent neural
networks, Proceedings of the 28th International Conference on Machine Learning,
ICML 2011 pp. 1017–1024.

Wang, K. and Wan, X. (2018). Sentigan: Generating sentimental texts via mixture
adversarial networks, IJCAI International Joint Conference on Artificial Intelligence
2018-July: 4446–4452.

Wang, Z., Wang, Z., Long, Y., Wang, J., Xu, Z. and Wang, B. (2019). Enhancing
generative conversational service agents with dialog history and external knowledge,
Computer Speech and Language 54: 71–85.

17



Wang, Z. and Wu, Q. (2018). An Integrated Deep Generative Model for Text Classifica-
tion and Generation, Mathematical Problems in Engineering 2018: 1–8.

Xu, C., Li, Q., Zhang, D., Xie, Y. and Li, X. (2019). Deep successor feature learning for
text generation, Neurocomputing (xxxx).

Xu, W., Sun, H., Deng, C. and Tan, Y. (2018). TextDream: Conditional Text Gen-
eration by Searching in the Semantic Space, 2018 IEEE Congress on Evolutionary
Computation, CEC 2018 - Proceedings pp. 1–6.

Yu, L., Zhang, W., Wang, J. and Yu, Y. (2016). SeqGAN: Sequence Generative Ad-
versarial Nets with Policy Gradient.

Zhang, Y., Gan, Z., Fan, K., Chen, Z., Henao, R., Shen, D. and Carin, L. (2017).
Adversarial Feature Matching for Text Generation.

Zhang, Y., Wang, Y., Zhang, L., Zhang, Z. and Gai, K. (2019). Improve Diverse Text
Generation by Self Labeling Conditional Variational Auto Encoder, pp. 2767–2771.

Zheng, H. T., Wang, W., Chen, W. and Sangaiah, A. K. (2017). Automatic Generation of
News Comments Based on Gated Attention Neural Networks, IEEE Access 6: 702–710.

18


	Introduction
	Background and motivation
	Research Question

	Literature Review
	Implementation using Recurrent Neural Networks
	Language modelling using Generative Adversarial Network
	Implementation using Generative Adversarial network with Reinforcement learning algorithms

	Methodology
	Business Understanding
	Data Selection
	Data Preparation
	Modelling
	Generative Adversarial Networks
	Monte Carlo Policy Gradient

	Evaluation and Deployment
	BLEU Score


	Design and Implementation
	Evaluation
	Performance based on discriminator step count
	Performance based on input text size with respect to epochs

	Discussion
	Conclusion
	Future Work


