~

-"‘f’“
\ National
College

Ireland

Predicting the Winner of a Tennis Match
using Machine Learning Techniques

MSc Research Project
Data Analytics

Akshaya Sekar
Student ID: x18138977

School of Computing
National College of Ireland

Supervisor: Dr Dondio Pierpaolo

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Akshaya Sekar
Student ID: x18138977
Programme: Data Analytics
Year: 2018
Module: MSc Research Project
Supervisor: Dr Dondio Pierpaolo
Submission Due Date: 20/12/2018
Project Title: Predicting the Winner of a Tennis Match using Machine
Learning Techniques
Word Count: 672
Page Count: [10]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 3rd February 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Predicting the Winner of a Tennis Match using
Machine Learning Techniques

Akshaya Sekar
x18138977

1 Introduction

The configuration manual represents every step of the implementation process in a de-
tailed manner.The hardware and software specifications are mentioned for the research
project on the topic,” Predicting the winner of a tennis match using machine learning
techniques”.The goal of this project is to predict the winner of the match with the in-
dividual player statistics using various machine learning models such as SVM, Logistic
regression, Random forest, Naive Bayes.PCA was used for dimensionality reduction and
random search Hyper parameter tuning was performed to increase the efficiency of the
models.

2 System Specification

This project was implemented on the cloud platform Google colaboratory also known as
Colab. The colab supports GPU and TPU/|Bisong| (2019))

2.1 Hardware
Google Colab: 2vCPU @ 2.2GHz

The GPU Instance was 250GB

The RAM was 13 GB

The Disk Space was 32GB

2.2 Software

Python programming language was used to implement the project. The entire pre-
processing tasks such as cleaning, encoding, dimension reduction implementation and
evaluation was performed in Python..

3

Importing Libraries

Some libraries required are pre-defined in the cloud platform. The other necessary librar-
ies were imported whenever required. This step involves importing the required libraries.

4

4.

#libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import pandas_profiling

from sklearn.preprocessing import LabelEncoder

from sklearn.decomposition import PCA

from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

from sklearn.metrics import auc, roc_curve

from sklearn.metrics import accuracy_score

from sklearn.metrics import fl_score

from sklearn.metrics import cohen_kappa_score

from sklearn.naive_bayes import GaussianNB

from sklearn.model_selection import RandomizedSearchCV
smatplotlib inline

Figure 1: Importing Libraries

Data Extraction

1 Importing Files

In this step, the data set is mounted in the google drive and then the file is imported
from the google drive.

[1

3

4.

#from google.colab import files

#uploaded = files.upload()

from google.colab import drive
drive.mount('/content/drive"')

%cd /content/drive/My Drive/Colab Notebooks/

Mounted at /content/drive
/content/drive/My Drive/Colab Notebooks

Figure 2: Importing Data

2 Set Path

In this step, the path of the data set is given and the data is read.

[1

#import io
#raw_data = pd.read_csv(io.BytesIO(uploaded['clinvar_conflicting.csv']))
path="/content/drive/My Drive/Colab Notebooks/Dataset/'

Figure 3: Working directory path

4.3 Reading the data

#importing data
raw = pd.read_csv(path+'Stats (1).csv')

Figure 4: Reading Data

5 Exploratory Data Analysis (EDA)

The Exploratory Data Analysis was done with the help of pandas profiling in Python. The
pandas profiling is a one line code which gives a better understanding about the insights
of the data . It analysis the data and gives a HTML format report of all the missing
values, outliers, class balance, correlations and other basic details about the dataset etc.

pandas_profiling.ProfileReport (raw)

22
20240
6.1%
33MiB
169.0B

Figure 5: Exploratory Data Analysis

5.1 Removing null values

In this process, the null values are removed from the raw dataset.This will increase the
quality of the dataset and helps to give efficient result.

Figure 6: Removing null values

5.2 Checking Class Imbalance

The class should be equally balanced to get efficient results, hence the process of under
sampling or over sampling takes place depending on the data. Here in this dataset, the
class was equally balanced.

#ploting class balance
plt.figure(figsize=(8, 8))
sns.countplot('winner', data=raw)
plt.title('Class')

plt.show()

Class

4000 -

3000 -

count

2000 -

1000 -

False True

Figure 7: Class Imbalance check

5.3 Dropping the unwanted columns
The columns which are irrelevant and columns with special characters are removed.

[1 #droping unwanted coulmns
raw = raw.drop(["match_id", "player_id"],axis = 1)

Figure 8: Removing unwanted columns

6 Data Pre-processing

6.1 Dependent and Independent variables

In this section, we are splitting the data set in to dependent and independent variables.
Here, X is denoted as the independent variable and y is denoted as the dependent varibale.

[1 #X- indipendent variables, y- dependent variable
X = raw.iloc[:, :-1].values
y = raw.iloc[:, -1].values

Figure 9: Dependent and independent variables

6.2 Encoding the data

Since the machine learning models cannot accept characters, we will encode the dependent
variables as 0’s and 1’s. This process is known as Label encoding. The Target column is
label encoded as 0’s for loser and 1’s for winner.

[1 #lable encoding for catagorical data
bin_cols = raw.nunique() [raw.nunique() == 2].keys().tolist()
le = LabelEncoder()
for i in bin_cols :
raw[i] = le.fit_transform(raw[i])

Figure 10: Label Encoding

7 Dimensionality Reduction

In this project, the Principle Component Analysis is used for dimensionality reduction.
Since the dataset has continuous values, PCA is used for dimensionality reduction. PCA
helps to reduce the number of columns by having a summary of all the important features
with high variance. This helps to increase the efficiency of the models and reduce the
computation time.

#PCA for dimensonality reduction

pca = PCA(n_components=2)
X = pca.fit_transform(X)

[1 pca.explained_variance_ratio_

D> array([0.94146386, 0.05729056])

Figure 11: Dimensionality Reduction

8 Training and testing dataset

In this stage, the data set was split in to training and testing in 80:20 ratio.

[1 # Splitting the dataset into the Training set and Test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20)

Figure 12: Training and Testing

9 Machine learning models

There are four machine learning models implemented in this project. SVM, Naive Bayes,
Logistic Regression, Random Forest.

9.1 Support Vector Machine

[1 #implementing SVC
svm = SVC()
svm. fit(X_train, y_train)
y_pred = svm.predict(X_test)
acc = accuracy_score(y_pred,y_test)
print("Accuracy :", acc)
false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred)
score_auc = auc(false_positive_rate, true_positive_rate)
print("AUC Score =", score_auc)
score_f1l = fl_score(y_test, y_pred)
print("F1 Score :", score_f1)
score_kappa = cohen_kappa_score(y_pred,y_test)
print("Cohens Kappa :", score_kappa)
print("AUC-ROC Curve: ")
plt.plot([0, 1], [@, 1], linestyle='—-')
plt.plot(false_positive_rate, true_positive_rate,marker=".")
plt.show()

Figure 13: SVM

/usr/local/lib/python3.6/di; s
“avoid this warning.", FutureWarning)
.7197716658017644

K1, .py:193: : The default value of gamma will change from 'auto’ to 'scale’ in version 0.2

Cohens Kappa : 0.4395184268726079
AUC-ROC Curve:

10

Figure 14: Support Vector Machine Result and AUC curve

9.1.1 Hyper parameter tuning for SVM

The hyper parameter tuning helps in choosing the best parameters which increases the
efficiency of the models. Here, the random search Hyper parameter tuning is used.

[1 #seting hyper

smc_params = {'C': range(1, 10, 1), ‘'gamma': np.arange(0.1, 1, 0.1), ‘'kernel': ['rbf', 'poly'l}

[1 #random search cv for hyper paramter tuning
random_search = RandomizedSearchCV(estimator = svm, param_distributions = smc_params, n_iter = 10, cv = 5, verbose=2, random_state=42, n_jobs = -1)
random_search. fit(X_train, y_train)

Fitting 5 folds for each of 10 candidates, totalling 50 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.

#checking the best hyper paramters
print('\n Best estimator:')
print(random_search.best_estimator_)
print('\n Best hyperparameters:"')
print(random_search.best_params_)

Figure 15: Selecting the parameters

9.2 Naive Bayes

This Gaussian Naive Bayes is split in to training and testing and then evaluated in terms
of Accuracy, Auc, F1 score and Kappa.

[1 #implementing Gaussian naive bayes

gaussian = GaussianNB()

gaussian.fit(X_train, y_train)

Predicting the Test set results

y_pred = gaussian.predict(X_test)

acc = accuracy_score(y_pred,y_test)

print("Accuracy :", acc)
false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred)
score_auc = auc(false_positive_rate, true_positive_rate)
print("AUC Score =", score_auc)
score_fl = fl_score(y_test, y_pred)
print("F1 Score :", score_f1)
score_kappa = cohen_kappa_score(y_pred,y_test)
print("Cohens Kappa :", score_kappa)
print("AUC-ROC Curve: ")
plt.plot([@, 11, [0, 1], linestyle='--')
plt.plot(false_positive_rate, true_positive_rate,marker='.")
plt.show()

Figure 16: Naive Bayes

[Accuracy : 0.5282823040996367
AUC Score = 0.5323890935729213
0.6770870337477798

F1 Score @
Cohens Kappa : 0.06424578170366557
AUC-ROC Curve:
10 - >
08 - ol
06 - —
04 - A=
02 - ~
00 -
04 06 08 10

Figure 17: Naive Bayes Result and AUC curve

9.3 Random Forest
Here, the Random Forest data is split in to training and testing and evaluated in terms
of Accuracy, F1 score, Auc and Cohens kappa. It is seen that Random Forest has the

highest accuracy of 68%

[] #implementing random forest
from sklearn.ensemble import RandomForestClassifier
randomf = RandomForestClassifier(n_estimators = 690, min_samples_split = 6, min_samples_leaf = 1, max_features ='auto', max_depth=10)
randomf.fit(X_train, y_train)
Predicting the Test set results
y_pred = randomf.predict(X_test)
acc = accuracy_score(y_pred,y_test)

print("Accuracy :", acc)
false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred)

score_auc = auc(false_positive_rate, true_positive_rate)

print("AUC Score =", score_auc)
score_fl = fl1_score(y_test, y_pred)

print("F1 Score :", score_f1)

score_kappa = cohen_kappa_score(y_pred,y_test)
print("Cohens Kappa :", score_kappa)
print("AUC-ROC Curve: ")
plt.plot([e, 11, [0, 1], linestyle='—-')
plt.plot(false_positive_rate, true_positive_rate,marker=".")

plt.show()
Figure 18: Random Forest

Accuracy : 0.7701089776855216

=}

Figure 19: Random forest result and AUC curve

9.3.1 Random Forest Hyper parameter tuning

The various parameters for hyper parameter tuning are set and the best parameters were
selected using the random search hyper parameter tuning.

[1

#seting range for hyper parameter

randomf_params = {'n_estimators': range(200, 2000, 10),
‘max_features': ['auto', 'sqrt'l,
‘max_depth': range(10, 110, 10),
'min_samples_split': range(2, 10, 1),
‘min_samples_leaf': [1, 2, 4]}

m search cv for hyper paramter tuning
I_search = RandomizedSearchCV(estimator = randomf, param_distributions = randomf_params, n_iter = 50, cv = 10, verbose=2, random_state=42, n_jobs = -1)
L_search.fit(X_train, y_train)

Fitting 10 folds for each of 50 candidates, totalling 500 fits

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.

/usr/local/lib/python3.6/dist-packages/joblib/externals/loky/process_executor.py:706: UserWarning: A worker stopped while some jobs were given to the execu
"timeout or by a memory leak.", UserWarning

[Parallel(n_jobs=-1)]: Done 37 tasks | elapsed: 6.5min

[Parallel(n_jobs=-1)]: Done 158 tasks | elapsed: 20.5min

print('\n Best estimator:')
print(random_search.best_estimator_)
print('\n Best hyperparameters:')
print(random_search.best_params_)

Figure 20: Random search Hyper Parameter tuning of RF

9.4 Logistic Regression

The Logistic Regression Evaluation is shown below. After splitting the training and
testing data set, the accuracy, F1 score, AUC and Kappa are evaluated.

[] #implementing logistic regression
from sklearn.linear_model import LogisticRegression
logi = I nnisticRegression(penalty = '11', C = 1.0)
logi. Loading... .n, y_train)
y_pred = logi.predict(X_test)
acc = accuracy_score(y_pred,y_test)
print("Accuracy :", acc)
false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred)
score_auc = auc(false_positive_rate, true_positive_rate)
print("AUC Score =", score_auc)
score_fl = f1_score(y_test, y_pred)
print("F1 Score :", score_f1)
score_kappa = cohen_kappa_score(y_pred,y_test)
print("Cohens Kappa score_kappa)
print("AUC-ROC Curve: ")
plt.plot([@, 1], [@, 1], linestyle='--')
plt.plot(false_positive_rate, true_positive_rate,marker=".")
plt.show()

Figure 21: Logistic Regression

[] /usr/local/lib/python3.6/dist-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs’
FutureWarning)
Accuracy : 0.7540217955371044
AUC Score = 0.7543136785999746
F1 Score : 0.7785046728971963
Cohens Kappa : 0.5083289283441943
AUC-ROC Curve:

10

Figure 22: Logistic Regression result and AUC curve

9.4.1 Hyper parameter tuning for Logistic Regression

The random search hyper parameter tuning is done with various parameters to select the
best parameters.

[1]

#seting range for hyper pramter tuning
logi_param={"C":np.logspace(-3,3,7), "penalty":["11","12"],}

#random search cv for hyper paramter tuning
random_search = RandomizedSearchCV(logi, param_distributions=logi_param, n_iter=50, scoring='accuracy', n_jobs= -1, verbose=3)

random_search.fit(X_train, y_train)

Fitting 3 folds for each of 14 candidates, totalling 42 fits

/usr/local/lib/python3.6/dist-packages/sklearn/model_selection/_split.py:1978: FutureWarning: The default value of cv will change
warnings.warn(CV_WARNING, FutureWarning)

/usr/local/lib/python3.6/dist-packages/sklearn/model_selection/_search.py:266: UserWarning: The total space of parameters 14 is sm
% (grid_size, self.n_iter, grid_size), UserWarning)

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.

[Parallel(n_jobs=-1)]: Done 42 out of 42 | elapsed: 2.2s finished
/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbf
FutureWarning)

RandomizedSearchCV(cv='warn', error_score='raise-deprecating',

estimator=LogisticRegression(C=1.0, class_weight=None,
dual=False, fit_intercept=True,
intercept_scaling=1,
11_ratio=None, max iter=100,
multi class='warn', n_jobs=None,
penalty='11', random state=None,
solver='warn', tol=0.0001,
verbose=0, warm_start=False),

iid='warn', n_iter=50, n_jobs=-1,

param distributions={'C': array([l.e-03, 1l.e-02, l.e-01, 1l.e+00, l.e+01, 1l.e+02, 1l.e+03]),

'penalty': ['11', '12']},
pre_dispatch='2*n_jobs', random_ state=None, refit=True,
return_train_score=False, scoring='accuracy', verbose=3)

Figure 23: Logistic Regression Hyper parameter

print(‘\n Best estimator:')

print (random_search.best_estinator_)
print(‘\n Best hyperparameters: ')
print (random_search.best_parans_)

Best estimator:

.0, class_; . dual=False, fit_intercept=True,
intercept_scaling=1, 11_ratio=None, max_iter=100,
multi_class='warn', y Y
random_state=None, solver='warn', 1 verbose=0,
warm_start=False)

Best hyperparameters:
{'penalty’: '11', 'C': 100.0}

Figure 24: Selecting the best parameters

References

Bisong, E. (2019). Google colaboratory, Building Machine Learning and Deep Learning

Models on Google Cloud Platform, Springer, pp. 59-64.

10

	Introduction
	System Specification
	Hardware
	Software

	Importing Libraries
	Data Extraction
	Importing Files
	Set Path
	Reading the data

	Exploratory Data Analysis (EDA)
	Removing null values
	Checking Class Imbalance
	 Dropping the unwanted columns

	Data Pre-processing
	Dependent and Independent variables
	Encoding the data

	Dimensionality Reduction
	Training and testing dataset
	Machine learning models
	Support Vector Machine
	Hyper parameter tuning for SVM

	Naive Bayes
	Random Forest
	Random Forest Hyper parameter tuning

	Logistic Regression
	Hyper parameter tuning for Logistic Regression

