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Image Captioning: Capsule Network vs CNN
approach

Jaydeep Deka
x18134246

Abstract

Given an image, generating a relevant sentence to describe the objects and the
activities is an active research area popularly termed as ‘Image Captioning’. The
problem requires the integration of both computer vision and natural language pro-
cessing. Different approaches have been proposed over the last decade which used
neural networks to achieve state-of-the-art results. Most of the recent researches
have used an encoder-decoder framework that uses Convolutional Neural Network
(CNN) for image feature extraction. Though CNN based solutions have performed
remarkably well, CNN fails to retain information on spatial hierarchy and lacks ro-
tational invariance. These drawbacks of CNN are addressed in a comparatively new
neural network called Capsule Network (CapsNet). This research takes a novel ap-
proach in the implementation of an image captioning solution using CapsNet as the
image feature extractor. There are six different models trained using both CapsNet
and CNN on the Flickr8k dataset and evaluated using BLEU-(n) scores. The ex-
periments have shown convincing results from CapsNet based solution considering
much smaller size than CNN. The BLEU-1 score of the CapsNet based solution is
0.536 compared to 0.534 of the CNN based solution.

Keywords— Image Captioning, Encoder-decoder, CNN, Capsule Network, BLEU-(n), Flickr8k

1 Introduction

Image captioning is an application of machine learning which involves computer vision and
natural language processing to describe an image in a sentence. In a study done by Fei-Fei
et al. (2007), it was observed that humans are capable of describing an image in words very
easily. Developing software capable of generating image description, which is both syntactically
and semantically correct is a very complex problem. Different approaches were taken by the
researchers from a period of almost a decade ago (Farhadi et al. (2010)). Active researches
are going on to develop production-ready solutions. An image captioning solution will enhance
the experience of human-computer interaction in many use-cases. The primary benefit of such
a system will be to the visually challenged people, where an image captioning solution can
be developed for real-time description generation which will assist the person while traveling
around. This kind of system can also be helpful in automatic remote surveillance, driver-less
cars, and image-retrieval, etc.

In recent years sophisticated algorithms like Convolutional Neural Network(CNN), Recur-
rent Neural Network(RNN), etc have been able to deliver remarkable performances in several
tasks. Motivated from such studies many researchers proposed solutions for image captioning
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that use CNN, RNN or LSTM. The encoder-decoder framework proposed in the studies by
Vinyals et al. (2014) Kiros et al. (2014) involving CNN and RNN was able to demonstrate signi-
ficant improvements from the earlier approaches and has been a popular framework thereafter
for further research in the task. CNN architectures are specially designed set of neural networks
for computer vision as it is capable of learning features of images in hierarchical and shared
formation. For sequential tasks like machine translation, sentence generation, RNN architec-
tures are well-suited. In image description generation solutions, a CNN architecture works as
the visual feature extractor or the image encoder to extract the features from an image which
is then used as the input to an RNN architecture for the generation of a sentence also called
the decoder of the framework.

Although CNN is widely used in problems involving image data and remarkable performance
is attained in such problems, the implementation algorithm of CNN has two major shortcomings.
CNN uses pooling layers for information routing which causes information loss and the second
drawback is its incapability in expressing viewpoint invariance. In a study done by Hinton
et al. (2011), a new set of neural network representations called Capsule Network was intro-
duced which addressed the drawbacks of CNN implementation architecture. Capsule Network
uses dynamic routing among the activity vectors also known as Capsules, which is responsible
for preserving the spatial information of the objects. In the last couple of years, capsule net-
work architecture has been applied in different experiments to compare its performance against
state-of-the-art solutions which used CNNs. In different studies capsule network solutions out-
performed CNN architecture on image datasets like MNIST, CIFAR10, Fashion MNIST both
computationally as well as in overall accuracy (Palvanov and Im Cho (2018), Edgar et al. (2018),
Wang et al. (2018)).

This paper takes a novel approach in developing an encoder-decoder framework for image
caption generation using Capsule Network as the visual feature extractor. Considering the time
and resource limitation, Flickr8k is used in this research as it is relatively smaller than the other
public datasets and popular for rapid prototyping. For evaluation and comparison with CNN
based approaches, another model using VGG16 features is also developed. In both the models,
the text data is transformed the same way, the final decoder model architecture is kept the same
and trained for the same number of epochs. This paper tries to answer the question whether
an encoder-decoder model with Capsule Network as an image feature extractor can
outperform a CNN based solution by evaluating the trained models on BLEU metric.

The paper is organized as follows: The next Section 2 discusses the related literature of
different approaches in image captioning and capsule network, followed by the development
methodology of this research project in Section 3. Following next, Section 4 explains the detailed
end to end implementation stages of the project. Section 6 describes the evaluation of the
proposed approach on the chosen metric and discussion on the findings. The conclusion derived
from this research and future scope has been discussed in the Section 7.

2 Related Work

In the past few years, many approaches were taken in developing image captioning models using
traditional machine learning algorithms like SVM, KNN, etc to complex algorithms like a neural
network. The recently proposed methods for image captioning use CNN, RNN and LSTM in an
encoder-decoder like framework. This section discusses related literature in the field of image
captioning and capsule network which were referred to in developing this research project.

• Initial approaches in Image Captioning: The initial studies for this problem drawn
inspiration from the researches related to how human perceives the surrounding at its
first glance. In a study by Fei-Fei et al. (2007), it was found that humans are extremely
quick in deciphering the feature level details. The authors suggested that, for a rich text
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generation, extracting the visual features is very important. In the early days of research
in this area, Farhadi et al. (2010), Hodosh et al. (2013), Ordonez et al. (2011) followed
a retrieval-based approach where the visual features were first extracted and based on
that sentences were predicted from a predefined set of sentences. These approaches used
‘Meaning Space’, an intermediate projection of both images and sentences. To extract fea-
tures from the images most of the researches used traditional machine learning algorithms
like SVM, KNN and highly relied on predefined templates of sentences for prediction.
Though these studies helped image captioning gain attention from the researchers, the
old approaches became obsolete in the next couple of years. Bai and An (2018) in their
survey mentioned that such approaches had to compromise with the fluency of the gener-
ated sentences due to hard-coded feature engineering and rigid templates. However, these
studies inspired the researchers to execute the same strategies with advanced algorithms
for better results.

• Neural Network based approaches in Image Captioning: In the subsequent years,
the retrieval-based and template-based strategies were augmented and reattempted using
deep neural network approaches. Socher et al. (2014), Karpathy et al. (2014) used CNN
for visual feature extraction and Dependency-Tree Recursive Neural Network for sentence
retrieval. In both of the researches, CNN models pretrained on ImageNet were used and
they were able to provide significant performance gain in extracting complex features.
Same as earlier approaches, a meaning space or an intermediate space encapsulated the
query image and sentence similarities. The features extracted with the help of CNN were
used to retrieve relevant sentences from the meaning space. Application of neural network
helped in learning complex features that were not possible otherwise with the traditional
algorithms and hence enhanced the quality of generated sentences. These studies provided
an insight that pretrained models can be used for feature extraction in image captioning
tasks.

Machine translation is a similar kind of task where a source sentence is converted into
another sentence in a different language. Motivated by performance gain in machine
translation using the multimodal approach, researchers proposed different multimodal
solutions for image captioning. Multimodal solutions have used CNN for visual feature
extraction while RNN, LSTM based language models to map the extracted image features
into a common space. Kiros et al. (2014) first approached image captioning using a
multimodal structure. The method introduced a multimodal space of image features and
text, and a language model decoder to predict word from that space. This is one of the
earlier works that was inspired by neural machine translation and adopted the encoder-
decoder framework in image captioning. Kiros et al. (2014) used VGG-19 and LSTM
and was able to set new state-of-the-art results in image captioning using the Flickr8k
and FLickr30k datasets. Another multimodal approach was taken by Mao et al. (2014),
where RNN was used to build the language model. The words were generated based on
word prefix and image. The model used deep RNN and CNN which route information
through a multimodal layer. This approach was termed as multimodal-RNN and was
validated in Flickr8k, Flickr30k, and MS COCO. Ma et al. (2015) used a multimodal CNN
(m-CNN) structure where two separate CNN architectures were used to encode image
content and to learn image and sentence representation through matching CNN. The
matching CNN was used to learn inter-modal relations between semantic fragments of the
words and the image. On Flickr30k and MSCOSO dataset the proposed approach could
match state-of-the-art performance. Karpathy and Fei-Fei (2017) proposed a multimodal
structure that could generate sentence descriptions from images based on regions. This
was an early work similar to the attention-based mechanism which focused on learning
the inter-modal correspondence between the images and their description. The ‘alignment
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model’ as termed, used CNN and bidirectional-RNN to align both modalities through
multimodal embedding. The alignment was further inferred by an m-RNN to generate
descriptions based on the image regions. This approach was tested on Flickr8k, Flickr30k,
and MSCOCO and was able to outperform the state-of-the-art solutions.

• Encoder Decoder framework: Similar to the approach byKiros et al. (2014), Vinyals
et al. (2014) drawn inspiration from advances in computer vision and machine translation
to tackle the image captioning task using an encoder-decoder framework. In machine
translation, an RNN works as an encoder to encode the source sentence in a representation
vector which is then used in the decoder RNN unit to generate the target sentence. In
their approach Vinyals et al. (2014) used a deep CNN in place of the RNN to convert an
image to a fixed-length vector which is termed as the ‘encoder’ part of the model. The
model used state-of-the-art networks from both computer vision and language modelling
to build the final model. The image features were first extracted using the CNN encoder
and then used as the initial input to the language model. The resultant model, termed
as ‘Neural Image Caption’ was fully trained using Stochastic-Gradient-Descent (SGD).
The trained model was able to set new state-of-the-art benchmarks on Flickr30k and
MSCOCO datasets. Donahue et al. (2015) proposed another model which used recurrent
convolutional neural network for learning long-term dependencies. To do that the authors
inserted the extracted image features along with the context word to the language model
units at each time-stamp. By this way, the resultant model was able to generate long
sentences. In a similar approach like Donahue et al. (2015), Jia et al. (2015) inserted the
extracted image features into the LSTM cell for word prediction. The authors argued that
the decoding of the features needs to balanced between the image content and text data.
According to Jia et al. (2015), sometimes the generated sentences turn out to be irrelevant
to the images as the image features are inserted into the language model at first and never
considered later, which results in sentences drifting away from the main context. The
authors implemented three different ways of inserting the image features into the model
i.e. inserting the image features as the initial hidden state, together with texts in every
timestamp and merging outputs of image feature and encoded text. The resultant models
were able to perform on par with state-of-the-art solutions on Flickr8k and Flickr30k.
Tanti et al. (2018) in their study, analyzed different approaches on how extracted features
should be inserted in an image caption generator model and how it affects the quality of
the outcome. Based on the methods already implemented by researchers over the years
Tanti et al. (2018) divided the approaches as ‘Inject’ and ‘Merge’.The authors mentioned
that how the features are used in the modelling affects the performance of the models.

• Attention based mechanism: Incorporating the encoder-decoder framework in image
captioning delivered significant results. However, these approaches do not distinguish well
enough among the contents in the images. Images being subject to having a wide variety
of objects in it, encoder-framework sometimes produces irrelevant sentences as pointed out
by Jia et al. (2015). Motivated from the advancement in visual attention mechanism for
object detection, similar approaches were also proposed for image captioning. Extending
the encoder-decoder approach by Vinyals et al. (2014), the authors Xu et al. (2016)
proposed an attention-based mechanism of caption generation. The proposed method
developed an attentive model that was able to dynamically look at the image regions which
have higher importance on the context of caption generation. Similar to other encoder-
decoder frameworks, in this study, CNN was used as an image feature extractor and LSTM
was used in the language model. But unlike others, The LSTM units used a context vector
that stored a representational vector of the object’s location in the context of the image.
This allowed the memory units to remember the regions that can have certain objects
in the image. This approach by Xu et al. (2016) was able to score .67 in the BLEU-1
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score on the Flickr30k dataset. In another approach by You et al. (2016), the authors
proposed a hierarchical approach. This approach employed a top-down and bottom-up
approach for attending important ‘Region of Interest’ (ROI). The model weighted the
regions based on importance with respect to the sentence. In the top-down phase, the
objects in the images are recognized and based on the weights assigned, in the bottom-
up phase the sentences are generated. Similar to this approach, Anderson et al. (2018)
proposed a method using Faster R-CNN, a very popular algorithm in object detection,
for this task to propose image regions. The approach by Anderson et al. (2018) was able
to achieve BLEU-1 .802 on MSCOCO dataset. The results suggest that attention-based
encoder-decoder approaches have performed remarkably well in image captioning tasks.
However, the attention-based mechanisms are computationally expensive as it needs to
undergo more complex calculation for region suggestion and weighting.

• Capsule Network: In all of the recent studies discussed above, CNN is the most
commonly used visual feature extractor. CNN has performed remarkably well on visual
data problems. CNN learns the features of images through abstraction. However, Hinton
et al. (2011), Sabour et al. (2017) argued that despite CNN being so powerful, it has two
major drawbacks.Hinton et al. (2011) mentioned that CNN lacks rotational invariance
and fails to understand spatial relationships. The reason being to route information
from lower layers to higher-level layers CNN uses pooling layers which only considers the
maximum value out of a region. Though this operation helps CNN to increase the ‘field
of view’, pooling layers cause information loss and hence it is not able to capture the
relationship of the features in an image. In their study, Hinton et al. (2011) proposed
a new concept with a different architecture of a neural network, where the presence of
features are presented through vectors called Capsule. The new network was named as
Capsule Network. However, from 2011 till a couple of years back, Capsule Network did
not gain so much of attention as it was just a theoretical concept until 2017. In a recent
study by Sabour et al. (2017) from Google Brain, the authors proposed a fully working
Capsule Network which used Dynamic Routing for learning of its parameters. The authors
mentioned that a capsule, which basically contains a group of neurons outputs activity
vector to provide the probability of the presence of an entity or a part of it. The solution
was tested using the MNIST dataset, which is for digit recognition. From the experiments
of Sabour et al. (2017) it was found that the Capsule Network solution performs better
than the existing CNN based solution even when there is an overlapping in the dataset.
Edgar et al. (2018) implemented a Capsule Network architecture to check how it performs
on complex data like CIFAR10. The authors used an ensemble of seven different models
which is lighter than the baseline CNN model and it was able to surpass the validation
accuracy of the baseline model by 1.85%. In another study by Rajasegaran et al. (2019),
the authors introduced a deeper capsule network ‘DeepCaps1’ which used a novel dynamic
routing algorithm. The proposed architecture could beat the state-of-the-art results on
CIFAR10, Fashion MNIST, and SVHN while reducing the size of the model by 68% than
its CNN counterpart. Dynamic routing being computationally expensive, the authors
avoided stacking up multiple Capsule units and introduced skip connections in between
the capsule units for faster training and inference.

• Inference: From the above discussion, we have seen how the encoder-decoder framework
has been implemented in the task image captioning in different approaches. The current
state-of-the-art solutions for image description use CNN architectures and have been able
to achieve much better results than the earlier approaches. However, as observed from the
literature, Capsule Network has been able to show its potential in the field of computer
vision. The proposed methods are lighter and faster than CNN. This makes us believe
that in an encoder-decoder framework a lighter and faster Capsule network can be an
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alternative for CNN as a visual feature extractor.

3 Methodology

For research and development of data mining projects, there are three methodologies widely
followed i.e. Knowledge Discovery in Databases (KDD), Sample Explore Modify Model and
Assess (SEMMA) and Cross-Industry Standard Process for Data Mining (CRISM-DM). As
the objective of this project is to evaluate the performance of Capsule Network to CNN as
an encoder, the KDD framework has been considered as the best-suited methodology. Unlike
CRISP-DM where Deployment is the last stage, the KDD framework is limited to Evaluation
only. Figure 1 illustrates the KDD framework modified in the context of this project. The
colored blocks signify the novelty part of this project.

Figure 1: KDD methodology followed in the project

As the problem involves both text and image data the Data Preprocessing and Transform-
ation stages are split. Both types of data are processed separately before fitting into the final
model. Before the implementation of any project, it is important to create a road map about
the flow, architecture, technologies, and algorithm, etc considering different constraints. This
section gives an overview of the selected data, design specification and model structure for the
experiments related to the study.

3.1 Data Selection

From the discussed literature in Related Work section, it was observed that Flickr8K, Flickr30K,
and MSCOCO are the most used datasets for the development and evaluation of the pro-
posed methods for image captioning. Considering the time and computing resource limitations,
Flickr8k has been selected as the experiment dataset for this project. The dataset was published
as an outcome of the study done by Hodosh et al. (2013). The authors explained that images
were extracted from six different groups in Flickr and annotated using Amazon Mechanical Turk
prioritizing the object activities over the context. The dataset contains 8,000 images of daily
activities of most people and animals described in five sentences each written in English. The
dataset is publicly available for download by submitting a request form and allowed to use for
non-commercial or academic researches.

3.2 Design Specification

The encoder-decoder framework in image captioning draws inspiration from the implementation
of neural language models. From the discussion in Related Work, it can be concluded that
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encoder-decoder approaches have been able to perform remarkably well on this task. Such a
model uses encoders to extract and transform features from the input images and texts and the
decoder uses the transformed features for learning the internal representation (Vinyals et al.
(2014), Kiros et al. (2014)). Inspired from the convincing results of the previous researches
as discussed in the Related Work this project considers the encoder-decoder framework for
the development of image captioning solution which uses Capsule Network as an image feature
extractor. Figure 2 graphically illustrates the process flow of the development of the application:

Figure 2: Design flow of the project

The indexes in the Figure 2 represents distinctive phases which are listed below:

1. Divide the dataset into train, validation and test subsets at random without repetition.

2. Extract the features from the images using the image feature extractor (Capsule Network
or CNN).

3. Preprocess the text data i.e. converting to lower case, tokenize, padding with ‘startseq’
and ‘endseq’ etc.

4. Transform both the extracted features based on the architecture in training the language
model.

5. Train the model for the specified epochs and save the model based on the model’s per-
formance on unseen data i.e validation dataset.

6. For evaluation, extract the features of the test images and make the predictions using
greedy search and beam search.

7. Validate with BLEU score.

The implementation details of the above steps are explained in the Implementation and
Evaluation section. Step-5 and Step-6 both undergo the prediction of words for the sentence
generation. The process of word prediction follows a similar paradigm as Neural Machine
Translation which done either by greedy search or beam search Freitag and Al-Onaizan (2017).
In greedy search, in every step, only the most likely word is chosen while in beam search the
combinations of different possibilities are considered. Based on the size of the beam length ‘l’
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the cumulative probability is calculated and top ‘l’ combinations are kept for further processing.
Freitag and Al-Onaizan (2017) explains that the higher the beam length longer is the time taken
for sentence generation. This study uses a beam length of only 1 and 2 for the BLEU score
evaluation.

3.3 Model Structure and Components

This study tries to evaluate the effectiveness of features extracted from the Capsule Network to
the features extracted from CNN in image captioning. Apart from the image feature extraction
step, the rest of the procedures follows the same paradigm for unbiased experimentation. The
state-of-the-art solutions involving CNN for this task are challenging to reproduce considering
the time and resource limitations. Hence, a baseline model using extracted features from CNN
is first developed followed by another with extracted features from Capsule Network. In terms
of using the image feature vector generated in Step-2 of Figure 2, there are different ways of
fitting the processed dataset into the language model. A relative difference in the performance
is observed based on how the extracted features are fed into the model. In a study done by
Tanti et al. (2018), the authors evaluated two commonly used ways of inserting the extracted
features into the language model, they are Inject and Merge architecture. This section focuses
on explaining the model structures used and the key components used in the development of
this project.

In the Inject architecture, the extracted image features are inserted along with the word
into the RNN/LSTM cell as shown in Figure 3, which results in both the image and the text
features together to be considered as the input prefix for the generation of next word. The
RNN/LSTM cells in this architecture are trained to encode both the image and text features
to one vector conditioned for the next generation.

Figure 3: Inject Architecture Tanti et al. (2018)

In contrast to the Inject architecture, the RNN/LSTM cell in the Merge architecture is only
responsible for encoding the text data as shown in Figure 4, which is later concatenated with the
image features and together treated as an input to the subsequent layers for text predictions.
On Flickr8k dataset the experiments in the study by Tanti et al. (2018), the Inject architecture
provided relatively better performance than the Merge architecture with VGG19 as the image
feature extractor.

For experimentation, both the inject and merge architectures have been developed in this
study to find out which performs better in the case of features extracted from Capsule Network
in comparison to CNN. The key components used in the development process of the image cap-
tioning application are CNN, Capsule Network and LSTM. The functionalities of the structures
are explained below:
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Figure 4: Merge Architecture

• Convolutional Neural Network (CNN): A Convolutional Neural Network or CNN is
a special set of deep neural network architecture which is suitable for understanding fea-
tures of an image dataset. CNN uses filters also called kernels which learn the shareable
parameters by convolving around the image across the different axes or channels based
on different hyperparameters like stride, padding, etc. In a series of dense convolutional
layers, the model learns to generalize the image features from simple to complex. CNN
uses the pooling layer in between the convolutional layers to reduce the number of para-
meters and information routing as shown in the Figure 5. The maxpooling operations

Figure 5: Maxpooling operation in CNN

check a matrix of pixels, often 2x2 and consider the maximum activation value in that
region. This operation ensures that the presence of a feature is detected through a scalar
output. The final output layer contains neurons equivalent to the number of classes in
a dense layer. The implementation details of a CNN model to use it as a visual feature
extractor is explained in the next section.

• Capsule Network: Capsule Network is another modified form of deep neural network
which encapsulates the feature information in vector representation. Unlike CNN, in
Capsule Network the feature information of the objects in an image is retained in vector
forms termed as Capsules, which makes the capsule networks capable of detecting the
presence of an object even after there are changes in the viewing angle. The probability
of a feature is present in a capsule is determined by the output vector’s length. Mat-
rix multiplication with weight matrices is carried out to encode the feature relationship
between lower-level capsules to higher-level capsules. The affine transformation on an
input vector is calculated by multiplying it to a weight matrix, which ensures that in-
formation from a layer l passes to the next layers (l+ 1) only if the features in (l+ 1) has
dependency on the feature of l. The learning algorithm of the weights is termed as ‘Dy-
namic Routing’ Sabour et al. (2017). The transformed vector undergoes a weighted sum
calculation before non-linearity transformation ‘Squash’ is applied Sabour et al. (2017).
The squash function squeezes the output vector length to be within 1. Where a value 1
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being is a strong positive indicator of the presence of a feature and close to 0 being a weak
indicator. Based on this vector, the same as CNN a dense layer outputs the probability
of the classes.

• Long Short Term Memory (LSTM): From the literature, it was observed that most of
the studies used the Recurrent Neural Network (RNN) as the decoder. RNN is well suited
for sequence data, which means given a set of series of inputs it can make predictions until
some end-condition is met. But RNN fails to generalize long term dependencies of the
words generated in a sentence (Bengio et al. (1994) Pascanu et al. (2012)). LSTM is a
modified version of LSTM to address this drawback with the usage of cell state Hochreiter
and Schmidhuber (1997). The LSTM units contain three different gates namely input
gate, forget gate and update gate. The input gate is responsible for figuring out which
input needs modification considering the cell state, forget gate decides which part of the
input block should be discarded and update gate decides the output based on the input
and memory block. The first LSTM unit in a network takes feature input, which outputs
a hidden active state and prediction which then again fed into the next LSTM cell for
further predictions.

4 Implementation

This section elaborates on the end-to-end flow of this project implementation in different dis-
tinctive phases. The details about data preparation and transformation, modelling, and training
are discussed below:

4.1 Data Preparation and Transformation

Data preparation is an essential stage for effective modelling. The raw data available are not
always in the required form to fit into the model directly. For example image data can be of
different sizes, text data can contain mixed cases, stopping words, etc. which create noises
in the dataset. These noises cause difficulty for the model to generalize the data and often
result in underfitting. Hence, pre-processing is done before modelling and training. After the
pre-processing of the data, it is also required to transform the data in the form required by the
model.

The Flickr8k dataset contains 8,000 images containing different activities described in 5
different sentences for each of the images resulting in a total of 40,000 sentences. The Figure
6 shows a sample image from the dataset with the available captions for that image. As the

Figure 6: Sample Image and Description from the dataset

1st step of Design Specification, the downloaded dataset is split into three subsets as training,
validation, and testing at random in a ratio of 80%, 10%, and 10% respectively on image id.
Before training the final language model, the data need to be processed and transformed into
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consistent vectors. As the dataset contains image and text data, both are processed separately.
The steps followed during the process are discussed below:

• Image Data:

As discussed in the Design Specification (2), to use images in the training of the language
model, it is required to extract the features and transform them into vectors first. Training
an image recognition model from scratch with the limited data available is complex as
well as time-consuming Vinyals et al. (2016). In a survey by Hossain et al. (2018) on
image captioning using deep learning, the authors found that most of the state-of-the-
art solutions used pretrained CNN architectures for image feature extraction. In this
study, we have followed a similar approach to use pretrained models for image feature
extraction. In such approaches, the last layer of the network is removed which is used for
classification purposes otherwise. The activation output of the second last layer is used
as a feature vector. The flow of generating the feature vector from an image is illustrated
in the Figure 7.

Figure 7: Process of converting images to feature vector

CNN as feature extractor: Hossain et al. (2018) in their study mentioned that pre-
trained classifiers like VGG-16, Alexnet, ResNet50, GoogleNet, etc. were the most widely
used CNN architectures for this task. The models are pretrained on ImageNet dataset
Deng et al. (2009), which has over 13 million images and 1,000 classes. This paper uses a
pretrained VGG-16 architecture as the feature extractor for the baseline model based on
the observations made by Bai and An (2018). The authors have mentioned that image
captioning models trained using extracted features from VGG-16 have shown remarkable
performance. VGG-16 has total of 16 layers and 138 million learned parameters in total
Simonyan and Zisserman (2015) as shown in Figure 8. To use the network as a feature
extractor, the last layer has been removed.

The resultant network has 134 million pretrained parameters. The second last layer of
the VGG-16 network has 4,096 neurons, which acts as the feature extractor layer for our
model resulting in a vector of length 4,096 for each image. The VGG-16 implementation
requires the image inserted to be in the size of 224x224, hence all the images are resized to
224x224 before feeding into the model for feature extraction. Keras applications module
has been used to further preprocess the images for operations like normalization etc.

Capsule Network as feature extractor: To use Capsule Network as a feature ex-
tractor a similar approach of using a pretrained network has been taken. Unlike CNN
architectures, there is no official API or support for Capsule Network available in Keras
as well as in other libraries till the time of implementation of this project. Hence, a
capsule network model had to be pretrained and then use for feature extraction. Capsule
Network being relatively new in the research area, most of the studies are done using
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Figure 8: VGG-16 as feature extractor Simonyan and Zisserman (2015)

smaller datasets. The architecture of the capsule network used in this study is inspired
by the study done by Rajasegaran et al. (2019). The architecture has 16 Convolutional
Capsule Layers with four skip connections as shown in the Figure 9

The resultant architecture has over 13 million learn-able parameters. Training the state-
of-the-art CNN models on ImageNet takes a lot of time, hence considering the time and
available resource, a smaller dataset CIFAR101 for training was chosen which contains
total 60,000 images of 10 different classes. Marginal loss has been used as the loss function
and Adam has been used as the optimizer. The output layer of the network has been
removed. The second last layer contained 10 capsules of dimension 32, which is flattened
to create the feature extraction layer. The resulting feature vector for each of the images
extracted is of size 320. The required dimension of input images for the Capsule Network
is 64x64x3. Hence, each image is resized to 64x64 for consistency.

For both the cases, the features are first extracted and stored in a Python dictionary
where the image ids are the keys and the respective feature vectors are the values. For
faster loading and processing for later stages, the dictionary is stored in a byte format in
Python pickle files.

• Text Data: This section refers to the Design Specification (3). The text data available
contains 40,000 sentences. The sentences need to be preprocessed as required by the
model and which helps in enhancing the effectiveness of the model. The corpus contains
9,630 unique words used in different contexts and frequencies. As the language model
predicts the probabilities of all the words in the vocabulary a smaller vocabulary size is
always preferred for faster computation. Reducing the vocabulary size while keeping the
maximum information is a challenging task as it results in compromising with fluency.
There are multiple ways of cleaning text data. However, considering the time limitations
for this project the following steps are followed to clean and transform the data.

1. Converting into lowercase: The sentences contain words with varying cases of
characters, which means the words ‘two’ and ‘Two’ will be considered as two different
words by the model. The main objective of this study is to build a model that is

1https://www.cs.toronto.edu/ kriz/cifar.html
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Figure 9: Capsule Network architecture as feature extractor

capable of generating a sentence which describes the image content. Hence, all the
words in the sentences are converted into lowercase letters to decrease the complexity
of the problem.

2. Removal of punctuation: Same as the case of a character, the presence of punctu-
ation in a word adds noise to the dataset. The word ‘cat′s’ and ‘cats’ are considered
as distinct words in the vocabulary. Though removing the punctuation comprom-
ises with the fluency of a sentence, for the effectiveness of modelling punctuation
are removed from the words.

3. Removal of single characters: After removing the punctuation, single-character
words get generated e.g. ‘cat′s’ gets transformed to ‘cat’ and ‘s’ which again in-
creases the size of the vocabulary. Such single character words are removed to lower
the vocabulary size for smoother training.

4. Removal of words containing numbers: Any word which contains number is
removed. Words with a number can be due to human error or a quantifier. In
such scenarios, the word ‘2’ and ‘two’ will be two separate words in the vocabulary.
Hence, removing those words helps in reducing the vocabulary size.

5. Wrapping with start and end tokens: It is necessary to let the model know
about the start and end of a sentence. This is done by adding starting and ending
identifiers at the two endpoints of a sentence. After passing through the above steps
each sentence is wrapped around with ‘startseq’ and ‘endseq’.

6. Tokenization: After cleaning the vocabulary the resulting count is 8,765, which
means that the output layer of the final model will have 8,765 neurons each predict-
ing the probability of a word being generated. For this task, the vocabulary needs
to be mapped with unique indexes. Assigning a number with the words is done by
the Tokenizer class available in Keras.
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The next step after the cleaning of the text data is to transform the data for consistency
among all the sentences. The maximum length of a tokenized sentence in the training
dataset is found to be 34. All the other sentences having length lesser than the maximum
length are padded with 0 to match the required size. The output vector is converted to
binary transformation using to categorical function in Keras. This operation assigns 1 to
the correct index and 0 for all the others.

4.2 Modelling

The final model follows the encoder-decoder framework as explained by Tanti et al. (2018). This
project implements Inject (Par-inject and Init-inject) and Merge architectures for experimenting
and finding the best suitable architecture for our approach. There is a total of three different
models trained using each type of image feature extractor resulting in six experiment models.
The models are different in terms of when the inputs are fed into the caption generation network
or the decoder. This section illustrates the decoder model architecture with layer definitions
and functionalities:

1. Image Input layer: This layer is responsible for getting the Image feature vector. The
shape of the vector depends on the feature extractor used, i.e for the images extracted
from CNN the shape is 4,096 and for the Capsule Network, it is 320. A dense layer of
256 neurons follows the image input layer to reduce the number of parameters as well as
to match the shape of the embedding layer for further processing.

2. Text Input layer: The text input layer has the shape of the maximum length of token-
ized sentences i.e 34. Any other sentences that have length lesser than maximum length
are padded in the data preparation stage.

3. Embedding layer: An Embedding layer is added after the text input layer which is used
to project words into a vector space. For all the models a vector space of 256 dimensions
is used. This layer embeds the tokenized words into floating numbers to represent the
semantics of each word in a sentence. The mask zero argument is set to 0 to let the layer
ignore the indexes with 0 paddings.

4. LSTM layer: All the models in the experiments have an LSTM layer with 256 memory
units also called a sequence processor unit. Based on the architecture of the encoder-
decoder framework used the LSTM layer is added at different positions of the network.
For the Par-inject and Init-inject approaches, the LSTM layer considers both image and
text as input features. In Init-inject the image feature is inserted into the LSTM cell as the
first hidden state. While in Par-inject both the text and image features are concatenated
and then used as input. On the other hand, the LSTM layer of the Merge model is used
only to encode text inputs.

5. Add layer: The ‘add’ layer is used to add features of images and texts. In the Merge
architecture, the output generated from LSTM is added with the input features of the
images. On the other hand in Par-inject, both the features are first added and then used
as input to the LSTM unit. On Init-inject no ‘add’ layer is used.

6. Dense layer: A dense layer with 256 neurons has been used in all the models for final
processing of the inputs coming from the sequencer and the merge layers. This layer uses
ReLU activation.

7. Dropout layer: Dropout layer is used to randomly turn off neurons based on while
training to overcome sparse learning which results in overfitting. The implementation of
the model uses .5 dropout ratio after dense layers.
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8. Softmax/Output layer: The final dense layer of the decoder model has the number
of neurons equal to the vocabulary size. This layer uses Softmax activation that outputs
probability distribution across the words.

The layers are stacked following the structure as described in Figure 3 and Figure 4. The archi-
tecture definition of each of the models is provided in section 6.2 Modelling in the configuration
manual.

4.3 Training

The defined models are trained separately on 6,400 images and evaluated on 800 images. The
extracted image features and tokenized texts are used in the training process. A data generator
is used for optimum utilization of the available computing resources. As the output of the final
model is expected to be just one among many possible outcomes ‘categorical cross entropy’ is
used as the loss function. For back-propagation, there are different optimizers available, e.g.
stochastic gradient descent, RMSProp, Adam, etc. It was observed from the literature that
Adam optimizer has been widely used in the training of many approaches Tanti et al. (2018).
Based on that, this paper also uses ‘adam’ as the optimizer with a learning rate of 0.001. In the
early stages of experimentation, the models were trained for a higher number of epochs, but it
was observed that the model starts overfitting after the initial few epochs. Hence, each of the
models has been trained for 10 epochs. The training curve for each of the models is plotted
as shown in the Figure 10, Figure 11 and Figure 12. The blue graphs denote the training loss
while the orange graphs denote validation loss.

(a) VGG Init-Inject (b) CapsNet Init-Inject

Figure 10: Training Curves of Init-Inject architectures

Training and validation for each epoch take over 10 minutes. From the plots, it was observed
that the model overfitted in the early epochs. Hence to store the best-fitting model, which
performed the best on unseen data i.e. validation data, ‘ModelCheckpoint’ callback has been
used. This ensures that the model weights to be saved when there is a decrease in the validation
loss. From the saved weights, the weight with lowest validation loss has been considered for
evaluation on the BLEU score which is discussed in the next section.

5 Evaluation and Result

This section explains the metric used for the evaluation of the models. In the literature, we
observed that for validating the model’s efficacy which involves natural language processing,
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(a) VGG Par-Inject (b) CapsNet Par-Inject

Figure 11: Training Curves of Par-Inject architectures

(a) VGG Merge (b) CapsNet Merge

Figure 12: Training Curves of Merge architectures

BLEU-(n) and METEOR are the commonly used metrics. Apart from these two, few researchers
also evaluated the fluency of sentences from humans. But considering the time constraint human
evaluation has not been done in this study. This study uses BLEU- 1-4 scores for the evaluation
of the trained models for both greedy search and beam search of beam length 2. Natural
Language Toolkit (NLTK) library has been used to implement the BLEU score process.

• Bilingual Evaluation Under Study (BLEU-(n)): BLEU-(n) was first proposed by
Papineni et al. (2002), it is a metric that evaluates the closeness of the predicted sentence
to the original one. This metric was first used for neural machine translation task. Here,
‘n’ depicts the number for n-gram consideration. When n is 1 it calculates how many
times the predicted words are present in the reference sentence, when n is 2 it refers to
how many times two words together have been found in the original sentence. Larger the
n value, more the fluency check is evaluated. The BLEU score can also be considered as
a precision metric for this kind of task which measures how many times predicted words
overlap with the original word.

• Results and Inference: Table 1 and Table 2 record the BLEU scores achieved for all
the models using the trained weights having best validation accuracy. An image was
taken from the test set and predictions are made using all the six models as provided in
Figure 13.
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Architecture BLEU-1 BLEU-2 BLEU-3 BLEU-4

VGG-Init-inject 0.532 0.277 0.178 0.078
VGG-Par-inject 0.513 0.281 0.192 0.088
VGG-Merge 0.534 0.286 0.196 0.091
CapsNet-Init-inject 0.470 0.220 0.152 0.068
CapsNet-Par-inject 0.493 0.234 0.155 0.073
CapsNet-Merge 0.536 0.267 0.178 0.088

Table 1: BLEU-(n) score for with greedy sentence generation

Architecture BLEU-1 BLEU-2 BLEU-3 BLEU-4

VGG-Init-inject 0.288 0.102 0.045 0.006
VGG-Par-inject 0.260 0.102 0.052 0.011
VGG-Merge 0.351 0.127 0.056 0.014
CapsNet-Init-inject 0.375 0.124 0.057 0.011
CapsNet-Par-inject 0.286 0.091 0.031 0.004
CapsNet-Merge 0.335 0.106 0.040 0.006

Table 2: BLEU-(n) score for with Beam length 2

Figure 13: Inference on a test image

6 Discussion

In this research, six different models were implemented to build image captioning solutions
using features extracted from Capsule Network and VGG-16. Each of the trained models was
evaluated with BLEU-(1-4) score for beam length 1 and 2 as tabulated in Table 1 and Table 2
and visualised in Figure 14 and Figure 15,

From the results it can be concluded that the models trained with capsule network features
perform almost equivalent to CNN based models if not better. The Merge architecture turned
out to be the best suitable approach for both CNN and CapsNet based models. However, a
noticeable difference in the score of Init-inject architecture is observed between the two as can
be seen from the bar-graphs plotted in Figure 14 and Figure 15. In the Init-inject the image
feature state was added to the LSTM cell as its first hidden cell as suggested by Tanti et al.
(2018). The CNN based model had a score of 0.532 while CapsNet based architecture had 0.470
for greedy search while the opposite shift was observed for a beam length 2. Among all the
three different architectures used in the experiments, the Merge architecture performed better
in the case of CapsNet than CNN with beam length 1. Using a greedy search, the BLEU-1
score achieved for the capsule network is 0.536 compared to 0.534 for CNN. The evaluation of
this study is limited to the BLEU score only. In terms of inference, as shown in Figure 13, a
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Figure 14: BLEU score for greedy search

Figure 15: BLEU score for beam search

few images with a high BLEU-(1) score was tested. It can be seen that the generated sentences
follow a similar pattern. For instance, in the given example, ‘dog’, ‘grass’, ‘playing’, etc. are
common in all six models and the rest of the context like there colors of the dogs, barking etc.
are not present. This kind of issue is quite common in general encoder-decoder frameworks.
Here the search algorithm allocates more probability to commonly occurring words than least
frequent words (Jia et al. (2015)). This shortcoming can be handled using attention-based
implementation as seen in the literature.

As mentioned in the Methodology all the other stages except the feature network were
kept the same for unbiased experimentation. There were a few architectural key differences
between the CapsNet and the VGG-16, which may have an impact on the final outcome. In the
researches on the capsule network, it was mentioned that Capsule network trains better and
performs well on smaller datasets than CNN (Edgar et al. (2018), Rajasegaran et al. (2019)).
In our study, the Capsule Network used for feature extraction was over 10 times lighter than
the VGG-16 extractor in terms of size and number of parameters. The CapsNet was trained
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on CIFAR-10 dataset which has only 60,000 images and 10 classes compared to ImageNet with
14 million images and 1,000 classes in the case of VGG-16. The number of learned parameters
in the CapsNet is over 13 million while on the other side VGG-16 has over 134 million learned
parameters. In the case of CapsNet the size of the output feature vector was just 320 in
comparison to 4,096 for the VGG-16 based feature extractor. Even after having a noticeable
difference between both the architectures the results from the experiments convince that the
CapsNet makes promising results and proves that it can be used as a feature extractor in the
task of image captioning.

7 Conclusion and Future Work

In this research, we tried to find out whether an encoder-decoder framework with image features
extracted using Capsule Network can outperform CNN based solutions. To answer the question
based on inferred literature multiple image captioning models were developed using a deep
capsule network as the image feature extractor. Three different architectures were followed
in terms of when to insert the image features into the language model. The implemented
models were trained on the Flickr8k dataset and evaluated based on BLEU-(1-4) scores. A
baseline model using VGG-16 as the image feature extractor was also developed to compare the
novel approach of this study with a CNN based solution. The study explained how pretrained
models can be used as image feature extractors, steps to preprocess the descriptions and finally,
encode the both to train the language model or the decoder. The models trained with Capsule
Network features showed satisfactory results when compared to the CNN based models. It was
observed that the Merge encoder-decoder architecture performed to be the best for both CNN
and Capsule Network and the BLEU-(1) score of Capsule Network was higher than the score
of CNN using greedy search for sentence generation.

In terms of limitation, the Capsule Network used in this study is smaller in comparison to
the depth of state-of-the-art CNN models. It will be interesting to see how a deeper capsule
network trained on a larger dataset can impact on the performance of the caption generation
as the learned parameters will be more feature-rich and exposed to more complex classes.
Moreover, in this research, only a simple encoder-decoder framework was implemented. To
enhance the performance, we believe an attention-based encoder-decoder framework can be a
strong alternative. Finally, considering the implementation constraints the experiment results
found to be persuasive and we believe the findings from this research will contribute to future
research in image captioning.
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