===y

)
National
Collegeof

[reland

Configuration Manual

MSc Research Project
Data Analytics

Girish Jagwani
Student ID: x18136371

School of Computing
National College of Ireland

Supervisor: Dr. Catherine Mulwa

\——
National College of Ireland \ National
Collegeof

Ireland

MSc Project Submission Sheet

School of Computing

Student Girish Jagwani
Name:

Student x18136371
ID:

Programm MSc. Data Analytics Year: 2019-20
e:

Module: MSc. Research Project

Lecturer: Dr. Catherine Mulwa
Submission
Due Date: 13-12-2019

Project Identifying the Patients at Risk of Stroke Using Anomaly Detection Based Classification
Title: Approach

Word
(0001010} T T T T RSP Page Count: ...

| hereby certify that the information contained in this (my submission) is information pertaining to research |
conducted for this project. All information other than my own contribution will be fully referenced and listed in
the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the Referencing
Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism)
and may result in disciplinary action.

Signature

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) o
Attach a Moodle submission receipt of the online project submission, to each project o
(including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for your own o
reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on

computer.

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box
located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Girish Jagwani
Student ID: x18136371

1 Introduction

The aim of this document is to provide a walkthrough and thus enable the user to setup this
ICT solution on any suitable machine and produce the desired outcomes. This document,
therefore, includes the entire process of environment setup along with the required hardware
and software specifications. It also includes the snapshots of code to guide the user throughout
implementation and the visualisations of the exploratory data analysis that are not added as part
of the technical report.

The rest of this report is structured as follows: Chapter 2 discusses the Environment
Configurations, Chapter 3 discusses the Implementation, Chapter 4 illustrates the sample
outputs of the implementation of this ICT solution and Chapter 5 is the Appendix for providing
a walkthrough to install the necessary software.

2 Environment Configurations

This chapter mainly discusses the overall environment configurations that were used while
implementing this ICT solution. This includes Hardware Configurations, Software
Configurations and Python packages and libraries used.

2.1 Hardware Configurations

This section discusses the specifications of the hardware, i.e., the machine used for the
implementation of this ICT solution. In this case, as displayed in Figure 1, a laptop with 64-bit
Microsoft Windows 10 operating system, 1.80 GHz processor and 8 GB Ram was used.

View basic information about your computer

Windows edition

Windows 10 Home Single Language -- -
© 2018 Microsoft Corporation. All rights reserved. .- WI n d OWS 1 O

System
Processor Intel(R)} Core(TM) i3-82530U CPU @ 1.60GHz 1.80 GHz
Installed memorny (RAM): 8.00 GB

Systemn type: B4-bit Operating System, x64-based processor mnm

Pen and Touch: Touch Support with 5 Touch Points

Support Information
Computer name, domain, and workgroup settings
Computer name: LAPTOP-287BLDIG W Change settings
Full computer name: LAPTOP-287BLDIS
Computer description:
Workgroup: WORKGROUP

Windows activation

Windows is activated Read the Microsoft Software License Terms

Product [D: 00327-35000-00000-AA0EM ¥ Change product key

Figure 1 : Hardware Configuration

2.2 Software Configurations
This section discusses the specifications of the software that were used as part of the
implementation of this ICT solution. The key software that were used are:

e Anaconda

e Spyder IDE

2.2.1 Anaconda

Anaconda is an open-source platform for data science with Python and R. Python was used as
part of the implementation of this ICT solution with Anaconda. Figure 2 enlightens the
specifications of the Anaconda used to implement this ICT Solution.

vironment :

loc

populated config files :
cond: sion :
conda-builc
python
virtual pac c
Figure 2 : Anaconda Specifications

2.2.2 Spyder

Spyder is an Integrated Development Environment (IDE) that was used to write the
implementation scripts in Python. Spyder IDE was launched using the Anaconda Navigator
that is available after the installation of Anaconda (Section 2.2.1). Figure 3 shows the launch
card for Spyder IDE version 3.3.6 in Anaconda Navigator.

AW,
Q*
Spyder

336
Scientific Pvthon Development
EnviRenment. Powerful Python IDE with
advanced editing, interactive testing,
debugging and introspection features

&

Figure 3 : Spyder IDE

2.3 Python Packages Used
The packages and libraries that are used as part of the implementation of this ICT solution are

mentioned in Table 1 below.

Table 1 : Python Packages and Libraries Used for Stroke Detection

impyute.imputation.cs

sklearn.naive bayes

Xgboost

sklearn.model_selection

sklearn.svm

imblearn.over_sampling

sklearn.preprocessing

sklearn.neighbors

imblearn.under_sampling

sklearn.utils.class weight

sklearn.tree

imblearn.combine

sklearn.metrics

matplotlib.pyplot

keras.models

sklearn.ensemble

seaborn

keras.layers

sklearn.linear model

math

keras.wrappers.scikit_learn

3 Implementation

This section provides a walkthrough of the Python script that was written as part of the
implementation of this ICT Solution.

3.1 Reading the Dataset

After loading the packages (Section 2.3), the first important step is to import the dataset which
is a .csv file into the Python environment. This was done using read_csv() function of pandas.
The df data frame was created to store the data obtained. Figure 4 shows the code for the same.

The set_option() function was used to set appropriate column width and make all columns
visible while viewing the outputs.

df = pd. read_csv('C:/Users/girish/Downloads/Studies/NCI/3. Semester 3/5. Python/l. Dataset/Dataset.csv')

pd.set_option('display.max_columns', 568)
pd.set_option('display.width', 1leea)

Figure 4 : Reading CSV for Stroke Detection in Python

3.2 Exploratory Data Analysis

This step includes the activities that help to understand the data in a better way. Those are as
follows:

1. ldentifying the Null Values in the Dataset

After storing the dataset into a pandas dataframe df, the next step that was to identify the null
values in the dataset. This was done using the .isnull() function of pandas that return True for
null values and False otherwise. A “for” loop was then used to check the columns with True
values present and print the respective columns with the count of null values. Figure 5 shows
the code for the same and Figure 6 shows the output received.

missing data = df.isnull()
for i in missing data.columns.values.tolist():
if True in missing data[i].value counts().index.tolist():
print(#*ssssssssas: § amsaaaaLns)
print (missing data[i].value counts())

ppint(“-:-:-c-c-c-c-:-:-:-c-c-c-:-:-:-c-c-c-c-:-:-:-c-c-c-:-:-:-t-c-c-c-:-:-:-c-c-c-:-:-:")

print()

Figure 5 : Identifying Null values for Stroke Detection

EEEEEEEEFEEE g FEEEEREE R F

False 41938
True 1452

Mame: bmi, dtype: ints4
P T T T T (P P P R A PR T T T]

dkde ek ko sk ko ok Skaing_Status Fdkkkkdkdkkk

False 3@1es
True 13292
Mame: smoking status, dtype: inted

4 e e e e e e s o e e s s o o o o e e e e e e e e e o o ok oie e o ofe ofe e ke ke

Figure 6 : Output of Null Values Identified

2. Exploring the Distribution of Categorical Variables

The data distribution of the Categorical variables was identified using the .value_counts()
function of pandas. A for loop was used with all categorical columns passed as parameters.
Figure 7 shows the code for the same and Figure 8 shows the sample of the output received.

for i in df.columns[[1,3,4,5,6,7,18,11]]:
ppint('q(((tqt"ij'ttt(((')
print(df[i].value_counts(})
print(’*'#*38)
print()

Figure 7 : Exploring Data Distribution for Stroke Detection in Python

EE L L Smnking_status EEE L L L

never smaoked 16853
formerly smoked 7493
smokes G562

Mame: smoking_status, dtype: inte4
sk e s e ok e ok e ok ofe ok ok ok e ok ofe ok ok ok ok ok ke sk ok sk o sk ke sk ok

EE L L 2 SterE e e o o ke

B 42817

1 783

Mame: stroke, dtype: inted

S e e e e e e o o e s e o e s o o o ofe oie s s o e e e e e e ke

Figure 8 : Output of Data Distribution

3. Exploring using Data Visualisations

After getting an overview of the data, Data Visualisations were created for better interpretation.
pandas function .value_count() was used to first store the data distribution into respective
variables (Figure 9). These variables were then used for plotting purposes.

df_hypertension = df[“hypertension”].value counts()
df_heartdisease = df["heart disease"].value_counts()
df_stroke = df["stroke”].walue_counts()

df gender = df["gender"].value_counts()

df_evermarried = df["ever married”].wvalue counts()

df worktype = df["work_type"].value counts()
df_residencetype = df["Residence type"].value counts()
df_smokingstatus = df["smoking_status”].value_counts()

Figure 9: Storing Data Distribution in Variables

Figure 10 captures the code for some of the visualisations that were created to evaluate the data
balance and distribution.

plt.figure(figsize=(8,6))

ax = sns.barplot(x=df_stroke.index, y=df_stroke)

ax.set_title("Stroke™)

ax.set(xlabel="", ylabel="lNumber of Records)

plt.figure(figsize=(8,6))

ax = sns.distplot(df["bmi"].dropna(), color="crimson™)
ax.set_title("Body Mass Index Distribution™)

ax.set(xlabel="",ylabel="")

plt.figure(figsize=(8,6))

ax = sns.distplot(df[avg _glucose_level™], color="darkmagenta”)
ax.set_title("Average Glucose Level Distribution™)

ax.set(xlabel="", ylabel="")

plt.figure(figsize=(8,6))

ax = sns.barplot(x=df_gender.index, y=df_gender)

ax.set_title("Gender™)

ax.set(xlabel="", ylabel="Number of Records")

Figure 10 : Plotting Data Distribution

The respective Output is shown in Figure 11 to Figure 14.

Stroke

40000
35000
30000
250004
20000+
15000
10000

5000

0

1

Figure 11 : Bar Plot for Stroke

0.06 Body Mass Index Distribution

0.05 4

0.04

0.03 4

0.02

0.01 4

0.00 T T T T T
20 40 60 80 100
Figure 12 : Distribution Plot for BMI

Gender

Female

Male Other

Average Glucose Level Distribution

0.015 1

0.010 1

0.005 ~

0.000 — T T T 1
30 100 150 200 250 300

Figure 13 : Bar Plot for Gender

Figure 14 : Distribution Plot for Average Glucose
Level

Similarly, Figure 15 captures the code for some of the visualisations that were created to
evaluate the relationship between different variables.

plt.figure(figsize=(8,6))
sns.distplot(df.loc[df[stroke’
sns.distplot(df.loc[df[stroke”

8]["age’],norm_hist=True, color="green", bins=15).set_title("Age vs Stroke")
1]["age’],norm_hist=True, color="red", bins=15)

—

plt.figure(figsize=(8,6))
sns.distplot(df.loc[df[stroke’]
sns.distplot(df.loc[df[stroke’]

== 8]['bmi*], norm_hist=True, color="green”, bins=15).set_title("Body Mass Index vs Stroke")
== 1]["bmi'], norm_hist=True, color="red", bins=15)

plt.figure(figsize=(8,6))
sns.distplot(df.loc[df[stroke’] == B][avg_glucose level'], norm_hist=True, color="green"”, bins=15).set_title("Average Glucos]
sns.distplot(df.loc[df[stroke'] == 1]["avg_glucose_level’], norm_hist=True, color="red", bins=15)

ax = sns.violinplot(x = ‘stroke’, y = "age’, hue = ‘gender’, data=df, palette= "Setl”, xlabel="x")
ax.set_title("Gender vs Age vs Stroke")
ax.set(xlabel="Stroke", ylabel="Age")

Figure 15 : Plotting Relationship Charts

The respective Output is shown in Figure 16 to Figure 19.

Age vs Stroke Body Mass Index vs Stroke
0.08 A
0.06 -
0.05 - 0.06 7
0.04 -
0.04
0.03 1
0.02 - 0.07 -
0.01 1
0.00 | T 0.00 - | T T
0 20 40 60 80 20 40 60 80 100
Figure 16 : Age vs Stroke Distribution Figure 17 : BMI vs Stroke Distribution
Average Glucose Level vs Stroke Gender s Age s Stroke
gender
mm Male
801 I Female
0.015 4 [Other
60
0.010 1 4o
204
0.005 A
ol
0.000 - 5 1
0 50 100 150 200 250 300 sroke
Figure 18 : Average Glucose Level vs Stroke Figure 19 : Gender vs Age vs Stroke Violin Plot

Distribution

3.3 Data Pre-processing and Feature Selection

This step helps to make data suitable for the processing by the machine learning models. The
activities done as part of this step include:

1. Processing Null Values

The Null data identified as part of exploratory data analysis, cannot be used for the
implementation of the machine learning models. This data was therefore imputed. Figure 20
shows the code for the imputation of the smoking_status. All the null values for smoking_status
with age below 18 years were tagged as never smoked (as the minimum age of smoking is 18
years). Whereas for the rest of the cases, it was tagged unknown.

df.loc[(df['age"]<18) & (df['smoking_status'].isna()), 'smoking_status'] = "never smoked’
df.loc[(df['age’]»=18) & (df[smoking_status'].isna()), "smoking_status'] = "Unknown”

print('Null Values:', df.smoking status.isnull().sum())
print(df.groupby(smoking status’).size())

Figure 20 : Imputing Null Values for smoking_status

Figure 21 shows the code for the imputation of the BMI using Multiple Imputation by Chained
Equation (MICE) technique with the help of mice() function of impyute.imputation .cs
package.

dfl = df[['age’, 'avg_glucose_level', 'bmi’,’gender_code', 'hypertension_code',| 'heartdisease_code', 'evermarried_code', ‘workty

imputed training=mice(dfl.values)

dfl['bmi’]=imputed_training[:,2]

print(Null Values:', dfl.bmi.isnull().sum())

Figure 21 : Imputing Null values for BMI

2. Data Encoding

The Categorical variables are meant to be encoded as integers for the machine learning model
to understand, this was achieved using LabelEncoder() method of sklearn. Pre-processing
package. Figure 22 shows the code for the encoding of the categorical variables.

1bl_enc = LabelEncoder()

df["gender_code"] = 1bl_enc.fit_transform{df["gender"])

df["hypertension_code"] = 1bl_enc.fit_transform(df[“hypertension”])

df["heartdisease code"] = 1bl_enc.fit_transform(df[“heart_disease"])

df["evermarried code™] = 1bl_enc.fit_transform(df["ever_married”])

df["worktype_code"] = 1bl_enc.fit_transform(df["work_type"])

df["residencetype_code"] = 1lbl_enc.fit_transform{df["Residence_type"])
[=

"smokingstatus code”] = 1bl_enc.fit_transform(df["smoking_ status™])

Figure 22 : Encoding Categorical Variables
7

3. Feature Selection

Feature Selection is necessary to avoid the model fitting issues. As part of feature selection,

the redundant un-encoded classification features were removed along with the id column.
Correlation among the features was then evaluated using corr() function, followed by the

heatmap() function of seaborn for its plotting. This was to assure the absence of

multicollinearity (at a threshold of 0.7) as it is one of the important assumptions for certain

machine learning models like Logistic Regression. Figure 23 shows the code for the same.

x = df1l[['age’', 'avg_glucose_level', 'bmi', 'gender_code', "hypertension_code', |'heartdisease_code’, ‘&

dfl['stroke’]

bl
1]

plt.figure(figsize=(14,18))

cor = x.corr().round(4)

labels = ["Age', 'Glucose\nlLewvel', 'BMI', 'Gender', 'Hyper\nTensicn', 'Heart\nDisease', 'Ever‘\nMarried’
ax = sns.heatmap(cor, annot=True, cmap=plt.cm.Reds, wxticklabels=labels, yticklabels=labels, linewidths3
bottom, top = ax.get_ylim()

ax.set_ylim(bottom + 8.5, top - @.5)

ax.axvline(x=8, color="k',linewidth=08.2)
ax.axvline(x=cor.shape[@], coclor="k',linewidth=0.2)
ax.axhline(y=2, color="k',linewidth=08.2)
ax.axhline(y=cor.shape[1], cclor="k',linewidth=0.2)
ax.set_wticklabels(ax.get_xticklabels(), rotation=2)
ax.set_yticklabels(ax.get_yticklabels(), rotation=2)
plt.show()

Figure 23 : Feature Selection for Stroke Detection in Python

4. Train and Test data preparation

The data obtained after feature selection was then divided into a respective stratified ratio of
70:30 for Training and Testing of the models. This was done using the train_test_split()
function of sklearn.model_selection package. Figure 24 illustrates the code for the same.

¥_train, x_test, y train, y_test = train_test_split(x, y, test_size=0.2, random_state=1@, stratify=y)

y_train.value_counts()
y_test.value_counts()

Figure 24 : Test and Train data preparation

5. Scaling of the Data

Once the Test and Train data is split, the immediate step was to scale the data. It was achieved
using StandardScaler() function of sklearn.preprocessing package. Scaling is performed after
Test and Train data split to avoid any impact of Test data values on the Training data values
and keeping the Train set completely unaware of the Test set values. Figure 25 shows the code
for the same.

x_test_backup = x_test.copy(deep=True)

from sklearn.preprocessing import StandardScaler

s5 = StandardScaler()

continuous_variables = ['age', 'avg_glucose_level’, 'hmi']
¥_train[continuous_variables] = ss.fit_transform(x_train[continucus_variables])
x_test[continuous_variables] = ss.transform (x_test[continucus_variables])

Figure 25 : Scaling of Stroke Data

By the end of this chapter, it can now be concluded that the dataset is ready for the
implementation of different sampling techniques, followed by the implementation of the
machine learning models.

3.4 Implementation of the Data Sampling Techniques

To handle the class imbalance observed in the dataset, 3 different data sampling techniques
were chosen for the implementation, i.e., SMOTE, Tomek Links and SMOTE + Tomek. The
SMOTE technique was implemented using SMOTE() function of imblearn.over_sampling
package, the Tomek Links technique was implemented using TomekLinks() function of
imblearn.under_sampling package, whereas SMOTE + Tomek was implemented using
SMOTETomek() function of imblearn.combine package. The code for the same is shown in
Figure 26.

All the 3 sampling techniques were implemented only on the Training data and not the
Testing data, to maintain the integrity of the data.

=m = SMOTE(random_state=18, ratioc = 1.8)
¥_smote_resampled, v_smote resampled = sm.fit_sample(x_train, v_train)
print({sorted{Counter(y_smote_resampled).items()))

tm = TomeklLinks(random_state=18, return_indices = True, ratio='majority')
¥_tomek_resampled, v_tomek_resampled, it_tomek_resampled = tm.fit_sample(x_train, y_train)
print({sorted{Counter(y_tomek_resampled).items()))

smt = SMOTETomek(random_state=18)
¥x_smotetomek_resampled, y_smotetomek_resampled = smt.fit_resample(x_train, v_train)
print(sorted{Counter(y_smotetomek_resampled).items()))

Figure 26 : Implementation of Sampling Techniques

3.5 Implementation of the Machine Learning Models

On successful implementation of the sampling techniques, data is ready for the implementation
of the machine learning models.

3.5.1 Pre-Model Execution Steps

Prior to the implementation of the machine learning models, few pre-model execution steps
illustrated as part of Figure 27 were performed. The code for pre-model execution steps
consists of the conversion of the test data from pandas to Numpy using .to_numpy() function.

9

This is followed by the calculation of the class weights using compute_class_weight() package
of sklearn.utils.class_weight the package, used as an input while implementing models like
XGBoost and Neural Network.

In the end, a function eval_matrix was created that accepts actual test outcome and the
predicted test outcome as input and calculates the value for all the performance metrics. This
function was then used for the evaluation of the implemented models. The values of evaluation
metrics were then stored into the Result dataframe.

¥_test_np = x_test.to_numpy()
y_test_np = y_test.to_numpy()

from sklearn.utils.class_weight import compute_class_weight
import numpy as np
weights = compute_class_weight('bzlanced’, np.unique(dfl['stroke']), dfl['stroks'])

¥_train_sample = [x_smote_resampled, x_tomek_resampled, x_smotetomek_resampled]

y_train_sample = [y_smote_resampled, y_tomek_resampled, y_smotetomek_resampled]

sample_name = ['SMOTE', 'TOMEKLINKS', 'SMOTETOMEK']

column_names = ['Model_Name', 'Sample_Name', 'Accuracy' , 'Sensitivity (TPR)', |'Specificity (TNR)', 'AUROC', 'TP', 'FN', 'FP', 'TN']
Results = pd.DataFrame(columns = column_names)

def eval_matrix(y_test, y_pred):

Accuracy = round(accuracy_score(y_test, y_pred),2)

TP,FN,FP,TN = confusion_matrix(y_test, y_pred, labels=[1, @]).ravel()
Sensitivity = round(TP / (TP+FN),2)

Specificity = round(TN / (TN+FP),2)

AUC = round(roc_auc_score(y_test_np, y_pred),2)

return Accuracy, Sensitivity, Specificity, AUC, TP, FN, FP, TN

Figure 27 : Implementation of pre-model Execution Steps

3.5.2 Implementation and Evaluation of XGBoost

XGBoost model was implemented using the XGBClassifier() function of xgboost package.
The parameters were then tuned to attain the optimum results. Figure 28 shows the code for
the implementation of the XGBoost model for each of the 3 different training data samples
followed by its evaluation using the eval_matrix function.

from wxghoost import XGBClassifier

from sklearn.metrics import accuracy_score, confusion_matrix, roc_auc_score
from xgboost import plot_importance

import math

xghe = XGBClassifier(max_depth=4, objective= 'binary:logistic', scale_pos_weight=math.sqrt(w

for 1 in range(@,3):
®gbe.Fit{x_train_sample[i], v_train_sample[i])

yv_pred_xgbc = xgbc.predict(x_test_np)

evaluation = eval_matrixiy_test_np, v_pred_xghc)
¥gboost_results = pd.DataFrame([[XGEBoost', sample_name[i], ewvaluation[®], evaluation[l]
Results = Results.append{xghoost_results, ignore_index=True)

plot_importance(xgbc, title="XGEcost "+sample_name[i])

print("Execution Completed for: Voting XGBoost - " + szample_name[i])
print(Results)

Figure 28 : Implementation and Evaluation of XGBoost

10

3.5.3 Implementation and Evaluation of Random Forest

Random Forest model was implemented using the RandomForestClassifier() function of
sklearn.ensemble package. The parameter tuning was then done further to attain the optimum
results. Figure 29 shows the code for the implementation of the Random Forest model for each
of the 3 different training data samples followed by its evaluation using the eval_matrix
function.

RFindices = pd.DataFrame()
from sklearn.ensemble import RandomForestClassifier

rfc = RandomForestClassifier(n_estimators=188, max_depth=2, random_state=8, class_weight='balanced')

for 1 in range(@,3):
rfc.fit(x_train_sample[i], v_train_sample[i])
y_pred_rfc = rfc.predict(x_test_np)

evaluation = eval_matrix(y_test_np, yv_pred_rfc)
rfc_results = pd.DataFrame([['Random Forest', sample_name[i], evaluation[@], evaluation[l], evalud

Results = Results.append(rfc_results, ignore_index=True)

print{"Execution Completed

or: Voting Random Forest - " + sample_name[i])

RFindices[i] = np.argsort(rfc.feature_importances_)[::-1]

print{Results)

Figure 29 : Implementation and Evaluation of Random Forest

3.5.4 Implementation and Evaluation of Logistic Regression

Logistic Regression model was implemented using the LogisticRegression() function of
sklearn.linear_model package. The penalty was set to ‘12’ and class_weight was set to
balanced. Figure 30 shows the code for the implementation of the Logistic Regression model
for each of the 3 different training data samples followed by its evaluation using the
eval_matrix function.

from sklearn.linear_model import LogisticRegression
1rc = LogisticRegression{penalty = '12', class_weight="balanced', random_state=@)

for 1 in range(@,3):
Irc.fit(x_train_sample[i], v_train_sample[i])
y_pred_lrc= lrc.predict(x_test_np)

evaluation = eval_matrix(y_test_np, y_pred_lrc)
lrc_results = pd.DataFrame([['Logistic Regressicon', sample_name[i], evaluation[@], evaluation[l],

Results = Results.append(lrc_results, ignore_index=True)
print("Execution Completed for: Logistic Regression - " + sample_name[i])
print(Results)

Figure 30 : Implementation and Evaluation of Logistic Regression

11

3.5.,5 Implementation and Evaluation of Naive Bayes

Gaussian Naive Bayes model was implemented using the GaussianNB() function of
sklearn.naive_bayes package. Figure 31 shows the code for the implementation of the Naive
Bayes model for each of the 3 different training data samples followed by its evaluation using
the eval _matrix function.

from sklearn.naive_bayes import GaussianNB
gnbc = GaussianNB()

fer 1 in range(@,3):
gnbc.fit(x_train_sample[i], y_train_sample[i])
y_pred_gnbc = gnbc.predict(x_test_np)
evaluation = eval matrix(y_test_np, y_pred_gnbc)
gnbc_results = pd.DataFrame([['Naive Bayes', sample_name[i], evaluaticn[®], evaluation[1]
Results = Results.append(gnbc_results, ignore_index=True)
print("Execution Completed for: Naive Bayes - " + sample_name[i])
print(Results)

Figure 31 : Implementation and Evaluation of Naive Bayes

3.5.6 Implementation and Evaluation of Support Vector Classifier

Support Vector Classifier (SVC) model was implemented using the SVC() function of
sklearn.svm package. The parameter tuning was then done further to attain the optimum results.
Figure 32 shows the code for the implementation of the Support Vector Classifier model for
each of the 3 different training data samples followed by its evaluation using the eval _matrix
function.

from sklearn.svm import SVC
sve = SVC(kernel= 'sigmoid', max_iter=12808, (=215, gamma=98.83, probability=True)

for i in range(@,3):
sve. Fit(x_train_sample[i], v_train_sample[i])
y_pred_svc = svc.predict{x_test_np)

evaluation = eval_matrix(y_test_np, v_pred_svc)
svc_results = pd.DataFrame([['SVC', sample_name[i], evaluation[@], evaluation[1], ewvaluation[2],

Results = Results.append(svc_results, ignore_index=True)
print("Execution Completed for: Support Wector Classifier - " + sample_namel[i])
print(Results)

Figure 32 : Implementation and Evaluation of Support Vector Classifier

3.5.7 Implementation and Evaluation of K-Nearest Neighbors (KNN)

K-Nearest Neighbors model was implemented using the KNeighborsClassifier() function of
sklearn.neighbors package. The best-balanced results were achieved with the value for
n_neighbors as 70. Figure 33 shows the code for the implementation of the KNN model for
each of the 3 different training data samples followed by its evaluation using the eval _matrix
function.

12

from sklearn.neighbors import KNeighborsClassifier

knnc = KNeighborsClassifier(n_neighbors=7@a)

for i in range(®,3):
knnc.fit{x_train_sample[i], y_train_sample[i])
y_pred_knnc = knnc.predicti(x_test_np)

evaluation = eval_matrix(y_test_np, y_pred_knnc)
knnc_results = pd.DataFrame([['KNN', sample_name[i], evaluation[®], evaluation[l], ewvaluation[Z],

Results = Results.append(knnc_results, ignore_index=True)
print("Execution Completed for: KNN - " + sample_name[i])
print(Results)

Figure 33 : Implementation and Evaluation of K-Nearest Neighbors

3.5.8 Implementation and Evaluation of Decision Tree Classifier

Decision Tree Classifier model was implemented using the DecisionTreeClassifier() function
of sklearn.tree package. The parameter tuning was then done further to attain the optimum
results. Figure 34 shows the code for the implementation of the Decision Tree Classifier model
for each of the 3 different training data samples followed by its evaluation using the
eval_matrix function.

from sklearn.tree import DecisionTreeClassifier
dtc = DecizionTreeClassifier(criterion="entropy',max_depth= 18,random_state=8, class_weight="balanced"')
for 1 in range(8,3)

dtc.fit(x_train_sample[i], v_train_sample[i])

v_pred_dtc = dtc.predict(x_test_np)

evaluation = eval_matrix(y_test_np, v_pred_dtc)
dtc_results = pd.DataFrame([['Decision Tree', sample_name[i], evaluation[@], evaluation[l], evaluation[2],

Results = Results.append(dtc_results, ignore_index=True)
print("Execution Completed for: Decision Tree - " + sample_name[i])
print(Results)

Figure 34 : Implementation and Evaluation of Decision Tree Classifier

3.5.9 Implementation and Evaluation of AdaBoost

AdaBoost Classifier model was implemented using the AdaBoostClassifier() function of
sklearn.ensemble package. The parameter tuning was then done further to attain the optimum
results. Figure 35 shows the code for the implementation of the AdaBoost Classifier model for
each of the 3 different training data samples followed by its evaluation using the eval_matrix
function.

13

from sklearn.ensemble import AdaBoostClassifier
abc = AdaBoostClassifier{n_estimators=5, learning_rate=1.8, random_state=@)
for 1 in range(@,3):

abc.fit(x_train_sample[i], y_train_sample[i])

y_pred_abc = abc.predict{x_test_np)

evaluation = eval_matrix(y_test_np, yv_pred_abc)
abc_results = pd.DataFrame([['AdaBoost Classifier', sample_name[i], evaluation[®], ewaluation[l],

Results = Results.append({abc_results, ignore_index=True)
print("Execution Completed for: Voting Classifier - " + sample_name[i])
print{Results)

Figure 35 : Implementation and Evaluation of AdaBoost

3.5.10 Implementation and Evaluation of Neural Network

Neural Network Model was implemented using the KerasClassifier() function of the
keras.wrappers.scikit_learn package. A function was created that defined the structure of the
model. It was then passed as a parameter for the KerasClassifier() function. The parameter
tuning was then done further to attain the optimum results. Figure 36 shows the code for the
implementation of the Neural Network model for each of the 3 different training data samples
followed by its evaluation using the eval _matrix function.

def create_model():
nnc = Sequential()
nnc.add(Dense(38, input_dim=12, activation='relu’))
nn¢.add(Dense(28, activation='relu'))
nnc.add(Dense(1, activation="sigmeid'})

nn¢.compile(loss="binary_crossentropy', optimizer='adam', metrics=['accuracy’']
return nnc
nne = KerasClassifier(build_fn-create_medel, verbose-=g)

fol

=1

i in rangs(g,3):
history_nnc = nnc.fit(x_train_sample[i], y_train_sample[i],validation_split=2.33, epochs=12ee, batch_size-2gee, class_weight = {@: weights[e], 1: weights[1]}

y_pred_nnc = nnc.predict(x_test_np)
evalugtion = eval matrix(y_test_np, y_pred_nnc)
nnc_results = pd.Datarrame([['Neural Wetwork', sample_name[i], evaluation[®], evaluatien[1], evaluation[2], evaluation[3], evaluatien[4], evaluatien[5], evaluat]

Results = Results.append(nnc_results,
print("Execution Completed for: Neura
print({Results)

ignore_index=Trug)
1 Network - " + sample_name[i]

Figure 36 : Implementation and Evaluation of Neural Network

3.5.11 Implementation and Evaluation of Ensemble Voting Classifier

After developing all the 9 machine learning models, they were ensembled together as predictors
for an Ensemble Voting Classifier, that with the help of probabilities provided by each of these
models predict the outcome of the dependent variable. The implementation of Ensemble Voting
Classifier is a robust approach as it creates an additional layer of assessment before making the
actual decision. The voting classifier is then again created each of the 3 sampling techniques
and the results are further evaluated using eval_matrix function.

As Ensemble Voting Classifier is the ultimate goal of this project, the predictions obtained by
this model along with its features, are exported to .csv files using .to_csv() function of pandas.
The evaluations results obtained for all the 30 different combinations of machine learning

14

models and sampling techniques are also exported to a .csv file for easier analysis and tracking

purpose. Figure 37 shows the code for the same.

d={}

from sklearn.ensemble import votingClassifier

for 1 in range(@,3):
votingClassifierModel.fit(x_train_sample[i], y_train_sample[i]}
d["y_pred_vom{@}".format(i}] = vetingClassifierModel.predict(x_test np}
evaluation = eval _matrix(y_test_np, d["y_ format(i}]}
vem_results = pd.DatafFrame([['voting Clas

Results = Results.append(vom_results, ignore_index=Trus)
y_prediction = pd.pataFrame.from_dict({d["y_pred_vom{e}".format{i}])

y_prediction.reset_index({drop=True, inplace=True)
*_test_backup.reset_index{drop=True, inplace=True}
final data = pd.concat([x_test backup,y predi
final data.celumns = ['age", ' lev
final data.te_csw('C:/
print{"Execution Comple
print(Results)
Results.to_csv('C:/Users/girish/Downloads/Studies/NCI/3. Semester 3/5. Python/

igneore_index=T

age avg glu

S F
WCI/3. Semester 3/5.
+ sample_name[1]}

votingClassifierModel = votingClassifier(estimators=[('X&Boost",xghc), ('Random Forest", rfc), ('LRModel',lrc), ('t

', sample_name[i], evaluation[e], evaluatien[1], evaluation[2], evaluation[3],

Figure 37 : Implementation and Evaluation of Ensemble Voting Cassifier

4 Sample Outputs of the Implementation

Figure 38 shows the kernel output on successful implementation of the machine learning
models. The same is exported to .csv along with the prediction results of Ensemble Voting
Classifier as shown in Figure 39. Figure 40 shows the sample output .csv file of performance

metrics.

Model Mame Sample_Name Accuracy Sensitivity (TPR) Specificity (TNR) AUC TP FN FP ™
] XGBoost SMOTE B.63 8.78 @.68 ©.73 122 35 2711 5812
1 XGBoost TOMEKLINKS B.98 a.84 l.8@ ©.52 6 151 24 B499
2 XGBoost SMOTETOMEK 8.69 8.78 .69 ©.73 122 35 2672 5851
3 Random Forest SMOTE B.72 @8.83 @.72 8.78 131 26 2361 6162
4 Random Forest TOMEKLINKS B.66 .91 B.66 B8.78 143 14 2938 5585
5 Random Forest SMOTETOMEK B.72 8.83 .72 ©.78 131 26 23383 6140
6 Logistic Regression SMOTE B.73 @8.85 8.73 8.79 133 24 2388 6223
7 Logistic Regression TOMEKLINKS B.73 B.85 B.73 ©8.79 133 24 2314 6209
8 Logistic Regression SMOTETOMEK B.73 @.85 @.73 8.79 134 23 2381 6222
9 Naive Bayes SMOTE B.78 8.85 8.69 @8.77 134 23 21l 5912
18 Naive Bayes TOMEKLINKS 2.91 B.48 .92 ®.66 63 94 712 7811
11 Naive Bayes SMOTETOMEK B.7e @8.85 @.69 @.77 134 23 2pl2 5911
12 SVC SMOTE B.78 B.68 .78 ©.69 187 58 2594 5929
13 SVC TOMEKLINKS 8.97 @.86 @.98 8.52 18 147 137 8386
14 SVC SMOTETOMEK B.78 8.69 8.78 @.69 188 49 2598 5933
15 KNN SMOTE B.72 8.71 .72 ©.72 112 45 2356 6167
16 KNN TOMEKLINKS B.98 a.e8 l.e@ @.58 8 157 @ 8523
17 KNN SMOTETOMEK B.72 @8.71 8.72 @8.72 112 45 2356 6167
18 Decision Tree SMOTE 8.75 @a.7@ @.75 8.73 118 47 2125 6398
19 Decision Tree TOMEKLINKS B.79 B.62 8.79 8.71 a8 59 1752 6771
28 Decision Tree SMOTETOMEK B.75 8.78 @.75 ©.73 1l 47 2126 6397
21 AdaBoost Classifier SMOTE B.72 @.82 @.72 8.77 129 28 2414 6189
22 AdaBoost Classifier TOMEKLINKS .98 a.ee 1.88 @.58 8 157 @ 8523
23 AdaBoost Classifier SMOTETOMEK B.72 @.82 @.72 8.77 129 28 2414 6189
24 Neural Network SMOTE B.73 8.71 8.73 8.72 112 45 2388 6223
25 Neural Network TOMEKLINKS B.79 8.59 .88 ©.69 92 65 1728 6795
k)) 1 bl 1 AMOTETOMEL 024 24 o LEW] A 20 RaTetrt

Figure 38 : Sample Output of Model Evaluation

15

Ea Output Results Microsoft Excel Comma Separated Values File 2 KB
E@ Prediction_Using_SMOTE Microsoft Excel Comma Separated Values File 327 KB
E@ Prediction_Using_SMOTETOMEK Microsoft Excel Comma Separated Yalues File 32T KB
Ea Prediction_Using_TOMEELINKS Microsoft Excel Comma Separated Values File 327 KB

Figure 39 : .csv Files Generated

Madel_Names Sample_Mame Accuracy Sensitivity (TPR] Specificity (TNR] AUC TP FN FP ™
0 HGBoost SMOTE 0.68 0.73 0E6& 073 122 35 27N 5512
1 ¥EBoost TOMERLIMNKS 0.55 0.0d 1 05z g 151 24 §433
Z HGBoost SMOTETOMER 0.53 0.73 063 073 122 35 2672 5851
3 Random Forest SMOTE oz 0.83 0¥z 078 131 26 2361 6162
4 Random Forest TOMEELIMNKS 0.66 0.9 0EE 078 143 14 2333 5585
5 Random Forest SMOTETOMER, oz 0.83 0yz 078 131 26 2333 E140
E Logistic Fegression SMOTE 0.v3 0.85 073 073 133 24 2300 G223
T Logistic Regression TOMERLIMNKS 073 0.35 073 073 133 24 2314 G203
8 Logistic Pegression SMOTETOMER 073 0.35 073 073 134 23 2300 B2EZ
3 Maive Bapes SMOTE o 0.35 063 077 134 23 26N 5312
10 Maive Bayes TOMEELIMNKS 0.91 0.4 052 066 63 94 T2 TEN
T Maive Bayes SMOTETOMER, 0.y 0.85 0E3 077 134 23 2E12 591N
12 SWC SMOTE 0.y 0.68 0.y 063 107 50 2534 5323
13 SWC TOMEELIMNKS 0.av 0.08 088 052 10 WP 137 5386
1 ST SMOTETOMER o 0.63 07 063 W03 43 2530 5333
15 kMM SMOTE vz o ay2 072 M2 45 2356 E16T
16 KM TOMERLIMNKS 0.55 i} 1 05 o 187 0 8523
17 EMM SMOTETOMER, oz 0.7 0yz 0v2 M2 45 2356 EIET
18 Decizion Tree SMOTE 0.7s oy 0ys 073 M0 47 2125 B398
13 Decizion Tree TOMEELIMNKS 0.va 0.62 0vy3 071 93 53 1752 BTV
20 Decision Tree SMOTETOMER s v 0ys 073 M0 47 2126 G337
21 AdaBoost Classifier SMOTE vz 0.3z ayz Q77 123 23 2414 E103
22 AdaBoost Classifier TOMERLIMNKS 0.55 i} 1 05 o 187 0 8523
23 AdaBoost Classifier SMOTETOMER vz 0.3z ayz Q77 123 23 2414 E103
24 Meural Metwork SMOTE 0.v3 0.7 073 072 M2 45 2300 G223
25 Meural Metwork TOMEELIMNKS 0.va 0.59 08 063 92 BS 1728 6795
2B Meural Metwork SMOTETOMER, 0.r4 0.73 0vd4 073 T4 43 2233 6230
27 “oting Classifier Model SMOTE 0ra 0.84 0vd4 07v3 132 25 2197 B3ZE
S Woting Classifier Model — TOMER] IMNES 047 013 053 056 1 136 108 8415

Figure 40 : Sample Output of Model evaluation in .csv File

5 Appendix

5.1 Installation of Anaconda

1. Go to https://www.anaconda.com/distribution/#windows and download Anaconda
Windows Installer with Python 3.7 Version.

& (G & anaconda.comydistribution/#windo r

i macOS A Linux

-
= Windows

Anaconda 2019.10 for Windows Installer

Python 3.7 version Python 2.7 version

16

https://www.anaconda.com/distribution/%23windows

2. On Double-clicking the downloaded file, setup window will appear. Click on the “Next”
button.

D Anaconda3 2019.10 (64-bit) Setup —_— X

Welcome to Anaconda3 2019.10
(64-bit) Setup

%,) Setup will guide you through the installation of Anaconda3

ANACONDA.

2019.10 (64-bit).

Itis recommended that you close all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer.

Click Next to continue,

3. Select the appropriate value for “Install for” option based on the type of machine and users.
Click on the “Next” button.

O Anacenda3 2019.10 (64-bit) Setup - X

Select Installation Type

fJ ANACONDA please select the type of installation you would like to perform for
Anaconda3 2019, 10 (54-bit).

Install for:

() Just Me (recommended)

(®) All Users (reguires admin privileges)

Anaconda, Inc

17

4. Browse the “Destination Folder” if you want to install Anaconda to any specific folder.
Click on the “Next” button.

D Anaconda3 2019.10 (64-bit) Setup - X

- Choose Install Location
3 ANACONDA choose the folder in which to install Anaconda3 2019. 10 (64-bit).

Setup wil install Anaconda3 2019. 10 (64-bit) in the following folder. To install in a different
folder, dick Browse and select another folder. Click Next to continue.

Destination Folder

| C: \ProgramData \Anaconda3| Browse...

Space required: 2.2GB
Space available: 846.5G8

AMECO

< Back Next > Cancel

5. Tick the “Register Anaconda s the system Python 3.7” option and click on the “Install”
button.

D Anaconda3 2019.10 (64-bit) Setup - X

Advanced Installation Options
_) ANACONDA Customize how Anaconda integrates with Windows

Advanced Options

[[] Add Anaconda to the system PATH environment variable

Not recommended. Instead, open Anaconda with the Windows Start
menu and select "Anaconda (64-bit)". This "add to PATH" option makes
Anaconda get found before previously installed software, but may
cause problems requiring you to uninstall and reinstall Anaconda.

Register Anaconda as the system Python 3.7

This will allow other programs, such as Python Tools for Visual Studio
PyCharm, Wing IDE, PyDev, and MSI binary packages, to automatically
detect Anaconda as the primary Python 3.7 on the system.

<o ==

18

6. The installation process will now continue for approximately 5 minutes.

2 Anaconda3 2019.10 (64-bit) Setup =

P Installing
D ANACONDA please wait while Anaconda3 2019. 10 (64-bit) is being installed.

Extract: mki-2019.4-245.conda

Anaconda, Ine

< Back Next > Cancel

7. On the successful Installation, Installation complete window will appear. Click on the
“Next” button.

2 Anaconda3 2019.10 (64-bit) Setup o

i Installation Complete
.) ANACONDA setup was completed successfully.

Completed
Processed C:\ProgramData\Anaconda3'Menu\notebook. json successfully. A

Processed C:\ProgramData\Anaconda3\Menu\powershell_shortcut.json successfully.
Processed C:\ProgramData\Anaconda3\Menu\spyder_shortcut.json successfully.

Execute: "C:\ProgramData\Anaconda3\pythonw.exe” € -s "C:\ProgramData\Anacon...
Running post install...

Execute: "C:\ProgramData\Anaconda3\pythonw.exe” € -s "C:\ProgramData\Anacon...
Execute: "C:\ProgramData\Anaconda3\pythonw.exe” -€ -s "C:\ProgramData\Anacon...
Execute: "C:\ProgramData\Anaconda3\pythonw.exe” € -s "C:\ProgramData\Anacon...
Created uninstaller: C:\ProgramData\Anaconda3\Uninstall-Anaconda3.exe

Completed v

19

8. An Information window will appear. Click on the “Next” button.

D Anaconda3 2019.10 (64-bit) Setup o X

Anaconda3 2019.10 (64-bit)
‘.) ANACONDA Anaconda + JetBrains

Anaconda and JetBrains are working together to bring you Anaconda-powered
environments tightly integrated in the PyCharm IDE.

PyCharm for Anaconda is available at:
https://www.anaconda.com/pycharm

{") ANACONDA.

N e

9. Thanks for installing window will appear. Click on the “Finish” button to complete your
installation.

2 Anaconda3 2019.10 (64-bit) Setup -—

Thanks for installing Anaconda3!

%,) Anaconda is the most popular Python data science platform,
Share your notebooks, packages, projects and environments
ANACO N DA * on Anaconda Cloud!

[Learn more about Anaconda Cloud

[F]Learn how to get started with Anaconda

[<osck [] [

20

