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1 Introduction 
The aim of this document is to provide a walkthrough and thus enable the user to setup this 
ICT solution on any suitable machine and produce the desired outcomes. This document, 
therefore, includes the entire process of environment setup along with the required hardware 
and software specifications. It also includes the snapshots of code to guide the user throughout 
implementation and the visualisations of the exploratory data analysis that are not added as part 
of the technical report. 

The rest of this report is structured as follows: Chapter 2 discusses the Environment 

Configurations, Chapter 3 discusses the Implementation, Chapter 4 illustrates the sample 

outputs of the implementation of this ICT solution and Chapter 5 is the Appendix for providing 

a walkthrough to install the necessary software. 

2 Environment Configurations 
This chapter mainly discusses the overall environment configurations that were used while 
implementing this ICT solution. This includes Hardware Configurations, Software 
Configurations and Python packages and libraries used. 

2.1 Hardware Configurations 

This section discusses the specifications of the hardware, i.e., the machine used for the 

implementation of this ICT solution. In this case, as displayed in Figure 1, a laptop with 64-bit 

Microsoft Windows 10 operating system, 1.80 GHz processor and 8 GB Ram was used. 

 

 
Figure 1 : Hardware Configuration 
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2.2 Software Configurations 

This section discusses the specifications of the software that were used as part of the 

implementation of this ICT solution. The key software that were used are: 

• Anaconda 

• Spyder IDE 

2.2.1 Anaconda 

Anaconda is an open-source platform for data science with Python and R. Python was used as 

part of the implementation of this ICT solution with Anaconda. Figure 2 enlightens the 

specifications of the Anaconda used to implement this ICT Solution. 

 

 
Figure 2 : Anaconda Specifications 

2.2.2 Spyder 

Spyder is an Integrated Development Environment (IDE) that was used to write the 

implementation scripts in Python. Spyder IDE was launched using the Anaconda Navigator 

that is available after the installation of Anaconda (Section 2.2.1). Figure 3 shows the launch 

card for Spyder IDE version 3.3.6 in Anaconda Navigator. 

 

 
Figure 3 : Spyder IDE 
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2.3 Python Packages Used 

The packages and libraries that are used as part of the implementation of this ICT solution are 

mentioned in Table 1 below. 
Table 1 : Python Packages and Libraries Used for Stroke Detection 

impyute.imputation.cs sklearn.naive_bayes xgboost 

sklearn.model_selection sklearn.svm imblearn.over_sampling 

sklearn.preprocessing sklearn.neighbors imblearn.under_sampling 

sklearn.utils.class_weight sklearn.tree imblearn.combine 

sklearn.metrics matplotlib.pyplot keras.models 

sklearn.ensemble seaborn keras.layers 

sklearn.linear_model math keras.wrappers.scikit_learn 

 

3 Implementation 
This section provides a walkthrough of the Python script that was written as part of the 

implementation of this ICT Solution. 

3.1 Reading the Dataset 

After loading the packages (Section 2.3), the first important step is to import the dataset which 

is a .csv file into the Python environment. This was done using read_csv() function of pandas. 

The df data frame was created to store the data obtained. Figure 4 shows the code for the same. 

The set_option() function was used to set appropriate column width and make all columns 

visible while viewing the outputs. 

 

 
Figure 4 : Reading CSV for Stroke Detection in Python 

3.2 Exploratory Data Analysis 

This step includes the activities that help to understand the data in a better way. Those are as 

follows: 

1. Identifying the Null Values in the Dataset 

After storing the dataset into a pandas dataframe df, the next step that was to identify the null 

values in the dataset. This was done using the .isnull() function of pandas that return True for 

null values and False otherwise. A “for” loop was then used to check the columns with True 

values present and print the respective columns with the count of null values. Figure 5 shows 

the code for the same and Figure 6 shows the output received. 

 
Figure 5 : Identifying Null values for Stroke Detection 
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Figure 6 : Output of Null Values Identified 

 

2. Exploring the Distribution of Categorical Variables 

The data distribution of the Categorical variables was identified using the .value_counts() 

function of pandas. A for loop was used with all categorical columns passed as parameters. 

Figure 7 shows the code for the same and Figure 8 shows the sample of the output received. 
 

 
Figure 7 : Exploring Data Distribution for Stroke Detection in Python 

 

 
Figure 8 :  Output of Data Distribution 

 

3. Exploring using Data Visualisations 

After getting an overview of the data, Data Visualisations were created for better interpretation. 

pandas function .value_count() was used to first store the data distribution into respective 

variables (Figure 9). These variables were then used for plotting purposes. 
 

 
Figure 9: Storing Data Distribution in Variables 

 

Figure 10 captures the code for some of the visualisations that were created to evaluate the data 

balance and distribution. 
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Figure 10 : Plotting Data Distribution 

 

The respective Output is shown in Figure 11 to Figure 14. 

 

  
Figure 11 : Bar Plot for Stroke Figure 12 : Distribution Plot for BMI 

 

  
Figure 13 : Bar Plot for Gender Figure 14 : Distribution Plot for Average Glucose 

Level 
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Similarly, Figure 15 captures the code for some of the visualisations that were created to 

evaluate the relationship between different variables. 
 

 
Figure 15 : Plotting Relationship Charts 

 

The respective Output is shown in Figure 16 to Figure 19. 

 

  
Figure 16 : Age vs Stroke Distribution Figure 17 : BMI vs Stroke Distribution 

 

  
Figure 18 : Average Glucose Level vs Stroke 

Distribution 

Figure 19 : Gender vs Age vs Stroke Violin Plot 
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3.3 Data Pre-processing and Feature Selection 

This step helps to make data suitable for the processing by the machine learning models. The 

activities done as part of this step include: 

1. Processing Null Values 

The Null data identified as part of exploratory data analysis, cannot be used for the 

implementation of the machine learning models. This data was therefore imputed. Figure 20 

shows the code for the imputation of the smoking_status. All the null values for smoking_status 

with age below 18 years were tagged as never smoked (as the minimum age of smoking is 18 

years). Whereas for the rest of the cases, it was tagged unknown.  

 

 
Figure 20 : Imputing Null Values for smoking_status 

 

Figure 21 shows the code for the imputation of the BMI using Multiple Imputation by Chained 

Equation (MICE) technique with the help of mice() function of impyute.imputation .cs 

package. 

 
Figure 21 : Imputing Null values for BMI 

 

2. Data Encoding 

The Categorical variables are meant to be encoded as integers for the machine learning model 

to understand, this was achieved using LabelEncoder() method of sklearn. Pre-processing 

package. Figure 22 shows the code for the encoding of the categorical variables. 

 

 
Figure 22 : Encoding Categorical Variables 
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3. Feature Selection 

Feature Selection is necessary to avoid the model fitting issues. As part of feature selection, 

the redundant un-encoded classification features were removed along with the id column. 

Correlation among the features was then evaluated using corr() function, followed by the 

heatmap() function of seaborn for its plotting. This was to assure the absence of 

multicollinearity (at a threshold of 0.7) as it is one of the important assumptions for certain 

machine learning models like Logistic Regression. Figure 23 shows the code for the same. 

 

 
Figure 23 : Feature Selection for Stroke Detection in Python 

 

4. Train and Test data preparation 

The data obtained after feature selection was then divided into a respective stratified ratio of 

70:30 for Training and Testing of the models. This was done using the train_test_split() 

function of sklearn.model_selection package. Figure 24 illustrates the code for the same. 

 

 
Figure 24 : Test and Train data preparation 

 

5. Scaling of the Data 

Once the Test and Train data is split, the immediate step was to scale the data. It was achieved 

using StandardScaler() function of sklearn.preprocessing package. Scaling is performed after 

Test and Train data split to avoid any impact of Test data values on the Training data values 

and keeping the Train set completely unaware of the Test set values. Figure 25 shows the code 

for the same. 
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Figure 25 : Scaling of Stroke Data 

 

By the end of this chapter, it can now be concluded that the dataset is ready for the 

implementation of different sampling techniques, followed by the implementation of the 

machine learning models. 

3.4 Implementation of the Data Sampling Techniques 

To handle the class imbalance observed in the dataset, 3 different data sampling techniques 

were chosen for the implementation, i.e., SMOTE, Tomek Links and SMOTE + Tomek. The 

SMOTE technique was implemented using SMOTE() function of imblearn.over_sampling 

package, the Tomek Links technique was implemented using TomekLinks() function of 

imblearn.under_sampling package, whereas SMOTE + Tomek was implemented using 

SMOTETomek() function of imblearn.combine package. The code for the same is shown in 

Figure 26. 

All the 3 sampling techniques were implemented only on the Training data and not the 

Testing data, to maintain the integrity of the data. 
 

 
Figure 26 : Implementation of Sampling Techniques 

3.5 Implementation of the Machine Learning Models 

On successful implementation of the sampling techniques, data is ready for the implementation 

of the machine learning models. 

3.5.1 Pre-Model Execution Steps 

Prior to the implementation of the machine learning models, few pre-model execution steps 

illustrated as part of Figure 27 were performed.  The code for pre-model execution steps 

consists of the conversion of the test data from pandas to Numpy using .to_numpy() function. 
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This is followed by the calculation of the class weights using compute_class_weight() package 

of sklearn.utils.class_weight the package, used as an input while implementing models like 

XGBoost and Neural Network.  

In the end, a function eval_matrix was created that accepts actual test outcome and the 

predicted test outcome as input and calculates the value for all the performance metrics. This 

function was then used for the evaluation of the implemented models. The values of evaluation 

metrics were then stored into the Result dataframe. 

 

 
Figure 27 : Implementation of pre-model Execution Steps 

3.5.2 Implementation and Evaluation of XGBoost 

XGBoost model was implemented using the XGBClassifier() function of xgboost package. 

The parameters were then tuned to attain the optimum results. Figure 28 shows the code for 

the implementation of the XGBoost model for each of the 3 different training data samples 

followed by its evaluation using the eval_matrix function. 
 

 
Figure 28 : Implementation and Evaluation of XGBoost 
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3.5.3 Implementation and Evaluation of Random Forest 

Random Forest model was implemented using the RandomForestClassifier() function of 

sklearn.ensemble package. The parameter tuning was then done further to attain the optimum 

results. Figure 29 shows the code for the implementation of the Random Forest model for each 

of the 3 different training data samples followed by its evaluation using the eval_matrix 

function. 
 

 
Figure 29 : Implementation and Evaluation of Random Forest 

 

3.5.4 Implementation and Evaluation of Logistic Regression 

Logistic Regression model was implemented using the LogisticRegression() function of 

sklearn.linear_model package. The penalty was set to ‘l2’ and class_weight was set to 

balanced. Figure 30 shows the code for the implementation of the Logistic Regression model 

for each of the 3 different training data samples followed by its evaluation using the 

eval_matrix function. 
 

 
Figure 30 : Implementation and Evaluation of Logistic Regression 
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3.5.5 Implementation and Evaluation of Naïve Bayes 

Gaussian Naïve Bayes model was implemented using the GaussianNB() function of 

sklearn.naive_bayes package. Figure 31 shows the code for the implementation of the Naïve 

Bayes model for each of the 3 different training data samples followed by its evaluation using 

the eval_matrix function. 
 

 
Figure 31 : Implementation and Evaluation of Naive Bayes 

3.5.6 Implementation and Evaluation of Support Vector Classifier  

Support Vector Classifier (SVC) model was implemented using the SVC() function of 

sklearn.svm package. The parameter tuning was then done further to attain the optimum results. 

Figure 32 shows the code for the implementation of the Support Vector Classifier model for 

each of the 3 different training data samples followed by its evaluation using the eval_matrix 

function. 
 

 
Figure 32 : Implementation and Evaluation of Support Vector Classifier 

 

3.5.7 Implementation and Evaluation of K-Nearest Neighbors (KNN) 

K-Nearest Neighbors model was implemented using the KNeighborsClassifier() function of 

sklearn.neighbors package. The best-balanced results were achieved with the value for 

n_neighbors as 70. Figure 33 shows the code for the implementation of the KNN model for 

each of the 3 different training data samples followed by its evaluation using the eval_matrix 

function. 
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Figure 33 : Implementation and Evaluation of K-Nearest Neighbors 

3.5.8 Implementation and Evaluation of Decision Tree Classifier 

Decision Tree Classifier model was implemented using the DecisionTreeClassifier() function 

of sklearn.tree package. The parameter tuning was then done further to attain the optimum 

results. Figure 34 shows the code for the implementation of the Decision Tree Classifier model 

for each of the 3 different training data samples followed by its evaluation using the 

eval_matrix function. 

 
Figure 34 : Implementation and Evaluation of Decision Tree Classifier 

3.5.9 Implementation and Evaluation of AdaBoost 

AdaBoost Classifier model was implemented using the AdaBoostClassifier() function of 

sklearn.ensemble package. The parameter tuning was then done further to attain the optimum 

results. Figure 35 shows the code for the implementation of the AdaBoost Classifier model for 

each of the 3 different training data samples followed by its evaluation using the eval_matrix 

function. 
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Figure 35 : Implementation and Evaluation of AdaBoost 

3.5.10 Implementation and Evaluation of Neural Network 

Neural Network Model was implemented using the KerasClassifier() function of the 

keras.wrappers.scikit_learn package. A function was created that defined the structure of the 

model. It was then passed as a parameter for the KerasClassifier() function. The parameter 

tuning was then done further to attain the optimum results. Figure 36 shows the code for the 

implementation of the Neural Network model for each of the 3 different training data samples 

followed by its evaluation using the eval_matrix function. 
 

 
Figure 36 : Implementation and Evaluation of Neural Network 

 

3.5.11 Implementation and Evaluation of Ensemble Voting Classifier 

After developing all the 9 machine learning models, they were ensembled together as predictors 

for an Ensemble Voting Classifier, that with the help of probabilities provided by each of these 

models predict the outcome of the dependent variable. The implementation of Ensemble Voting 

Classifier is a robust approach as it creates an additional layer of assessment before making the 

actual decision. The voting classifier is then again created each of the 3 sampling techniques 

and the results are further evaluated using eval_matrix function. 

As Ensemble Voting Classifier is the ultimate goal of this project, the predictions obtained by 

this model along with its features, are exported to .csv files using .to_csv() function of pandas. 

The evaluations results obtained for all the 30 different combinations of machine learning 
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models and sampling techniques are also exported to a .csv file for easier analysis and tracking 

purpose. Figure 37 shows the code for the same. 
 

 
Figure 37 : Implementation and Evaluation of Ensemble Voting Cassifier 

 

4 Sample Outputs of the Implementation 
Figure 38 shows the kernel output on successful implementation of the machine learning 

models. The same is exported to .csv along with the prediction results of Ensemble Voting 

Classifier as shown in Figure 39. Figure 40 shows the sample output .csv file of performance 

metrics. 
 

 
Figure 38 : Sample Output of Model Evaluation 
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Figure 39 : .csv Files Generated 

 
 

 
Figure 40 : Sample Output of Model evaluation in .csv File 

 

5 Appendix 

5.1 Installation of Anaconda 

1. Go to https://www.anaconda.com/distribution/#windows and download Anaconda 

Windows Installer with Python 3.7 Version. 

 

 

https://www.anaconda.com/distribution/%23windows
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2. On Double-clicking the downloaded file, setup window will appear. Click on the “Next” 

button. 

 

 
 

3. Select the appropriate value for “Install for” option based on the type of machine and users. 

Click on the “Next” button. 
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4.  Browse the “Destination Folder” if you want to install Anaconda to any specific folder. 

Click on the “Next” button. 

 

 
 

5. Tick the “Register Anaconda s the system Python 3.7” option and click on the “Install” 

button. 
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6. The installation process will now continue for approximately 5 minutes. 

 

 
 

7. On the successful Installation, Installation complete window will appear. Click on the 

“Next” button. 
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8. An Information window will appear. Click on the “Next” button. 

 

 
 

9. Thanks for installing window will appear. Click on the “Finish” button to complete your 

installation. 

 

 


