

Configuration Manual

MSc Research Project

Data Analytics

Girish Jagwani

Student ID: x18136371

School of Computing

National College of Ireland

Supervisor: Dr. Catherine Mulwa

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Girish Jagwani

Student

ID:

x18136371

Programm

e:

MSc. Data Analytics

Year:

2019-20

Module:

MSc. Research Project

Lecturer:

Dr. Catherine Mulwa

Submission

Due Date:

13-12-2019

Project

Title:

Identifying the Patients at Risk of Stroke Using Anomaly Detection Based Classification

Approach

………………………………………………………………………………………………………

….………

Word

Count:

……………………………………… Page Count: ………………………………….…….………

I hereby certify that the information contained in this (my submission) is information pertaining to research I

conducted for this project. All information other than my own contribution will be fully referenced and listed in

the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the Referencing

Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism)

and may result in disciplinary action.

Signature

:

……

……

Date:

……

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) □

Attach a Moodle submission receipt of the online project submission, to each project

(including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for your own

reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on

computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box

located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Girish Jagwani

Student ID: x18136371

1 Introduction
The aim of this document is to provide a walkthrough and thus enable the user to setup this
ICT solution on any suitable machine and produce the desired outcomes. This document,
therefore, includes the entire process of environment setup along with the required hardware
and software specifications. It also includes the snapshots of code to guide the user throughout
implementation and the visualisations of the exploratory data analysis that are not added as part
of the technical report.

The rest of this report is structured as follows: Chapter 2 discusses the Environment

Configurations, Chapter 3 discusses the Implementation, Chapter 4 illustrates the sample

outputs of the implementation of this ICT solution and Chapter 5 is the Appendix for providing

a walkthrough to install the necessary software.

2 Environment Configurations
This chapter mainly discusses the overall environment configurations that were used while
implementing this ICT solution. This includes Hardware Configurations, Software
Configurations and Python packages and libraries used.

2.1 Hardware Configurations

This section discusses the specifications of the hardware, i.e., the machine used for the

implementation of this ICT solution. In this case, as displayed in Figure 1, a laptop with 64-bit

Microsoft Windows 10 operating system, 1.80 GHz processor and 8 GB Ram was used.

Figure 1 : Hardware Configuration

2

2.2 Software Configurations

This section discusses the specifications of the software that were used as part of the

implementation of this ICT solution. The key software that were used are:

• Anaconda

• Spyder IDE

2.2.1 Anaconda

Anaconda is an open-source platform for data science with Python and R. Python was used as

part of the implementation of this ICT solution with Anaconda. Figure 2 enlightens the

specifications of the Anaconda used to implement this ICT Solution.

Figure 2 : Anaconda Specifications

2.2.2 Spyder

Spyder is an Integrated Development Environment (IDE) that was used to write the

implementation scripts in Python. Spyder IDE was launched using the Anaconda Navigator

that is available after the installation of Anaconda (Section 2.2.1). Figure 3 shows the launch

card for Spyder IDE version 3.3.6 in Anaconda Navigator.

Figure 3 : Spyder IDE

3

2.3 Python Packages Used

The packages and libraries that are used as part of the implementation of this ICT solution are

mentioned in Table 1 below.
Table 1 : Python Packages and Libraries Used for Stroke Detection

impyute.imputation.cs sklearn.naive_bayes xgboost

sklearn.model_selection sklearn.svm imblearn.over_sampling

sklearn.preprocessing sklearn.neighbors imblearn.under_sampling

sklearn.utils.class_weight sklearn.tree imblearn.combine

sklearn.metrics matplotlib.pyplot keras.models

sklearn.ensemble seaborn keras.layers

sklearn.linear_model math keras.wrappers.scikit_learn

3 Implementation
This section provides a walkthrough of the Python script that was written as part of the

implementation of this ICT Solution.

3.1 Reading the Dataset

After loading the packages (Section 2.3), the first important step is to import the dataset which

is a .csv file into the Python environment. This was done using read_csv() function of pandas.

The df data frame was created to store the data obtained. Figure 4 shows the code for the same.

The set_option() function was used to set appropriate column width and make all columns

visible while viewing the outputs.

Figure 4 : Reading CSV for Stroke Detection in Python

3.2 Exploratory Data Analysis

This step includes the activities that help to understand the data in a better way. Those are as

follows:

1. Identifying the Null Values in the Dataset

After storing the dataset into a pandas dataframe df, the next step that was to identify the null

values in the dataset. This was done using the .isnull() function of pandas that return True for

null values and False otherwise. A “for” loop was then used to check the columns with True

values present and print the respective columns with the count of null values. Figure 5 shows

the code for the same and Figure 6 shows the output received.

Figure 5 : Identifying Null values for Stroke Detection

4

Figure 6 : Output of Null Values Identified

2. Exploring the Distribution of Categorical Variables

The data distribution of the Categorical variables was identified using the .value_counts()

function of pandas. A for loop was used with all categorical columns passed as parameters.

Figure 7 shows the code for the same and Figure 8 shows the sample of the output received.

Figure 7 : Exploring Data Distribution for Stroke Detection in Python

Figure 8 : Output of Data Distribution

3. Exploring using Data Visualisations

After getting an overview of the data, Data Visualisations were created for better interpretation.

pandas function .value_count() was used to first store the data distribution into respective

variables (Figure 9). These variables were then used for plotting purposes.

Figure 9: Storing Data Distribution in Variables

Figure 10 captures the code for some of the visualisations that were created to evaluate the data

balance and distribution.

5

Figure 10 : Plotting Data Distribution

The respective Output is shown in Figure 11 to Figure 14.

Figure 11 : Bar Plot for Stroke Figure 12 : Distribution Plot for BMI

Figure 13 : Bar Plot for Gender Figure 14 : Distribution Plot for Average Glucose

Level

6

Similarly, Figure 15 captures the code for some of the visualisations that were created to

evaluate the relationship between different variables.

Figure 15 : Plotting Relationship Charts

The respective Output is shown in Figure 16 to Figure 19.

Figure 16 : Age vs Stroke Distribution Figure 17 : BMI vs Stroke Distribution

Figure 18 : Average Glucose Level vs Stroke

Distribution

Figure 19 : Gender vs Age vs Stroke Violin Plot

7

3.3 Data Pre-processing and Feature Selection

This step helps to make data suitable for the processing by the machine learning models. The

activities done as part of this step include:

1. Processing Null Values

The Null data identified as part of exploratory data analysis, cannot be used for the

implementation of the machine learning models. This data was therefore imputed. Figure 20

shows the code for the imputation of the smoking_status. All the null values for smoking_status

with age below 18 years were tagged as never smoked (as the minimum age of smoking is 18

years). Whereas for the rest of the cases, it was tagged unknown.

Figure 20 : Imputing Null Values for smoking_status

Figure 21 shows the code for the imputation of the BMI using Multiple Imputation by Chained

Equation (MICE) technique with the help of mice() function of impyute.imputation .cs

package.

Figure 21 : Imputing Null values for BMI

2. Data Encoding

The Categorical variables are meant to be encoded as integers for the machine learning model

to understand, this was achieved using LabelEncoder() method of sklearn. Pre-processing

package. Figure 22 shows the code for the encoding of the categorical variables.

Figure 22 : Encoding Categorical Variables

8

3. Feature Selection

Feature Selection is necessary to avoid the model fitting issues. As part of feature selection,

the redundant un-encoded classification features were removed along with the id column.

Correlation among the features was then evaluated using corr() function, followed by the

heatmap() function of seaborn for its plotting. This was to assure the absence of

multicollinearity (at a threshold of 0.7) as it is one of the important assumptions for certain

machine learning models like Logistic Regression. Figure 23 shows the code for the same.

Figure 23 : Feature Selection for Stroke Detection in Python

4. Train and Test data preparation

The data obtained after feature selection was then divided into a respective stratified ratio of

70:30 for Training and Testing of the models. This was done using the train_test_split()

function of sklearn.model_selection package. Figure 24 illustrates the code for the same.

Figure 24 : Test and Train data preparation

5. Scaling of the Data

Once the Test and Train data is split, the immediate step was to scale the data. It was achieved

using StandardScaler() function of sklearn.preprocessing package. Scaling is performed after

Test and Train data split to avoid any impact of Test data values on the Training data values

and keeping the Train set completely unaware of the Test set values. Figure 25 shows the code

for the same.

9

Figure 25 : Scaling of Stroke Data

By the end of this chapter, it can now be concluded that the dataset is ready for the

implementation of different sampling techniques, followed by the implementation of the

machine learning models.

3.4 Implementation of the Data Sampling Techniques

To handle the class imbalance observed in the dataset, 3 different data sampling techniques

were chosen for the implementation, i.e., SMOTE, Tomek Links and SMOTE + Tomek. The

SMOTE technique was implemented using SMOTE() function of imblearn.over_sampling

package, the Tomek Links technique was implemented using TomekLinks() function of

imblearn.under_sampling package, whereas SMOTE + Tomek was implemented using

SMOTETomek() function of imblearn.combine package. The code for the same is shown in

Figure 26.

All the 3 sampling techniques were implemented only on the Training data and not the

Testing data, to maintain the integrity of the data.

Figure 26 : Implementation of Sampling Techniques

3.5 Implementation of the Machine Learning Models

On successful implementation of the sampling techniques, data is ready for the implementation

of the machine learning models.

3.5.1 Pre-Model Execution Steps

Prior to the implementation of the machine learning models, few pre-model execution steps

illustrated as part of Figure 27 were performed. The code for pre-model execution steps

consists of the conversion of the test data from pandas to Numpy using .to_numpy() function.

10

This is followed by the calculation of the class weights using compute_class_weight() package

of sklearn.utils.class_weight the package, used as an input while implementing models like

XGBoost and Neural Network.

In the end, a function eval_matrix was created that accepts actual test outcome and the

predicted test outcome as input and calculates the value for all the performance metrics. This

function was then used for the evaluation of the implemented models. The values of evaluation

metrics were then stored into the Result dataframe.

Figure 27 : Implementation of pre-model Execution Steps

3.5.2 Implementation and Evaluation of XGBoost

XGBoost model was implemented using the XGBClassifier() function of xgboost package.

The parameters were then tuned to attain the optimum results. Figure 28 shows the code for

the implementation of the XGBoost model for each of the 3 different training data samples

followed by its evaluation using the eval_matrix function.

Figure 28 : Implementation and Evaluation of XGBoost

11

3.5.3 Implementation and Evaluation of Random Forest

Random Forest model was implemented using the RandomForestClassifier() function of

sklearn.ensemble package. The parameter tuning was then done further to attain the optimum

results. Figure 29 shows the code for the implementation of the Random Forest model for each

of the 3 different training data samples followed by its evaluation using the eval_matrix

function.

Figure 29 : Implementation and Evaluation of Random Forest

3.5.4 Implementation and Evaluation of Logistic Regression

Logistic Regression model was implemented using the LogisticRegression() function of

sklearn.linear_model package. The penalty was set to ‘l2’ and class_weight was set to

balanced. Figure 30 shows the code for the implementation of the Logistic Regression model

for each of the 3 different training data samples followed by its evaluation using the

eval_matrix function.

Figure 30 : Implementation and Evaluation of Logistic Regression

12

3.5.5 Implementation and Evaluation of Naïve Bayes

Gaussian Naïve Bayes model was implemented using the GaussianNB() function of

sklearn.naive_bayes package. Figure 31 shows the code for the implementation of the Naïve

Bayes model for each of the 3 different training data samples followed by its evaluation using

the eval_matrix function.

Figure 31 : Implementation and Evaluation of Naive Bayes

3.5.6 Implementation and Evaluation of Support Vector Classifier

Support Vector Classifier (SVC) model was implemented using the SVC() function of

sklearn.svm package. The parameter tuning was then done further to attain the optimum results.

Figure 32 shows the code for the implementation of the Support Vector Classifier model for

each of the 3 different training data samples followed by its evaluation using the eval_matrix

function.

Figure 32 : Implementation and Evaluation of Support Vector Classifier

3.5.7 Implementation and Evaluation of K-Nearest Neighbors (KNN)

K-Nearest Neighbors model was implemented using the KNeighborsClassifier() function of

sklearn.neighbors package. The best-balanced results were achieved with the value for

n_neighbors as 70. Figure 33 shows the code for the implementation of the KNN model for

each of the 3 different training data samples followed by its evaluation using the eval_matrix

function.

13

Figure 33 : Implementation and Evaluation of K-Nearest Neighbors

3.5.8 Implementation and Evaluation of Decision Tree Classifier

Decision Tree Classifier model was implemented using the DecisionTreeClassifier() function

of sklearn.tree package. The parameter tuning was then done further to attain the optimum

results. Figure 34 shows the code for the implementation of the Decision Tree Classifier model

for each of the 3 different training data samples followed by its evaluation using the

eval_matrix function.

Figure 34 : Implementation and Evaluation of Decision Tree Classifier

3.5.9 Implementation and Evaluation of AdaBoost

AdaBoost Classifier model was implemented using the AdaBoostClassifier() function of

sklearn.ensemble package. The parameter tuning was then done further to attain the optimum

results. Figure 35 shows the code for the implementation of the AdaBoost Classifier model for

each of the 3 different training data samples followed by its evaluation using the eval_matrix

function.

14

Figure 35 : Implementation and Evaluation of AdaBoost

3.5.10 Implementation and Evaluation of Neural Network

Neural Network Model was implemented using the KerasClassifier() function of the

keras.wrappers.scikit_learn package. A function was created that defined the structure of the

model. It was then passed as a parameter for the KerasClassifier() function. The parameter

tuning was then done further to attain the optimum results. Figure 36 shows the code for the

implementation of the Neural Network model for each of the 3 different training data samples

followed by its evaluation using the eval_matrix function.

Figure 36 : Implementation and Evaluation of Neural Network

3.5.11 Implementation and Evaluation of Ensemble Voting Classifier

After developing all the 9 machine learning models, they were ensembled together as predictors

for an Ensemble Voting Classifier, that with the help of probabilities provided by each of these

models predict the outcome of the dependent variable. The implementation of Ensemble Voting

Classifier is a robust approach as it creates an additional layer of assessment before making the

actual decision. The voting classifier is then again created each of the 3 sampling techniques

and the results are further evaluated using eval_matrix function.

As Ensemble Voting Classifier is the ultimate goal of this project, the predictions obtained by

this model along with its features, are exported to .csv files using .to_csv() function of pandas.

The evaluations results obtained for all the 30 different combinations of machine learning

15

models and sampling techniques are also exported to a .csv file for easier analysis and tracking

purpose. Figure 37 shows the code for the same.

Figure 37 : Implementation and Evaluation of Ensemble Voting Cassifier

4 Sample Outputs of the Implementation
Figure 38 shows the kernel output on successful implementation of the machine learning

models. The same is exported to .csv along with the prediction results of Ensemble Voting

Classifier as shown in Figure 39. Figure 40 shows the sample output .csv file of performance

metrics.

Figure 38 : Sample Output of Model Evaluation

16

Figure 39 : .csv Files Generated

Figure 40 : Sample Output of Model evaluation in .csv File

5 Appendix

5.1 Installation of Anaconda

1. Go to https://www.anaconda.com/distribution/#windows and download Anaconda

Windows Installer with Python 3.7 Version.

https://www.anaconda.com/distribution/%23windows

17

2. On Double-clicking the downloaded file, setup window will appear. Click on the “Next”

button.

3. Select the appropriate value for “Install for” option based on the type of machine and users.

Click on the “Next” button.

18

4. Browse the “Destination Folder” if you want to install Anaconda to any specific folder.

Click on the “Next” button.

5. Tick the “Register Anaconda s the system Python 3.7” option and click on the “Install”

button.

19

6. The installation process will now continue for approximately 5 minutes.

7. On the successful Installation, Installation complete window will appear. Click on the

“Next” button.

20

8. An Information window will appear. Click on the “Next” button.

9. Thanks for installing window will appear. Click on the “Finish” button to complete your

installation.

