
Configuration Manual

MSc Research Project

MSc. in Data Analytics

Nawaz Sheikh
Student ID: x18134637

School of Computing

National College of Ireland

Supervisor: Dr. Vladimir Milosavljevic

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Nawaz Sheikh

Student ID: x18134637

Programme: MSc. in Data Analytics

Year: 2019

Module: MSc Research Project

Supervisor: Dr. Vladimir Milosavljevic

Submission Due Date: 12th December 2019

Project Title: Identification and Classification of Wildlife from Camera-Trap
Images using Machine Learning and Computer Vision

Word Count: 1223

Page Count: 38

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 12th December 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Nawaz Sheikh
x18134637

1 Introduction

Most of the system setup, hardware and software requirements and the implementation
and evaluation along with exploratory data analaysis has been explained in this config-
uration manual.

2 Exploratory Data Analysis

2.1 Mount the Google Drive

Google Drive is mounted so that the files can be accessed.1

Figure 1: Google Drive

Figure 2: Folder directory

The folder directory is set where the dataset is present so that files can be accessed
from the directory mentioned.

1https://drive.google.com/drive/folders/1Q6kJBWvVCDdSAvg97jp65Cs3KoUjbY O

1



2.2 Importing the libraries

Figure 3: Importing libraries

Libraries of tensorflow, keras, glob, matplotlib, math are imported so that methods and
functions are used later on for certain tasks.2

2.3 Distribution of selected classes

Figure 4: Setting pygal library

2https://www.tensorflow.org/

2



Pygal library is used to plot the available classes. The plot is done using bar graph. A
wrapper is created to render the chart inline and data is passed through it so that it can
be displayed.

Figure 5: Class distribution

Figure 5 refers to the class distribution obtained for the classes present in the original
dataset. It seems that Red Deer has the highest number of samples making it the majority
class and Red Squirrel has the lowest number of samples making it the minority class as
compared to other 5 classes.

2.4 Confirm Folder Structure

Figure 6: Folder Structure

3



Here, the folder structure is verified so that we can go ahead with applying models to
the dataset. The output shows that there are six folders for six different classes. In each
folder, there are sequences of different images.

2.5 Create Train, Validation and Test folders

Figure 7: Creation of training, validation and test folders

Figure 8: Data split

4



The idea is to create three folders, train, validation and test with the data split ratio
of 70%, 10% and 20% respectively. The directory where the folders should be created
is listed. Also, if there is train, validate and test folder already existing in the listed
directory, then they are removed and the folders are recreated after then the data is split
in the consecutive folders.

Figure 9: Output for data split

2.6 Data Augmentation

This step is carried out to tackle the issue of class imbalance. Minority classes are
augmented with a shift of 45 degrees so that the number of images for the minority class
to train increases.

A check is carried out after the first 45 degrees shift of data augmentation to see the
increase in the number of images for the minority class. The minority classes are again
augmented to balance the classes.

Firstly, an example image is taken to observe the effect of augmentation. Then the
image is displayed. A number of 4 augmentations is done to each image of the minority
class. The augmentation is completed randomly on the minority class images. It is carried
out for the training data only in order to stop the class bias. The validation and testing
images remains the same as passes on originally after segregation.

Figure 10: Importing the library for data augmentation

5



Figure 11: Image Data Generator

Figure 12: Sample image

6



Figure 13: Image to array

Figure 14: Augmentation technique

Figure 15: Augmentation example

7



Figure 16: Oversampling minority class

Figure 17: Classes to augment

Figure 18: Classes augmenting

Hansson (2002) augmented images before calculating top-1 and top-5 values.

8



2.7 Resizing of images

Figure 19: File access on google drive

Figure 20: Importing the functions from an external file

Files from google drive are accessed by setting up the gauth function. Shareable link is
used to import functions from a different file. The external file six classes utils includes
resizing function for the images.

Figure 21: Resize of the images

six classes utils is the file used from google drive to resie the images. Libraries like
cv2, random, glob are used and a function for resizing is written in the file.3

3https://opencv.org/

9



Figure 22: Libraries for the util file

Figure 23: Function for resizing

Figure 24: Sample image after resizing

2.8 Look at Distribution of Selected Classes again

Now, the class imbalance issue has been resolved as all the classes are more likely similar
in the number of images that each class possess. Pygal barchart is used for plotting the
distribution graph.

Figure 25: Class Distribution after augmentation

10



Figure 26: Bar chart after augmentation

3 Deep Learning Architectures

3.1 Data Generator

Figure 27: Importing ImageGenerator

Figure 28: Resizing as per InceptionV3

11



Figure 29: Resizing as per VGG16 and MobileNet

Nguyen et al. (2018) resized the images before applying the deep learning architectures.

Figure 30: Train Dataset Generator

Verma and Gupta (2018) applied DCNN architectures after training and testing data-
set using generator.

Figure 31: Validation Dataset Generator

12



Figure 32: Test Dataset Generator

The data from the Keras ImageDataGenerator class has been ingested for training
purposes.4 This will assist in reading the directory structured as per the category of
classes which was done during the training in the exploration phase.

For InceptionV3, the height and width requirement is 299x299. For VGG-16 and
MobileNet, the height and width requirement is 224x224. The generator also resizes
the images as per the architecture before feeding the data into the network so that the
training, test and validation phase works successfully. Chen et al. (2014) and Chung et al.
(2018) resized the images before applying the DCNN algorithms.

3.2 Optimization for CPU

Figure 33: Libraries for optimizers and modelst

4https://keras.io/

13



Figure 34: Optimization setup

3.3 Selecting Hyperparameters

Figure 35: Model for InceptionV3

Figure 36: Layers for InceptionV3

14



Figure 37: Model summary for InceptionV3 (1)

Figure 38: Model summary for InceptionV3 (2)

15



Figure 39: Model summary for MobileNet (1)

Figure 40: Model summary for MobileNet (2)

Figure 41: Model summary for VGG16 (1)

16



Figure 42: Model summary for VGG16 (2)

InceptionV3, VGG16 and MobileNet are the three architectures used for the classification
of animals. Here, transfer learning is used with the weights of imagenet and top layer is
removed as 1001 classes are not predicted in this dataset. The learning rate is set to 0.001
and therefore, the dataset takes a longer time to train for each of the algorithms. Adam
optimizer is used as it adapts to the learning rate according to the parameters. Batch
size of 32 is used and hence, 32 images are used in training the dataset in one iteration.

GlobalAveragePooling2D layer is added to the base model and the Dense layer is added
with a softmax activation to predict the number of classes in the dataset. Layer.trainables
is set to False so that the new layers are trained that are added in this dataset. Since,
we have multiclass classification, we have added loss of categorical crossentropy is used.

3.4 Training Callbacks

Keras Fit Generator Method is used for training. Here, training and validation dataset
is used in order to check if the model is performing well rather than directly working
on the test dataset. Four different callbacks such as ModelCheckkpoint, TensorBoard,
EarlyStopping and CSVLogger. Checkpoints are used to minimize the disk space that is
being used. Also, overtraining and overutilizing the compute is taken care of by callbacks.

Figure 43: Model checkpoint for InceptionV3

17



Figure 44: Training for InceptionV3

Figure 45: Output for training and validation of InceptionV3

Figure 46: Model checkpoint for MobileNet (1)

Figure 47: Model checkpoint for MobileNet (2)

Figure 48: Training for MobileNet

18



Figure 49: Output for training and validation of MobileNet

Figure 50: Model checkpoint for VGG-16 (1)

Figure 51: Model checkpoint for VGG-16 (2)

Figure 52: Training for VGG-16

Figure 53: Output for training and validation of VGG-16

19



3.5 Evaluate Model

Figure 54: Evaluation generator for InceptionV3

Figure 55: Loss, accuracy and Top5 confidence for InceptionV3

Figure 56: Loss, accuracy and Top5 confidence for MobileNet

20



Figure 57: Loss, accuracy and Top5 confidence for VGG-16

3.6 Write Labels File

Figure 58: Write Label for IV3

Figure 59: Write Label for MobileNet

Figure 60: Write Label for VGG-16

The network uses the numerical value to refer to a particular class. The values are saved
in a text file to map the classes to a particular numerical value for future use.

21



3.7 Test Model with Sample Image

Figure 61: Test Model for InceptionV3 (1)

Figure 62: Test Model for InceptionV3 (2)

Figure 63: Test Model for InceptionV3 (3)

22



Figure 64: Test Model for InceptionV3 (4)

Figure 65: Test Model for InceptionV3 (5)

Figure 66: Test Model for MobileNet (1)

23



Figure 67: Test Model for MobileNet (2)

Figure 68: Test Model for VGG-16 (1)

Figure 69: Test Model for VGG-16 (2)

24



Figure 70: Test Model for VGG-16 (3)

The models are first tested on a sample image after the training. A random image is
chosen from the test dataset and the model is run through the image. Softmax func-
tion returns the confidence values. Top-3 labels and values are predicted by the model.
Norouzzadeh et al. (2017) calculated and Gomez Villa et al. (2017) discussed about the
confidence values to save human labor.

3.8 Transform Keras Model to Tensorflow

Figure 71: Tranformation from Keras to Tensorflow for InceptionV3 (1)

Figure 72: Tranformation from Keras to Tensorflow for InceptionV3 (2)

25



Figure 73: Tranformation from Keras to Tensorflow for InceptionV3 (3)

Figure 74: Tranformation from Keras to Tensorflow for InceptionV3 (4)

Figure 75: Tranformation from Keras to Tensorflow for MobileNet (1)

26



Figure 76: Tranformation from Keras to Tensorflow for MobileNet (2)

Figure 77: Tranformation from Keras to Tensorflow for VGG-16 (1)

Figure 78: Tranformation from Keras to Tensorflow for VGG-16 (2)

27



Figure 79: Tranformation from Keras to Tensorflow for VGG-16 (3)

This step is followed to convert the .hdf5 file format of Keras to .pb file format of Tensor-
Flow. The files for all the three architectures are saved so that it can be used in the
future if a researcher wants to use TensorFlow instead of Keras.

4 Model Analysis

4.1 Loading the models for evaluation

Figure 80: Load model of InceptionV3 for evaluation

Figure 81: Test dataset generator of InceptionV3 for evaluation

Figure 82: Importing libraries for InceptionV3 for evaluation

28



Figure 83: Predict generator of InceptionV3 for evaluation (1)

Figure 84: Predict generator of InceptionV3 for evaluation (2)

Figure 85: Load model of MobileNet for evaluation

29



Figure 86: Load model of VGG-16 for evaluation

Models for all the three architectures, InceptionV3, MobileNet and VGG-16 are loaded.
Predict generator is used to generate predictions and passed onto the dataset which is
further used by the analysis functions. Batch size is set to 32 and Target size of the
images is 299x299 for InceptionV3 and 224x224 for MobileNet and VGG-16.

4.2 Confusion Matrix

Figure 87: Code for the confusion matrix (1)

Figure 88: Code for the confusion matrix (2)

30



Figure 89: Code for the confusion matrix (3)

Figure 90: Code for the confusion matrix (4)

Figure 91: Confusion Matrix for InceptionV3

31



Figure 92: Confusion Matrix for MobileNet

Figure 93: Confusion Matrix for VGG-16

32



4.3 Classification Report

Figure 94: Code for the classification report

Figure 95: Classification report for InceptionV3

Figure 96: Classification report for MobileNet

33



Figure 97: Classification report for VGG-16

Classification report shows the values of precision, recall, f-1 score and support for each
of the classes. Also, it shows the overall f-1 score for each of the models.

4.4 Precision-Recall Curve

Figure 98: Code for plotting the precision-recall curve

Figure 99: Precision-Recall Curve for InceptionV3

34



Figure 100: Precision-Recall Curve for MobileNet

Figure 101: Precision-Recall Curve for VGG-16

Precision-Recall curve for the architectures InceptionV3, MobileNet and VGG-16 are
plotted.

35



4.5 Receiver Operating Characteristic (ROC) Curve

A graphical plot which shows the binary classifier system as the threshold is varied. True
positive rates is plotted against the fraction of False positive rates from the negatives
at different threshold settings. True positive rate (TPR) is called as sensitivity, whereas
False positive rate (FPR) is one minus the true negative rate.

Figure 102: Code for plotting the ROC curve

Figure 103: ROC Curve for InceptionV3

36



Figure 104: ROC Curve for MobileNet

Figure 105: ROC Curve for VGG-16

ROC curves for InceptionV3, MobileNet and VGG-16 are plotted.

37



5 Environment Setup

Figure 106: Environment Setup

References

Chen, G., Han, T. X., He, Z., Kays, R. and Forrester, T. (2014). Deep convolutional neural
network based species recognition for wild animal monitoring, 2014 IEEE International
Conference on Image Processing, ICIP 2014 pp. 858–862.

Chung, C., Patel, S., Lee, R., Fu, L., Reilly, S., Ho, T., Lionetti, J., George, M. D. and
Taylor, P. (2018). Very Deep Convolutional Networks for Large-Scale Image Recogniz-
ation, [Vgg] 75(6): 398–406.

Gomez Villa, A., Salazar, A. and Vargas, F. (2017). Towards automatic wild animal
monitoring: Identification of animal species in camera-trap images using very deep
convolutional neural networks, Ecological Informatics 41: 24–32.

Hansson, P. (2002). Fracture Analysis of Adhesive Joints Using The Finite Element
Method, Lund Institute of Technology (February).

Nguyen, H., Maclagan, S. J., Nguyen, T. D., Nguyen, T., Flemons, P., Andrews, K.,
Ritchie, E. G. and Phung, D. (2018). Animal recognition and identification with deep
convolutional neural networks for automated wildlife monitoring, Proceedings - 2017
International Conference on Data Science and Advanced Analytics, DSAA 2017 2018-
Janua(Figure 1): 40–49.

Norouzzadeh, M. S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M., Packer, C. and
Clune, J. (2017). Automatically identifying, counting, and describing wild animals in
camera-trap images with deep learning, (1): 1–10.

Verma, G. K. and Gupta, P. (2018). Proceedings of 2nd International Conference on
Computer Vision & Image Processing, Vol. 704, Springer Singapore.

38


	Introduction
	Exploratory Data Analysis
	Mount the Google Drive
	Importing the libraries
	Distribution of selected classes
	Confirm Folder Structure
	Create Train, Validation and Test folders
	Data Augmentation
	Resizing of images
	Look at Distribution of Selected Classes again

	Deep Learning Architectures
	Data Generator
	Optimization for CPU
	Selecting Hyperparameters
	Training Callbacks
	Evaluate Model
	Write Labels File
	Test Model with Sample Image
	Transform Keras Model to Tensorflow

	Model Analysis
	Loading the models for evaluation
	Confusion Matrix
	Classification Report
	Precision-Recall Curve
	Receiver Operating Characteristic (ROC) Curve

	Environment Setup

