

Configuration Manual:Lung cancer detection using machine learning techniques and image processing

MSc Research Project Data Analytics

Sumit Jadhav Student ID: 18129633

School of Computing National College of Ireland

Supervisor: Dr. Mohammad Iqbal

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Sumit Jadhav
Student ID:	18129633
Programme:	Data Analytics
Year:	2018
Module:	MSc Research Project
Supervisor:	Dr. Mohammad Iqbal
Submission Due Date:	20/12/2018
Project Title:	Configuration Manual:Lung cancer detection using machine
	learning techniques and image processing
Word Count:	788
Page Count:	12

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	
Date:	12th December 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).	
Attach a Moodle submission receipt of the online project submission, to	
each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for	
your own reference and in case a project is lost or mislaid. It is not sufficient to keep	
a copy on computer.	

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual:Lung cancer detection using machine learning techniques and image processing

Sumit Jadhav 18129633

1 Introduction

This configuration manual will help to replicate the research "Lung Cancer Detection Using Classification Algorithms" from scratch. This configuration manual gives detailed information of the required prerequisite to set up and successfully build, run and test this research using suggested framework.

This manual is divided into following sections: Section 2 gives the details of the environment setup. Section 3 discusses about the libraries required for implementing this project. Section 4 gives all the details regarding the dataset. Section 5 explains how the models are implemented and contains the information regarding code repository.

2 Hardware Specification

- Operating System: Windows 10 Home Single Language (10.0, Build 18362)
- Processor: Intel(R) Core (TM) i5-3317U CPU @ 1.70GHz (4 CPUs)
- Installed RAM: 8.00 GB
- System Type: 64-bit OS, x64-based processor

2.1 Software Specification

- Anaconda Navigator for Windows (Version 1.9.7)
- Jupyter Notebook (Version 6.0.2)
- 2.3 Programming Requisites
- Python (Version 3.7.5)

2.2 Python Environment Setup

The project was completely implemented using python language, so Anaconda framework was selected. In Anaconda framework there are several preinstalled environments like Jupyter lab, Jupyter Notebook, Spyder, Glueviz, Orange 3, R Studio and VS Code. Figure 1 explains the launch of Jupyter Notebook environment. Jupyter provides an interface to write the code, build the models and testing of it.

) ANACO	NDA NAVIGATOR			Sign in to Ana	conda C
Home	Applications on base (root)	✓ Channels			Refr
Environments	*	\$	•	*	
Learning	lab	Jupyter	*		
	JupyterLab	Notebook	Spyder	Glueviz	
Community	⊅ 0.33.11	⊅ 5.7.8	⊅ 3.3.6	0.15.2	
	An extensible environment for interactive and reproducible computing, based on the Jupyter Notebook and Architecture.	Web-based, interactive computing notebook environment. Edit and run human-readable docs while describing the data analysis.	Scientific PYthon Development EnviRonment. Powerful Python IDE with advanced editing, interactive testing, debugging and introspection features	Multidimensional data visualization across Files. Explore relationships within and among related datasets.	
	Launch	Launch	Launch	Install	
	<u> </u>	<u> </u>	*		
	oo .	R	×		
Documentation					
	Orange 3	RStudio	VS Code		
Developer Blog	3.23.1 Component based data mining framework.	1.1.456 A set of integrated tools designed to help	1.40.2 Streamlined code editor with support for		
	Data visualization and data analysis for	vou be more productive with R. Includes R	development operations like debugging,		

Figure 1: Classification models Evaluation Score

3 Libraries required

All the libraries which were required to build this research project are mentioned below in the table 1 along with the commands which can be used to import them. Also, some of the libraries are required to download before using them.

	Tuble 1. Library and Command				
Library	Command				
Pandas	import pandas as pd				
numpy	import numpy as np				
matplotlib	import matplotlib.pyplot as plt				
sklearn	import sklearn from sklearn import metrics from sklearn.ensemble import RandomForestClassifier from sklearn import svm, metrics, datasets from sklearn.ensemble import AdaBoostClassifier				
skimage	from skimage import io from skimage.io import imread from skimage.transform import resize				
05	import os				
cv2	import cv2				
tqdm	from tqdm import tqdm				
tensorflow	from tensorflow.keras.callbacks import TensorBoard import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, MaxPooling2D, BatchNormalization				
time	import time				
Path	from pathlib import Path				
Xgboost	from xgboost import XGBClassifier				

Table 1: Library and Command

4 Dataset

The dataset for this research can be accessed from ? https://www.kaggle.com/kmader/ lungnodemalignancy The dataset has This dataset is completely available on the public domain named Kaggle and was created by Kevin Mader. This dataset has a total of 6,691 images in which 4,165 images are labeled as benign and 2,562 images are labeled as malignant. This dataset was extracted from The Cancer Imaging Archive (TCIA): https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI and was converted into a multipage Tagged Image File Format (TIFF) format. This image can be viewed with a specific software specified by the author which are ImageJ or KNIME. These images were split and converted into jpg as TIFF does not supports compression and for neural network full resolution images can cause memory operation errors.

4.1 Data Pre-processing

As the dataset was present in a multipage tiff it was split into an individual image and converted to a Joint Photographic Experts Group (JPEG) format. This was done using TIFF Splitter tool. As all the images should be in same dimensions the reshaping of the images was done to the dimension of 64x64 by using Python Jupyter and further antialiasing filter was applied. Figure 2 explains the steps taken in data preprocessing.

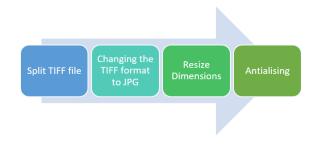


Figure 2: Image Pre-processing and Transformation

For splitting the TIFF file, a tiff splitter application was used. This tool can be downloaded from https://tiff-splitter.windows10compatible.com/ . After downloading this tool is ready to install and after installation following interface can be seen. In this interface selection of the input TIFF file and destination folder is required. For the conversion of the image in checkbox is required to be clicked on.The interface of the tool is explained in figure 3.

4.2 Loading the Dataset

After this further preprocessing of image in done where these images and stored in an array and then resize and grayscale conversion operation is performed with the help of the following code mentioned in figure 4:

🔏 Tiff Splitter			-		×
Get images from Select folder with tiff-images	Register!	Split images to Select folder for splitter	c imanac	New	folder
E _ Mugiwara (E:)		E Wideos	s intages		
🗄 🔤 Gomu Gomu No		Windows	(0.)		
Dataset	(-:)	E _ Trafalgar			
Dataset		E _ Mugiwara			
DB2		🗉 🔤 Mogwara			
	emalignancy	E Gonu Gon			
		B Datas	et		
	les.ur				
🗉 🔤 Output					
. ■ DB3			ignodemalignancy		
ILCTSC			itput		
🗉 🔄 LungCT-Dia		🗉 🔡 DB3			
🕀 🔤 Sem 1 Dow		ICTSC			
E SEM 2 Dow	nloads	🕀 📙 LungC	T-Diagnosis		
🗷 📑 Video		🗷 🔂 Sem 1	Downloads		
🗉 🔄 Virtual Mad	nine VMware MOL	1 SEM 2	Downloads		
🗉 🔤 VirtualBox V	/Ms	🕀 📊 Video			
			Machina MAusea N		~
<	>	<			>
Process subfolders Keep directory structure	Command line usage help	Rotate: None Overwrite mode: Ask		vert to JPE	-
		Overwrite mode: Ask	Tor overwrite	Split	2

Figure 3: Image Pre-processing and Transformation

In [3]:	DATADIR = "F://DB3"
In [4]:	CATEGORIES - ["Benign", "Malignant"]
In [5]:	<pre>for category in CATEGORIES: path - os.path.join(DATADIR,category) # create path to benign or malignant for ing in os.listir(path): # iterate over each image per data img_array - cv2.imread(os.path.join(path,img)) # read image array</pre>

Figure 4: Python code for loading the dataset

5 classification Model Implementation

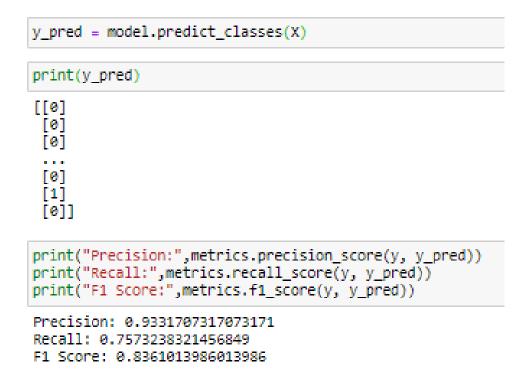
5.1 Convolution Neural Network (CNN)

Implementation process for CNN is done completely from the scratch and the model can be explained further with the help of comments present in the code.


```
# To randomize the data before feeding it to the model
import random
random.shuffle(training_data)
```

```
# Spliting the data on the basis of features and Labels
X = []
y = []
for features, label in training_data:
    X.append(features)
    y.append(label)
X = np.array(X).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
y = np.asarray(y)
```

```
# input shape for the convolution
X.shape
```


```
(6691, 64, 64, 1)
```

```
# 4 convolution model
start = time.process_time()
# your code here
X = X/255.0
model = Sequential()
model.add(Conv2D(16, kernel_size=6, input_shape = (64,64,1)))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size = (2,2)))
model.add(Conv2D(32, (3,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size = (2,2)))
model.add(Conv2D(64, (3,3)))
model.add(Activation('relu')
model.add(MaxPooling2D(pool_size = (2,2)))
model.add(Conv2D(128, (3,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size = (2,2)))
model.add(Flatten())
model.add(Dense(64))
model.fit(X,y, batch_size = 1, epochs = 10, validation_split = 0.3, callbacks = [tensorboard])
print(time.process_time() - start)
```

In [22]: model.summary()

Model: "sequential"

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	59, 59, 16)	592
activation (Activation)	(None,	59, 59, 16)	0
<pre>max_pooling2d (MaxPooling2D)</pre>	(None,	29, 29, 16)	0
conv2d_1 (Conv2D)	(None,	27, 27, 32)	4640
activation_1 (Activation)	(None,	27, 27, 32)	0
max_pooling2d_1 (MaxPooling2	(None,	13, 13, 32)	0
conv2d_2 (Conv2D)	(None,	11, 11, 64)	18496
activation_2 (Activation)	(None,	11, 11, 64)	0
max_pooling2d_2 (MaxPooling2	(None,	5, 5, 64)	0
conv2d_3 (Conv2D)	(None,	3, 3, 128)	73856
activation_3 (Activation)	(None,	3, 3, 128)	0
max_pooling2d_3 (MaxPooling2	(None,	1, 1, 128)	0
flatten (Flatten)	(None,	128)	0
dense (Dense)	(None,	64)	8256
dense_1 (Dense)	(None,	1)	65
activation_4 (Activation)	(None,	1)	0
Total params: 105,905 Trainable params: 105,905 Non-trainable params: 0			

5.2 Support Vector Machine (SVM)

For applying SVM following code was used for implementation:

```
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
from sklemage.ion import swm, metrics, datasets
from skimage.iransform import resize
import time
start = time.process_time() # To calculate time
def load_image_files(container_path) dimension=(64, 64)): # path and dimensions
image_dir = Path(container_path) # storing the image directory
folders = [directory for directory in image_dir.iterdir() if directory.is_dir()] # category folder malignant and benign
categories = [fo.name for fo in folders]
descr = "SNW"
images = []
flat_data = []
target = []
for i, direct in enumerate(folders):
    for file in direc.iterdir():
        #img = skimage.io.imread(file)
        img = imread(file,plugin=imatplotlib')
        img = size(aff, dimension, anti_aliasing=True, mode='reflect') # image preprocessing
        flat_data = no_array(file,data)
        target.appendign_resized) # new resize images appended
        target.appendign_resized) # new resize images appended
        target.appendign_resized)
        return Bunch(data-flat_data)
        target.appendign_resized, image_starget,
            target.appendign_resized, images,
        DESCR=descr)
image_dataset = load_image_files("F://DB3") # dataset path
X_train, X_test, y_train, y_test = train_test_split(
        image_dataset = load_image_files("F://DB3") # dataset path
X_train, X_test, y_train, y_test = train_test_split(
        image_dataset.itarget.itarget.applit(intest and train
```

```
svc = svm.SVC(kernel='rbf', gamma = 'auto') # model Implementation
svc.fit(X_train, y_train)
y_pred = svc.predict(X_test)
print("Classification report for - \n{}:\n{}\n".format(
   svc, metrics.classification_report(y_test, y_pred))) # metric report
print(time.process_time() - start)
Classification report for -
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
   max_iter=-1, probability=False, random_state=None, shrinking=True,
    tol=0.001, verbose=False):
             precision
                          recall f1-score support
           а
                  0.69
                            0.97
                                      0.81
                                                 411
                  0.86
                            0.32
                                      0.46
           1
                                                 259
                                      0.72
                                                 670
   accuracy
```

568.390625

macro avg

weighted avg

0.78

0.76

0.64

0.72

0.64

0.67

670

670

5.3 Random Forest (RF)

For applying RF following code was used for implementation:

```
from pathlib import Path
Import marpIollib.pyplot as plt
Import marpIollib notebook
from skimage_intensform import resize
from skimage_intensform import resize
from skimage_intensform import RandomForestClassifier
import time
start = time.process_time() # To calculate time
def load_image_files(container_path, dimension=(64, 64)): ## path and dimensions
    image_dir = Path(container_path)
    folders = [directory for directory in image_dir.iterdir() if directory.is_dir()]# category folder malignant and benign
    categories = [fo.name for fo in folders]
    descr = "Random Forest"
    images = []
    falt_data = []
    target = []
    for file in direc.iterdir():
        for file in direc.iterdir():
        img = imread(file_plugin='matplotlib')
        imges_append(img_resized) # new resize images appended
        target.append(img_resized)
        target.append(img_resized)
        target.append(img_resized)
        target.append(img_resized)
        target.target,
            target.target,
```

<pre>X_train, X_test, y_train, y_test = train_test_split(image_dataset.data, image_dataset.target, test_size=0.3,random_state=109) # data split in test and train</pre>
<pre>clf = RandomForestClassifier(n_estimators=100)</pre>
<pre># fit the training data to the model clf.fit(X_train, y_train)</pre>
<pre>clf_pred = clf.predict(x_test)</pre>
<pre>print("Classification report for - :\n".format(clf, metrics.classification_report(y_test, clf_pred))) # metric report print(time.process time() - start)</pre>
<pre>Classification report for - RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',</pre>
procession in the second se
0 0.81 0.93 0.87 1266 1 0.85 0.63 0.72 742
accuracy 0.82 2008 macro avg 0.83 0.78 0.80 2008 weighted avg 0.82 0.82 0.81 2008
65.5625

5.4 Adaptive Boost (ADABost)

For applying ADABost following code was used for implementation:

```
import time
start = time.process_time() # To calculate time
from pathilb import Path
import mumpy as np
from sklearn.utils import Bunch
from skimage.io import imread
from skimage.io import resize
from sklearn.ensemble import AdBoostclassifier
def load_image_files(container_path, dimension=(64, 64)): # path and dimensions
image_dir = Path(container_path, dimension=(64, 64)): # path and dimensions
image_dir = Path(container_path)
folders = [directory for directory in image_dir.iterdir() if directory.is_dir()] # category folder malignant and benign
categories = [fo.name for fo in folders]
descr = "ADABOOST"
images = []
for i, direct in enumerate(folders):
    for file in direc.iterdir():
        #img = skimage.io.imread(file)
        img = imread(file,plugin='matplotlib')
        img = resize(img_dimension, anti_aliasing=True, mode='reflect') # image preprocessing
        flat_data = npend(img_resized) # new resiize images appended
        target = np.array(flat_data)
        target = np.array(target)
```

return Bunch	target=ta	arget, ames=catego nages,	ries,								
image dataset =			//000113 #	datasat nath							
# data split i			//065) #	uutuset puth							
x_train, x_test,			nain tort	colit/image_da	tacat data	image data	cot tongot	tort cir		ndom stato 1	202
y test.shape	y_crain,	y_cest = t	ain_cest_	Shiic(imaBe_da	icasec.uaca,	, image_uata	isec, cargec	, test_siz	c=0.1,10	indoli_state=1	(65)
classifier = Ada	Boost Class	ifier()									
classifier.fit()			odel Tmple	mentation							
preds = classifi			ouce impee								
print("Classific			n{}:\n	".format(
				y test, preds))) # metric	c report					
print(time.proce	ess_time()	- start)									
Classification r AdaBoostClassifi pr	ier(algorit n_estim		random_sta	te=None):	learning_	rate=1.0,					
0	0.70	0.85	0.77	411							
1	0.64	0.41	0.50	259							
-											
accuracy			0.68	670							
macro avg	0.67	0.63	0.64	670							
weighted avg	0.68	0.68	0.67	670							
238.125											

5.5 Extreme Gradient Boost (XGBoost)

For applying XGBoost following code was used for implementation:

:	<pre>import time start = time.process_time() # To calculate time from pathlib import Path import matplotlib.pyplot as plt import numpy as np from sklearn.utils import Bunch from sklearn.utils import Bunch from skimage.io import imread from skimage.transform import resize from syzbost import XGBClassifier def load_image_files(container_path, dimension=(64, 64)): # path and dimensions image_dir = Path(container_path) folders = [directory for directory in image_dir.iterdir() if directory.is_dir()] category folder malignant and benign categories = [fo.name for fo in folders]</pre>
	<pre>descr = "XGBOOST" images = [] flat_data = [] target = [] for i, direc in enumerate(folders): for file in direc.iterdir(): #img = skimage.io.imread(file) img = imread(file,plugin="matplotlib') img_resized = resize(img, dimension, anti_aliasing=True, mode='reflect') # image preprocessing flat_data.append(img_resized.flatten()) images.append(img_resized.flatten()) images.append(img_resized.flatten()) images.append(ifte_resized) # new resilize images appended target.append(i) flat_data = np.array(flat_data) target = np.array(target) images = np.array(images)</pre>

<pre>return Bunch(data=lat_data,</pre>									
Classification report for - XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=3, min_child_weight=1, missing=None, n_estimators=100, n_jobs=1, nthread=None, objective='binary:logistic', random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None, silent=None, subsample=1, verbosity=1): precision recall f1-score support 0 0.75 0.93 0.83 411									
1	0.83	0.49	0.62	259					
accuracy macro avg weighted avg	0.79 0.78	0.71 0.76	0.76 0.72 0.75	670 670 670					
246.5625									

6 References

- Dataset Source : https://www.kaggle.com/kmader/lungnodemalignancy
- Code Reference for CNN : https://pythonprogramming.net/loading-custom-data-deep-learning-python-tensorflow-keras/
- Code Reference for Other CLassification Models: https://github.com/Abhishek-Arora/Image-Classification-Using-SVM/blob/master/src/imageClassifier.py
- Code Reference for Tensorflow Learning: https://www.tensorflow.org/api_docs/python/tf
- Code Reference for Learning Keras : https://www.tensorflow.org/api_docs/python/tf/keras/