
Configuration Manual

MSc Research Project

Data Analytics

Shreeya Namboori
Student ID: x18128947

School of Computing

National College of Ireland

Supervisor: Dr. Muhammad Iqbal

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Shreeya Namboori

Student ID: x18128947

Programme: Data Analytics

Year: 2018

Module: MSc Research Project

Supervisor: Dr. Muhammad Iqbal

Submission Due Date: 20/12/2018

Project Title: Configuration Manual

Word Count: 1694

Page Count: 15

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Shreeya Namboori

Date: 12th December 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Shreeya Namboori
x18128947

1 Introduction

The presented configuration manual document states the hardware and software require-
ments or tools used in the MSc research project ”Forecasting Carbon Dioxide Emissions
in the United States using Machine Learning”. It also presents the code that was used
in modeling.

2 Required System Configuration

2.1 Hardware Required

Processor : Inter(R) Core(TM) i5-6200U CPU @ 2.30GHz 2.40GHz
RAM : 8 GB
Storage Capacity : 1 TB (Terabyte) HDD (Hard Disk Drive)
System Type : 64-bit Operating System , x64- based processor
GPU : NVIDIA GEFORCE
Operating System : Windows 10 (64-bit operating system)

2.2 Software Required

Data Cleaning : RStudio
Programming and forecasting graphs :Jupyter Notebook by Anaconda
Visualization : PowerBI
Flow chart and diagrams : Draw.io (Online software for making charts and process
flow diagrams)
Other tools: Microsoft Word (for making tables), Snipping tool (for taking screenshots
of diagrams or tables), Microsoft Excel (for reading csv, and creating separate csv file for
each sector using MS Excel filter).

3 Research Project Development

This section gives a detailed description of the steps followed from the starting of the
project till the end to achieve the research objectives.

1



3.1 Data Collection and Pre-processing

The data for monthly CO2 emissions from the United States (U.S.) has been collected
from the EIA (U.S. Energy Information Administration ) website 1. The data contains
CO2 emissions of nine sectors from January 1973 to July 2019 and it has 5445 rows and
six columns. RStudio software was used for cleaning this dataset.

Figure 1: Raw CSV Data

Figure 2: RStudio Code : Removing columns and NA values and modifying column
names

1https://www.eia.gov/totalenergy/data/browser/?tbl=T11.06#/?f=M

2



After reading the CSV file in ghg variable the fourth column is dropped off as it
just contains the index number of the sectors. The column names ’YYYYMM’, ’MSN’
and ’Description’ are modified to ’YEAR’, ’SECTOR’ and ’SECTOR DESCRIPTION’.
The colSums(is.na(ghg)) function checks for the number of NA values in each column
and 416 NA values are found in the Value column of ghg. These values come from the
Geothermal Energy Electric Power Sector and the Non-Biomass Waste Electric Power
Sector as their emissions have been getting recorded from January 1989, therefore, the
emissions between the year January 1973 to December 1988 are given as NA values.
These values are removed from ghg using na.omit(ghg) function (Figure 2).

Figure 3: RStudio Code : Separating year and month, converting the 13th month of the
year to NA values and omitting NA values

The ’YEAR’ column contains the year and month joined together without a separator,
therefore, a slash separator ’/’ is used for separating the year from the month. There
is a 13th month each year which contains the total sum of emission of the 12 months.
Since this value is an anomaly in the normal monthly emission data it is removed from
the observations by converting the ’YEAR’ column of the 13th month to NA. Since
colSums do not recognize this data as NA it is written as CSV and then again loaded
into the RStudio to check for NA values using colSums. This time the colSums show 382
NA values which are then omitted by na.omit function and this cleaned data is finally
written down as CSV for modeling purpose (Figure 3). A separate CSV file was created
for each sector using MS Excel filter by SECTOR to make it easier for the models to use
data.

3



Figure 4: CSV files by sector

he exploratory analysis done on the cleaned data using the Power BI tool revealed
three most CO2 emitting sectors, the Coal Electric Power Sector, the Natural Gas Electric
Power Sector, and the Total Energy Electric Power Sector. These three sectors are used
in the machine learning models for time series forecasting.

4 Machine Learning Algorithms

This section includes the python code for constructing the forecasting models ARIMA
(Autoregressive Integrated Moving Average), SVM (Support Vector Machine), SVM-PSO
(Support Vector Machine optimized using Particle Swarm Optimization) and Prophet
along with the code explanation. The coding was done in Python language using Jupyter
Notebook by Anaconda and the common libraries used in the models are pandas for
reading CSV or converting data into dataframe, numpy for dealing with arrays, matplotlib
for plotting graphs and controlling the size of image and scikit-learn or sklearn for getting
mean squared error and mean absolute error function.

4.1 ARIMA Model

Figure 5: ARIMA imports and datetime parsing

4



Figure 5 shows all the imports required for constructing and successfully forecasting from
the ARIMA model. The datetime is imported from the pandas library to parse the year
column of the CSV into a date format. The columns SECTOR and SECTOR DESCRIP-
TION are removed from the dataset as they are not required.

A test stationarity function is created that checks if a time series is stationary or not
by plotting the rolling mean and performing the Dickey-Fuller test (Figure 6). If the
rolling mean plot looks stationary and the Dickey-Fuller test has a p-value of less than
0.05 then the time series is believed to be stationary. The adfuller is imported from
statsmodels to perform the Dickey-Fuller test. The data is converted to log (df2 log) and
subtracted by a shifted value of itself using .shift() function to produce a stationary time
series. The number of times this differencing is done to make a time series stationary
becomes the d input for the ARIMA. The d is 1 for all the sectors in the research.

Figure 6: ARIMA time series stationarity checking function

To find the p and q values of ARIMA, ACF (Auto Correlation Function) plot and
PACF (Partial Auto Correlation Function) plots are plotted (Figure 7). The p value
(order of the AR term) is determined from the PACF plot while the q (order of the MA
term) value is determined using the ACF plot. The lags at which the correlation value
looks significant are selected as p and q values for the ARIMA model.

5



Figure 7: ARIMA ACF and PACF Plot

Figure 8: ARIMA training and forecasting

The p,d,q value found for ARIMA is used for training ARIMA(p,d,q) model (Figure 8).
Each sector has a different ARIMA model for giving the best results, Coal Electric Power
Sector uses ARIMA(12,1,3), Natural Gas Electric Power Sector uses ARIMA(8,1,12) and
Total Energy Electric Power Sector uses ARIMA(11,1,9). The model is trained and fitted
using .fit() function and the fitting is checked by plotting the .fittedvalues function. The
.forecast() function gives the forecast for the number of time steps given as an input.

6



Since the results and the test values are in the log they are converted to their original
form by using np.exp() function. These values are then plotted and used for calculating
the evaluation metrics. The reference for forecasting from ARIMA model was taken from
the works of Etienne (2019) and Brownlee (2017).

4.2 SVM Model

Figure 9: SVM imports and separating time steps and data

SVM imports are similar to ARIMA except for MinMaxScaler import and SVR import
from sklearn. The year is parsed as dates using parser function and unnecessary columns
are removed. A dataframe having time steps in increasing order along with the emission
values is made and these values are then passed to get list data function that converts
series to list. So Steps become a separate series and it’s corresponding emission Value
becomes another series (Figure 9).
The data is then divided into four parts (steps1 and value1) for training and (steps2 and
value2) for testing. MinMaxScalar is used for feature scaling the value1 and value2 in
the range of 0 to 1 to make SVM forecasts more efficiently (Figure 10). The fit transform
function transforms the reshaped data and this data is then used for modeling. After
trying linear, sigmoid and rbf kernel for SVM, rbf was chosen as the preferred kernel
for forecasting. The model is fitted with train data using .fit() function and the pre-
dicted values from SVM are obtained by .predict() function. The transformed values are
converted to their original form using .inverse transform() function. The test data and
predicted data are plotted against each other (Figure 11) and the evaluation metrics that

7



determine the accuracy of SVM model are also calculated. The reference for forecasting
from SVM model is taken from the work of Nguyen (2019).

Figure 10: SVM training and testing data creation, feature scaling and model fitting

8



Figure 11: SVM forecast plotting and evaluation metric calculation

9



4.3 SVM-PSO

Figure 12: SVM-PSO libraries and KFold split

The imports in SVM-PSO are the same as SVM except for the KFold from the sklearn
library and pso from the pyswarm library. A KFold split of 10 is applied to the data
(Figure 12). The steps followed are similar to the SVM model except there are few
new functions. The svrPso method splits the data into 10 fold split and after that
MinMaxScalar is used for feature scaling. This function fit and predicts from the SVM
model and calculates the MAPE (Mean Absolute Percentage Error) for all C and epsilon
values (Figure 13). The calsMAPE function that calculates the MAPE value (Figure14)
is called through svrPso. The data is again scaled using MinMaxScalar to be used by
the predict value function (Figure 15). The optimized value for C and epsilon values
obtained from the PSO algorithm in the main run method is passed to the predict value
method (Figure 16). The main run functions have the upper bound and lower bound
values for C and epsilon and it calls the pso function to iteratively run svrPso method
until optimal parameters are found. The reference for forecasting from SVM-PSO model
is taken from the work of Singh (2016).

10



Figure 13: SVM-PSO svrPso method

Figure 14: SVM-PSO MAPE function and feature scaling

11



Figure 15: SVM-PSO predict value function that gives forecatsing with optimized para-
meters

Figure 16: SVM-PSO main function that calls the pso function to get optimal parameters
and predict value method to get forecasting with those parameters

12



4.4 Prophet

Figure 17: Prophet import

Figure 18: Prophet model traininig, testing and calculation of evaluation metrics

13



Figure 19: Forecasting future results with Prophet

Prophet uses both matplotlib and seaborn library for making graphs and the Prophet
model is imported from fbprophet (Figure 17). The year and value column names are
converted to ds and y as used by the model. Model is trained and fitted with training
data using .fit() function, The .make future dataframe() function makes a dataframe
with future dates till the given input times steps and by calling .predict() function CO2

emissions for those future dates are obtained. The frequency of the prediction is set to M
which means monthly forecasts. A new column for predictions is made in the test data
this is then used for plotting and calculating evaluation metric (Figure 18). The future
forecast for 36 months is done by adding 36 to the periods in the .make future dataframe()
function as the forecast frequency is set to monthly (Figure 19). These future forecasts
are then plotted with the help of matplotlib library. The reference for forecasting from
Prophet model was taken from the works of Vincent (2017) and Dabakoglu (2019).

References

Brownlee, J. (2017), ‘How to Create an ARIMA Model for Time Series Forecasting in
Python’.
URL: https://machinelearningmastery.com/arima-for-time-series-forecasting-with-
python/

Dabakoglu, C. (2019), ‘Time Series Forecasting — ARIMA, LSTM, Prophet with Py-
thon’.
URL: https://medium.com/@cdabakoglu/time-series-forecasting-arima-lstm-prophet-
with-python-e73a750a9887

Etienne, B. (2019), ‘Time Series in Python — Exponential Smoothing and ARIMA pro-
cesses’.
URL: https://towardsdatascience.com/time-series-in-python-exponential-smoothing-
and-arima-processes-2c67f2a52788

Nguyen, D. (2019), ‘Learning Data Science — Predict Stock Price with Support Vector
Regression (SVR)’.
URL: https://itnext.io/learning-data-science-predict-stock-price-with-support-vector-
regression-svr-2c4fdc36662

14



Singh, R. (2016), ‘PSO-Based-SVR to forecast potential delay time of bus arrival. Applied
on City of Edmonton real data.’.
URL: https://github.com/RamanSinghca/PSO-Based-SVR

Vincent, T. (2017), ‘A Guide to Time Series Forecasting with Prophet in Python 3’.
URL: https://www.digitalocean.com/community/tutorials/a-guide-to-time-series-
forecasting-with-prophet-in-python-3

15


	Introduction 
	Required System Configuration
	Hardware Required
	Software Required

	Research Project Development
	Data Collection and Pre-processing

	Machine Learning Algorithms
	ARIMA Model
	SVM Model
	SVM-PSO
	Prophet


