ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc In Data Analytics

Ankit Singh
Student ID: x18127321

School of Computing
National College of Ireland

Supervisor. Pierpaolo Dondio

Student
Name:

Student ID:

Programme:

Module:

Lecturer:
Submission
Due Date:

Project Title:

Word Count:

‘——
\ National

National College of Ireland

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing
ANKIESINGR. .ottt et
......... D R B G 7 PR
MSc In Data Analytics Year: ..2019-2020.

Research Project

Air Pollution Forecasting and Performance Evaluation Using Advanced
Time Series and Deep Learning Approach for Gurgaon

1319 Page Count: 13,

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project.

All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature:

Date:

12-12-2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o

copies)

Attach a Moodle submission receipt of the online project i
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1 Introduction

In order to control the rising crisis of air pollution, the research project focusses on the
forecasting of air quality index for a north Indian city Gurgaon. The project has been
implemented using several tools and software including Python Spyder from Anaconda
Navigator, R Studio, Excel and Word. A total of eight forecasting models including novel
Prophet have been compared as per Mean Absolute Error, Mean Squared Error, Root Mean
Squared Error and Mean Absolute Percentage Error. After evaluation it has been found out
that Prophet outperforms all compared models in terms of forecasting errors. The novel
Prophet model also gave good performance on a new dataset of Delhi air quality.

Configuration Manual

Ankit Singh
Student ID: x18127321

2 System Summary

The project was implemented on a specific set of hardware and software configurations. This

section mentions the system configurations used for this research.

System Configuration

Operating System : Windows 10 — 64 bit

RAM: 8 GB

Processor: Intel i5-8250U
Hard Disk: 256 GB SSD

View basic information about your computer

Windows edition
Windows 10 Home Single Language
© 2019 Microsoft Corporation. All rights reserved.

System

Processor: Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.80 GHz

Installed memory (RAM): 8.00 GB

System type: 64-bit Operating System, x64-based processor

Pen and Touch: Mo Pen or Touch Input is available for this Display
Computer name, domain, and workgroup settings

Computer name: DESKTOP-IN3NTJ8

Full computer name: DESKTOP-IN3NTJ8

Computer description:

‘Workgroup: WORKGRQUP

Windows activation

Windows is activated Read the Microsoft Software License Terms

Product ID: 00327-35813-02011-AAOEM

am Windows10

=
=

Support Information

!;'C hange settings

& Change product key

Software Used: The following tools and technologies have been used in this project :

Windows 10 : Windows 10 has been used for the project implementation. The steps for

windows installation has been discussed in the following url
https://www.windowscentral.com/how-do-clean-installation-windows-10

R Studio: R programming language can be used by installing an IDE called R studio. It is an
open source data analytics software. It has a user friendly design with separate variable
window, console and terminal. R has been used for cleaning the dataset and imputing the
missing values. It is available to download from https://rstudio.com/.

RStudio
File Edit Code View Plots Session Build Debug Profile Tools Help
Q|- CRll &=~ Go to file/function - addins ~
@7 starting_code.R 97 x18127321CA1.R @7 TimeseriesPM25.R @7 sidstyleR @7 coder @] testdata_code.R tast » = i History G
Source on save | 4/ ~ #Run | **| P source + Tud # Import Dataset ~ &
23 testfNO <- NULL * 7 clobal Environment ~
24
25 sum(is.na(testSdate))
26
27 #Converting to numeric
28 test$502 <- as.numeric(test$s02)

29 testiPM2.5 <- as.numeric(test$PM2.3)
30 test$Co <- as.numeric(test$Co)

31 test$0zone <- as.numeric(test$0zone)
32 test$N0O2 <- as.numeric(test$NO2)
33

34 #as we have '0" and "None' as missing valurs in our data, first we would convert them into NAs so
35 test[test == 0] <- NA

36 test[test == "None"] <- NA

37

B R T T e o N Files Plots Packages Help Viewer
39 #trying to handle missing values using seasonal adjustment+linear interpolation = export ~
40

41

42 test2 <- na.seadec(test, algorithm = "interpolation”, find_frequency=TRUE) # Seasonal Adjustment t

43

44 #checking the number of null

45 sum(is.na(test2)) #0 null values remaining

46

47 #saving interpolated data for future use

48 write.csv(test?, "testsetl.csv"”, row.names = FALSE)

49

»

431 (Untitled) R Script ¢
Console Terminal Jobs =0
[R R S L L e TR LT R LR NSy e

R is a collaborative project with many contributors.

Anaconda Navigator: Anaconda navigator is a GUI of collection of different IDE’s such as
Python Spyder, Jupyter Notebooks and R Studio. The major benefit of using anaconda
navigator is that it allows to install most packages directly without using the command line.

O raconda Nvigator - o x
{2 ANACONDA NAVIGATOR pe——
L e
@ew
g

https://www.windowscentral.com/how-do-clean-installation-windows-10
https://rstudio.com/

Python (Spyder)(3.7): Spyder has been used for the data transformation, implementation and
evaluation along with results. Visualisations have also been created in Spyder. It is an open
source IDE for multiple platforms such as Windows and Linux. It can be directly accessed by

installing Anaconda Navigator from
https://docs.anaconda.com/anaconda/navigator/install/#:~:targetText=Installing%20Navigator,command%20c
onda%20install%20anaconda%2Dnavigator%?20.

@ Spyder (Python 3.7)

File Edit Search Source Run Debug Consoles Projects Tools View Help

ODs Eo rpOpPpDE NMEEn N XiFse [cawsersiank
Editor - C:\Users\Ankit\Documents\Final year thesis\exponentialsmoothing.py & X H
[mapper.py pda.py vibhor_project_enery_rf.py vibhor_project_enery.py praveen_code.py pythoncode.py exponentialsmoothing.py £ | 4 » & So
1 -~
g mum
3Created on Fri Nov 8 ©5:58:47 2019
4

5 @author: Ankit
£ nun

o

7

8 import pandas as pd

9 import numpy as np

16 import seaborn as sns

11 from sklearn import preprocessing

12 import matplotlib.pyplot as plt L

12 from sklearn.metrics import mean_squared_error

14 from math import sqrt

15 from numpy import mean

16 sns.set()

17 from scipy import stats

12 import statsmodels.api as sm

12 from statsmodels.tsa.stattools import acovf,acf,pacf,pacf_yw,pacf_ols
© 28%matnlotlib inline -

—4~7v0ln =

Microsoft Excel: Excel is an software used by analysts to perform multiple calculations on
data as well as creating visualisations. It is available at https://products.office.com/en-ie/excel. It
is not an open source software and a license is needed to fully use it. AQI calculation has
been performed in Excel.

3 Process Flow of the Project

AQI Calculation: For this project, Air Quality Index has been used as the research variable.
In order to calculate the AQI, the Indian AQI calculator has been used which is available at
https://app.cpcbecer.com/cer_docs/AQ1%20-Calculator.xls. This calculator has been created
by the Central Pollution Control Board of India. The formulas for different pollutants were
taken from the calculator and used in Excel to get the sub-indices values for poIIutgnts used.

==2]

Index 502 co Ozone PM2.5 NOoz2 &
2e17-01-91... |7.98333 39.67 13.85 224.237 19.66
2e17-01-02... |9.41 a43.67 6.58333 344.77 l19.2867
2e17-01-03.. 10.2467 52.7533 7.46667 288.577 19.3967
2e17-e1-94... 7.57 A45.52 8.59333 324.537 19.5767
2e17-01-95... 6.1 39.36 13.5367 258.647 19.5467
2e17-01-96... 4.79 2©.84 12.53 220.34 19.3233
2017-91-87.. |4.94667 23.1433 3.98667 190.82 1@.3267
2017-981-838.. |4.22 16.0667 16.6267 180.32 1©.2233
2017-81-89.. |[6.24333 19.7333 12.0267 176.807 1©.23
2017-81-10.. |3.45667 16.07 21.56 191.333 1©.2533

. — — ~
< >
Format Resize Background color Column min/max Save and Close

https://docs.anaconda.com/anaconda/navigator/install/#:~:targetText=Installing%20Navigator,command%20conda%20install%20anaconda%2Dnavigator%20.
https://docs.anaconda.com/anaconda/navigator/install/#:~:targetText=Installing%20Navigator,command%20conda%20install%20anaconda%2Dnavigator%20.
https://products.office.com/en-ie/excel
https://app.cpcbccr.com/ccr_docs/AQI%20-Calculator.xls

A B I [»} E F G H 1
1 Calculation of AQl
2 Date Station NSIT
3 DC-PARA-YYYY City Delhi
4 1 State Delhi
5
concentration in
Pollutants pe/m3 Sub-Index Air Quality Index
] [except for CO)
7 check
B PM10 24-hravg 121.00 114 1
9
1] PM2.5 24-hravg 34.00 57 1
L1
12 s02 24-hr avg 0.00 o o
L3
14 NOx 24-hr avg 8.00 10 1 AQl = 114
L5
16 | *CO (mg/m3) max 8-hr 0.00 o o
L7
18 o3 max 8-hr 57.00 57 1
L]
0 MNH3 24-hr avg 34.00 9 1
21 | * Concentrations of minimum three pollutants are required; one of them should be PM10 or PM2.5
12 |* The check displays "1" when a non-zero value is entered
Minimal Impact Poor Breathing discomfort to people on prolonged exposure
(201-300)
15 Satisfactory |Minor breathing discomfort to sensitive peopl Respiratory illness to the people on prolonged exposure
6 (51-100)
7 Moderate Breathing discomfort to the people with lung, Respiratory effects even on healthy people
18| [101-200) |heart disease, children and older adults

R Studio: First, the dataset has been loaded into R and cleaning has been done. Libraries
used are as follows :

1)

2)
3)
4)

#reading the data

Tibrary("readx1"™)
Tibrary("imputeTs™)

#setting working directory
setwd("~/Final year thesis/Dataset")

#reading the files and skipping redundant rows
air<- read_excel("pollution.xlsx", skip = 15)

#changing the column names using the first row
colnames (air) = air[l,] # the first row will be the header
air = air[-1,]

names(air)[1] <- "date"
#to seperate date and time into seperate columns
air <- tidyr::separate(air, date, c("date", "time"), sep = " ")

Library(readxl) has been used for reading the excel file with function ‘read_excel’.
‘colnames’ has been used to modify the columns and ‘tidyr’ has been used to separate
date and time from datetime column.

Library(“imputeTS”) has been used to impute missing time series datapoints
‘Is.na’ function has been used to check for the null values.
‘as.numeric’ has been used to convert the datatype of columns to numeric

5) ‘na.seadec’ function has been used to fill the missing time series values by seasonal
adjustment and linear interpolation (SINGH, 2019)

#removing to date column
air$ To Date <- NULL
sum(is.na(airfdate))

#Converting to numeric

air$so2 <- as.numeric(air$so2)
airfpPM2.5 <- as.numeric(airiPm2.5)
air$Co <- as.numeric(airico)
airfozone <- as.numeric(airiozone)
airiNO2 <- as.numeric(airiNoZ)

air2 <- air

his ot g0 ir it s . gt s TPERrTrre .

ST - TR TR TR

#HER A e ###H #it
#trying to handle missing values using seasonal adjustment+Tlinear interpolation

air$so? <- na.seadec(air$so?, algorithm = "interpolation™) # Seasonal Adjustment then Linear I
air$PM2.5 <- na.seadec(airfpPM2.5, algorithm = "interpolation™)

air$Co <- na.seadec(air$co, algorithm = "interpolation™)

air$ozone <- na.seadec(airiDzone, algorithm = "interpolation™)
airfNO? <- na.seadec(airino?, algorithm = "interpolation™)

air2 =- na.seadec(air, algorithm = "interpolation”, find_frequency=TRUE) # Seasonal Adjustment

#saving interpolated data for future use
write.csv(air2, "using_interpolation.csv", row.names = FALSE)

6) ‘write.csv’ has been used to save the cleaned dataset into a csv
The same code has been used to clean both Gurgaon and Delhi(testset) as well.

Python: After imputation of missing values in R, Python has been used for more
preprocessing, transformation and implementation. (Peixeiro, 2019)
Libraries Used has been discussed below :

wwn

Created on Fri Nov 8 ©5:58:47 2019

@author: Ankit

W

import pandas as pd

import numpy as np

import seaborn as sns

from sklearn import preprocessing

import matplotlib.pyplot as plt

from sklearn.metrics import mean_squared_error
from math import sqgrt

from numpy import mean

sns.set()

from scipy import stats

import statsmodels.api as sm

from statsmodels.tsa.stattools import acovf,acf,pacf,pacf_yw,pacf_ols
%matplotlib inline

import warnings
warnings.filterwarnings('ignore’)

from tbats import BATS, TBATS

import time

from keras.models import Sequential
from keras.layers import Dense

from keras.layers import LSTM

from keras.layers import Dropout

1) Pandas is used for data manipulation

2) Numpy is a scientific library used for scientific calculations and mathematical
funcitons

3) Sklearn or scikit learn is a python library used to import various machine learning
algorithm

4) Matplotlib is the basis plotting library which has been used for visualisation

5) Evaluation metrics like MSE,MAE,MAPE and RMSE has been imported from
sklearn.metrics library

6) ‘sqrt’ and ‘mean’ function has been used to calculate square root and mean

7) Stasmodel library has been used for statistical plotting and tests such as acf and pacf

8) Warning has been used to ignore the warnings

9) Keras deep learning library has been used to import deep learning layers such as
Sequential, Dense, LSTM and Dropout

Process Flow : The output file from R Studio has been imported into Python, and
‘pd.to_datetime’ function has been used to convert datetime column to the datetime format
for python to understand. An user defined function ‘positive_average’ was created to
aggregate all 8 hourly data to daily data as novel Prophet only takes daily data as an input.

def positive_average(num):
return num[num > @].mean()

daily_data = dataset.drop('time’, axis=1).groupby('date').apply(positive_average)
daily data.info()

The dataset has been saved using ‘to_csv’ function with the name of ‘ready.csv’. Pollutant
sub-indices has been calculated on this ready.csv dataset using excel and a new dataset with
the name of ‘ready new’ has been created and imported back to python. AQI has been
calculated using ‘max’ function. ‘corr’ function has been used for correlation analysis and
‘sns.heatmap’ for visualising it. (Brownlee, 2019)

"'' Checking correlation'''
corr = dataset.corr()
ax = sns.heatmap(corr, annot=True)

‘adfuller’ function has been used to perform Augmented Dickey Fuller Test

from statsmodels.tsa.stattools import adfuller

adfuller(dataset['AQI"])
dftest = adfuller(dataset['AQI'])
dfout = pd.Series(dftest[©:4],index=["ADF Test Statistics','p-value','# lags used','# observations'])
for key,val in dftest[4].items():
dfout[f'critical value ({key})'] = val

dfout

‘kpss’ function has been used to perform kpss test of stationarity

from statsmodels.tsa.stattools import kpss

def kpss_test(series, **kw):
statistic, p_value, n_lags, critical_values = kpss(series, **kw)

print(f'KPSS Statistic: {statistic}")

print(f'p-value: {p_value}')

print(f'num lags: {n_lags}"')

print('Critial Values:")

for key, value in critical_values.items():
print(f’ {key} : {value}")

print(f'Result: The series is {"not

" mwu

if p_value < ©.05 else ""}stationary')

kpss_test(dataset['AQI'], regression='ct")

Following Models have been applied:

1) Exponential Smoothing

from statsmodels.tsa.holtwinters import ExponentialSmoothing

start_time = time.time()

model_exp = ExponentialSmoothing(train_data['AQI'], trend='mul',seasonal="mul',seasonal_periods=4)
fitted_model_exp = model_exp.fit()

test_predictions_exp = fitted_model_exp.forecast(30)

print("--- %s seconds ---" % (time.time() - start_time))

train_data['AQI'].plot(legend=True,label="Train',figsize=(12,8))
test_data["AQI'].plot(legend=True,label="Test")
test_predictions_exp.plot(legend=True,label="Prediction")

from sklearn.metrics import mean_squared_error,mean_absolute_error
from statsmodels.tools.eval_measures import rmse,mse
def mean_absolute_percentage_error(y_true, y_pred):

y_true, y_pred = np.array(y_true), np.array(y_pred)

return np.mean(np.abs((y_true - y_pred) / y_true)) * 108

mse_exp = mean_squared_error(test_data,test_predictions_exp)

mae_exp = mean_absolute_error(test_data,test_predictions_exp)

rmse_exp = rmse(test_data['AQI'],test_predictions_exp)

mape_exp = mean_absolute_percentage_error(test_data, test_predictions_exp)

dataset.describe()

2) Auto — Regression (Order 1,2 and 19)

start_time = time.time()
ARfit = model_ar.fit(ic="t-stat’)
ARfit.params

prediction_arl9 = ARfit.predict(start,end)
prediction_arl9 = prediction_arl9.rename('AR(19) Predictions')
print("--- %s seconds ---" % (time.time() - start_time))

labels = ['ARL1','AR2','AR19']
preds = [prediction_arl,prediction_ar2,prediction_arl9]

for i in range(3):
error = mean_absolute_error(test_data["AQI"],preds[i])
print(f'{labels[i]} MAE was :{error}")

test_data.plot(figsize =(12,8),legend=True)
prediction_arl.plot(legend=True)
prediction_ar2.plot(legend=True)
prediction_arl9.plot(legend=True)

dataset.AQI.mean()

mse_arl9 = mean_squared_error(test_data,prediction_aril9)

mae_arl9 = mean_absolute_error(test_data,prediction_arig)

rmse_arl9 = rmse(test_data['AQI'],prediction_aril9)

mape_arl9 = mean_absolute_percentage_error(test_data, prediction_arl9)

3) Auto-Regressive Moving Order

from statsmodels.tsa.arima_model import ARMA,ARIMA,ARMAResults,ARIMAResults
train_data = dataset.iloc[:943]
test_data = dataset.iloc[943:]

auto_arima(dataset['AQI'],seasonal=False).summary()

start = len(train_data)
end = len(train_data) + len(test_data) - 1

start_time time.time()

model_arma ARMA(train_data["AQI"],order=(2,2))
result_arma = model_arma.fit()
result_arma.summary()

predictions_arma = result_arma.predict(start,end).rename(ARMA (2,2) Predictions')
print("--- %s seconds ---" % (time.time() - start_time))

test_data["AQI"].plot(figsize=(12,8),legend=True)
predictions_arma.plot(legend=True)

4) ARIMA

start_time = time.time()
model_arima = ARIMA(train_data['AQI'],order=(2,1,2))

result_arima = model_arima.fit()

prediction_arima = result_arima.predict(start=start,end=end,typ="1levels').rename(ARIMA(2,1
print("--- %s seconds ---" % (time.time() - start_time))
result_arima.summary()

test_data['AQI'].plot(legend=True,figsize=(12,8))
prediction_arima.plot(legend=True)

mse_arima = mean_squared_error(test_data,prediction_arima)
mae_arima = mean_absolute_error(test_data,prediction_arima)
rmse_arima = rmse(test_data['AQI'],prediction_arima)

mape_arima = mean_absolute_percentage_error(test_data, prediction_arima)

model_arima = ARIMA(dataset['AQI'],order=(2,1,2))
results_arima = model_arima.fit()
forecast_arima = results_arima.predict(start=len(dataset),end=len(dataset)+7,typ="1levels").

5) SARIMA
CUSARIMA!
from statsmodels.tsa.statespace.sarimax import SARIMAX

auto_arima(train data,seasonal=True,m=7).summary()

start = len(train_data)
‘end = len(train_data) + len(test_data) - 1

start_time = time.time()

model _sarima = SARIMAX(train_data['AQI'],order = (1,1,1))
-result_sarima = model_sarima.fit()
result_sarima.summary()

‘prediction sarima = result sarima.predict(start,end,typ="levels').rename('SARIMA Prediction')
print("--- %s seconds ---" % (time.time() - start_time))

6) Prophet (Facebook Research, 2019)

from fbprophet import Prophet
import matplotlib.pyplot as plt

dataset_prophet = dataset.reset_index()
dataset_prophet.columns = ['ds’', "y']
dataset_prophet.head()

dataset_prophet['ds"] = pd.to_datetime(dataset_prophet['ds'])

dataset_prophet.info()

train_data_prophet = dataset_prophet.iloc[:966]
test_data_prophet = dataset_prophet.iloc[966:]
start_time = time.time()

n = Prophet()
n.fit(train_data_prophet)

future_prophet = n.make_future_dataframe(periods=7,freq="D")

forecast_prophet = n.predict(future_prophet)
print("--- %s seconds ---" % (time.time() - start_time))

7) TBATS

train_data = dataset.iloc[:943]
test_data = dataset.iloc[943:]

start_time = time.time()

estimator_tbat = TBATS(seasonal_periods=(1, 365.25))
model_tbat = estimator_tbat.fit(train_data)

tbat_forecast = model_tbat.forecast(steps=30)
print("--- %s seconds ---" % (time.time() - start_time))

tbat_forecast = pd.DataFrame(tbat_forecast)
tbat_forecast.index = test_data.index

test_data['AQI'].plot(legend=True,label="Test', figsize=(12,8))
tbat_forecast[@].plot(legend=True,label="TBAT")

10

8) LSTM

len(dataset)
train_data = dataset.iloc[:966]
test_data = dataset.iloc[966:]

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaler.fit(train_data)

scaled_train = scaler.transform(train_data)
scaled_test = scaler.transform(test_data)

from keras.preprocessing.sequence import TimeseriesGenerator

n_input = 3@

n_features = 1

start_time = time.time()

train_generator = TimeseriesGenerator(scaled_train,scaled_train,length=n_input,batch_size=38)
X,y = train_generator[@]

model_lstm = Sequential()
model_lstm.add(LSTM(15@,activation="relu’,input_shape=(n_input,n_features)))
model_lstm.add(Dropout(©.15))

model_lstm.add(Dense(1))
model_lstm.compile(optimizer="adam’,loss="mse")

References

Brownlee, J. (2019). Time Series Data Visualization with Python. [online] Machine Learning Mastery.
Available at: https://machinelearningmastery.com/time-series-data-visualization-with-python/

SINGH, A. (2019). A Gentle Introduction to Handling a Non-Stationary Time Series in Python. [online]
Analytics Vidhya. Available at: https://www.analyticsvidhya.com/blog/2018/09/non-stationary-

time-series-python/

Peixeiro, M. (2019). End to End Time Series Analysis and Modelling. [online] Medium. Available at:
https://towardsdatascience.com/end-to-end-time-series-analysis-and-modelling-8c34f09a3014.

Brownlee, J. (2019). How to Check if Time Series Data is Stationary with Python. [online] Machine
Learning Mastery. Available at: https://machinelearningmastery.com/time-series-data-stationary-

python/.

App.cpcbccr.com. (2019). CCR. [online] Available at: https://app.cpcbccr.com/ccr/#/caagm-
dashboard/caagm-landing/caagm-data-availability.

Facebook Research. (2019). Prophet: forecasting at scale - Facebook Research. [online] Available at:
https://research.fb.com/prophet-forecasting-at-scale/ .

4 Appendix

Code is attached in a separate archived file

11

