

Configuration Manual

MSc Research Project Programme Name

Shuangyin Xie Student ID: X18126634

School of Computing National College of Ireland

Supervisor: Bahman Honari

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Shuangyin Xie
Student ID:	X18126634
Programme:	Msc in Data Analytics
Year:	2019
Module:	Research project
Supervisor:	Bahman Honari
Submission Due Date:	12/12/2019
Project Title:	Sentiment Analysis using machine learning algorithms: online
	women clothing reviews
Word Count:	XXX
Page Count:	10

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	
Date:	11th December 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).			
Attach a Moodle submission receipt of the online project submission, to			
each project (including multiple copies).			
You must ensure that you retain a HARD COPY of the project, both for			
your own reference and in case a project is lost or mislaid. It is not sufficient to keep			
a copy on computer.			

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only				
Signature:				
Date:				
Penalty Applied (if applicable):				

Sentiment Analysis using machine learning algorithms: online women clothing reviews

Shuangyin Xie X18126634

1 Overview

In the research, Support Vector Machine, Logistic Regression, Random Forest and Naive Bayes methods are selected to solve the sentiment analysis about online clothing reviews. All the methods are conducted by python language.

The manual will be followed in terms of Overview, System introduction, Installation, Implement and Results.

2 System Introduction

2.1 Hardware

The processor specifications are 1.8GHz dual-core Intel Core i5, Turbo Boost up to 2.9GHz, with 3MB shared L3 cache, 256GB PCIe-based SSD,8GB of 1600MHz LPDDR3 onboard memory. And System is MacOS.

2.2 Software

The application requires Anaconda Navigator, jupyter notebook 6.0. Besides, Microsoft Excel from Microsoft Office is to make graphics.

3 Installation

3.1 Installing software

Before starting the solutions, some software need to be installed. Figure 1 shows how to download the Anaconda.

Figure 2 indicates the Matplotlib need to be installed.

Figure 3 presents the process of installing matplotlib in terminal.

3.2 Install packages

Besides Anaconda navigator, some packages also need to be installed.

Figure 5 and 6 shows the stopwords and nltk.

📲 Windows 🧯	macOS 🔬 Linux
Anaconda 2019.10	for macOS Installer
Python 3.7 version	Python 2.7 version
Download	Download
64-Bit Graphical Installer (654 MB)	64-Bit Graphical Installer (637 MB)

Figure 1: Download Anaconda

						Sign in to	Anaconda Cloud
A Home	Search Environments	Q, Installer	- Channels	Update index matplot	×		
😭 Environments	base (root)	Name	✓ T Description				Version
🗳 Learning		Matplo	lib O Publication qua	ality figures in python			3.1.1
Community							
		<					

Figure 2: Install Matplotlib

Figure 3: Install Matplotlib

```
import pandas as pd
import numpy as np
import datetime as dt
import matplotlib.pyplot as plt
import seaborn as sns
from wordcloud import WordCloud
import re
import nltk
from nltk.corpus import stopwords
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn import metrics
from sklearn.metrics import classification_report, confusion_matrix, auc, roc_curve
from sklearn.preprocessing import StandardScaler, MinMaxScaler
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
```

Figure 4: Install packages

```
[(base) x8s8y8deMacBook-Air:~ x8s8y8$ python -m nltk.downloader stopwords
//anaconda3/lib/python3.7/runpy.py:125: RuntimeWarning: 'nltk.downloader' found
in sys.modules after import of package 'nltk', but prior to execution of 'nltk.d
ownloader'; this may result in unpredictable behaviour
warn(RuntimeWarning(msg))
[nltk_data] Downloading package stopwords to
[nltk_data] /Users/x8s8y8/nltk_data...
[nltk_data] Unzipping corpora/stopwords.zip.
(base) x8s8y8deMacBook-Air:~ x8s8y8$
```

Figure 5: Install stopwords

Figure 6: Install nltk

4 Implement and Results

4.1 Data Set

The data set is downloaded from Kaggle.¹The data set is about online women clothing reviews(Agarap and Grafilon; 2018).

Figure 7: Data set

4.2 Load Data Set

Open the Jupyter and Read the data set into the Jupyter.

```
warnings.fifterwarnings( ignore )
df_reviews = pd.read_csv('/Users/x8s8y8/Desktop/research project/reviews.csv')
```

Figure 8: Read the dataset

4.3 Execute Pre-processing

After loading the dataset, pre-processing the data set in order to prepare for the model. Figure 9 shows the process of pre-processing.

4.4 Split data

Figure 10 shows the code of split data.

4.5 Model

Figure 11 shows the code of models.

4.6 Results

The results are saved in review4.csv file.

Figure 12 shows the results of each model.

¹https://www.kaggle.com/nicapotato/womens-ecommerce-clothing-reviews

Figure 9: Data pre-processing

```
df_reviews3 = df_reviews1[['Review Text', 'Rating', 'Class Name', 'Age', 'Sentiment']]
# split data
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer()
train_data,test_data = train_test_split(df_reviews3,train_size=0.8,random_state=0)
X_train = vectorizer.fit_transform(train_data['Review Text'])
y_train = train_data['Sentiment']
X_test = vectorizer.transform(test_data['Review Text'])
y_test = test_data['Sentiment']
```

Figure 10: Split the data

4.7 Evaluation

Figure 13 shows the AUC and ROC.

References

Agarap, A. F. M. and Grafilon, P. M. (2018). Statistical analysis on e-commerce reviews, with sentiment classification using bidirectional recurrent neural network, *https://www.researchgate.net/publication/323545316*.

```
from sklearn.svm import SVC
start=dt.datetime.now()
svm = SVC(C=1.0)
            kernel='linear',
            class_weight='balanced',
            probability=True,
            random state=111)
svm.fit(X_train,y_train)
# evaluate the model
from sklearn.svm import SVC
import re
test_predictions = svm.predict(X_test)
print(classification_report(y_test, test_predictions, svm.classes_ ))
# logistic regression
from sklearn.linear_model import LogisticRegression
start=dt.datetime.now()
lr = LogisticRegression(class_weight='balanced',
                            random_state=111,
                            solver='lbfgs',
                            C=1.0)
lr.fit(X train,y train)
from sklearn.linear_model import LogisticRegression
import re
test_predictions = lr.predict(X_test)
print(classification_report(y_test, test_predictions, lr.classes_ ))
# random forest
from sklearn.ensemble import RandomForestClassifier
rf_model.fit(X_train, y_train)
from sklearn.ensemble import RandomForestClassifier
import re
test_predictions = rf_model.predict(X_test)
print(classification_report(y_test, test_predictions, rf_model.classes_ ))
# Naive Bayes
from sklearn.naive_bayes import MultinomialNB
start=dt.datetime.now()
nb = MultinomialNB()
nb.fit(X_train,y_train)
from sklearn.naive_bayes import MultinomialNB
import re
test predictions = nb.predict(X test)
```

Figure 11: Split the data

	Review Text	Rating	Class Name	Age	Sentiment	Logistic Reg	Naive Bayes	SVM	Random Forest
2883	I love this	5	Blouses	69	TRUE	TRUE	TRUE	TRUE	TRUE
9628	This top is al	2	Knits	30	FALSE	FALSE	FALSE	FALSE	FALSE
7658	The fabric at	4	Knits	22	TRUE	TRUE	TRUE	TRUE	TRUE
5832	This dress is	5	Dresses	41	TRUE	TRUE	TRUE	TRUE	TRUE
12081	The sweater	5	Sweaters	68	TRUE	TRUE	TRUE	TRUE	TRUE
7267	I purchased t	5	Knits	39	TRUE	TRUE	TRUE	TRUE	TRUE
14829	I am 5'4 and	5	Dresses	51	TRUE	TRUE	TRUE	TRUE	TRUE
10155	Cute and sim	4	Knits	39	TRUE	TRUE	TRUE	TRUE	TRUE
16924	This screams	5	Sweaters	37	TRUE	TRUE	TRUE	TRUE	TRUE
7047	I was on the	5	Knits	49	TRUE	TRUE	TRUE	TRUE	TRUE
20687	Retailer has	5	Blouses	28	TRUE	TRUE	TRUE	TRUE	TRUE
2658	I live in these	5	Shorts	48	TRUE	TRUE	TRUE	TRUE	TRUE
2272	I am usually	4	Intimates	68	TRUE	TRUE	FALSE	TRUE	FALSE
10463	I love these	5	Jeans	51	TRUE	TRUE	TRUE	TRUE	TRUE
10316	This dress is	5	Dresses	22	TRUE	TRUE	TRUE	TRUE	TRUE
18668	Nothing "skin	5	Jeans	60	TRUE	TRUE	TRUE	TRUE	TRUE
20968	I normally w	2	Dresses	42	FALSE	FALSE	FALSE	FALSE	FALSE
7004	Loved this sv	5	Knits	43	TRUE	FALSE	TRUE	TRUE	TRUE
3797	l am 5 '4", 1	4	Knits	62	TRUE	TRUE	TRUE	TRUE	TRUE
6329	I ordered a s	4	Knits	46	TRUE	TRUE	TRUE	TRUE	TRUE
14739	This is a very	5	Intimates	49	TRUE	TRUE	TRUE	TRUE	TRUE
18975	Comfortable	5	Lounge	38	TRUE	TRUE	TRUE	TRUE	TRUE
2621	This dress is	5	Dresses	33	TRUE	TRUE	TRUE	TRUE	TRUE
21432	This is	5	Knits	24	TRUE	TRUE	TRUE	TRUE	TRUE
7320	Made for a s	4	Dresses	49	TRUE	FALSE	TRUE	FALSE	FALSE
17126	I love the loc	4	Blouses	43	TRUE	TRUE	TRUE	TRUE	FALSE
14298	This dress is	5	Dresses	55	TRUE	TRUE	TRUE	TRUE	TRUE
11951	Based on rev	5	Blouses	66	TRUE	TRUE	TRUE	TRUE	FALSE
5825	I love these b	5	Swim	39	TRUE	TRUE	TRUE	TRUE	TRUE
4674	Love the cold	4	Knits	63	TRUE	TRUE	TRUE	TRUE	FALSE
4332	This dress is	5	Dresses	36	TRUE	TRUE	TRUE	TRUE	TRUE
9970	I just tried	5	Jeans	30	TRUE	TRUE	TRUE	TRUE	TRUE
9853	I like the cold	4	Dresses	32	TRUE	FALSE	FALSE	TRUE	FALSE
3421	l just got a p	4	Pants	40	TRUE	TRUE	TRUE	TRUE	TRUE

Figure 12: Results

/ PCC curve and ACC
pred_svm = svm.decision_function(X_test)
pred_svm = svm.decision_function(X_test)
pred_lrr = lr.predict_proba(X_test)[:,1]
pred_lr = lr.predict_proba(X_test)[:,1]
pred_lr = lr.predict_proba(X_test)[:,1]
pred_rf_model = rf_model.predict_proba(X_test)[:,1]
pred_rf_model = rf_model.profa(t_proba(X_test)[:,1]
pred_rf_model = auc(fpr_fr_model,terr_f_model)
pred_nb = nb.predict_proba(X_test)[:,1]
pred_rb = nb.predict_proba(X_test)[:,1]
pred_rb = nb.predict_proba(X_test)[:,1]
pred_rb = nb.predict_proba(X_test)[:,1]
pred_rb. = ncb.predict_proba(X_test)[:,1]
pred_rb.p

Figure 13: AUC and ROC

Figure 14: Precision

Figure 15: Recall

Figure 16: F1-score

Figure 17: AUC

Figure 18: Accuracy