
Inter-Docker Cluster Communication Across
Different Network Regions Using EVPN

MSc Research Project

Cloud Computing

Ravi Kumar
Student ID: x16132637

School of Computing

National College of Ireland

Supervisor: Vikas Sahni

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Ravi Kumar

Student ID: x16132637

Programme: Cloud Computing

Year: 2018

Module: MSc Research Project

Supervisor: Vikas Sahni

Submission Due Date: 28/01/2019

Project Title: Inter-Docker Cluster Communication Across Different Net-
work Regions Using EVPN

Word Count: XXX

Page Count: 33

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 26th January 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Inter-Docker Cluster Communication Across Different
Network Regions Using EVPN

Ravi Kumar
x16132637

Abstract

This era is recognized as an information technology era and cloud computing
has brought revolution in it. Virtualization is considered as one of the key-enabling
technology of cloud. Docker have became quite famous in virtualization because
of its desirable features. Initially Docker deployment in cloud was challenge which
was solved by Software defined Networking. The deployment of Docker in different
geographical area has become necessity to provide redundancy and high availabil-
ity. But inter-Docker communication leads to the problem of latency. This paper
focuses to minimize the latency in inter-Docker communication. We propose an
EVPN solution over VX-LAN for the communication between Docker located on
different geographical area. This technology will minimize latency by connecting
two different ethernet over MPLS.

Contents

1 Introduction 2

2 Theoretical Background 3
2.1 Cloud Computing (Domain) . 3
2.2 Virtualization (Area) . 3
2.3 Virtual machine (Ongoing Technology) 4
2.4 Docker Containers (Evolving Trend) . 4

3 Related Work 4
3.1 Docker - Denial of Service attack . 4
3.2 Network Virtualization built on Docker Engine 5
3.3 Distributed Cloud Monitoring built on 6
3.4 Optimization of Docker Containers . 7
3.5 CPU scheduler for Docker container . 8
3.6 Docker based Emergency communication system 9
3.7 Honeypot systems built on Docker . 10
3.8 Distributed software development tool built on Docker 10
3.9 Discussion . 11

1

4 Methodology 12
4.1 Google cloud platform (GCP) . 12
4.2 Eve-Ng tool . 12
4.3 Lab setup . 12
4.4 EVPN setup . 13

5 Design Specification 13

6 Implementation 13
6.1 Google cloud platform (GCP) setup . 13
6.2 Eve-NG tool setup . 14
6.3 Lab setup . 14
6.4 EVPN configuration . 15
6.5 Docker configuration . 15

7 Evaluation 16
7.1 Discussion . 19

8 Conclusion and Future Work 19

9 Appendix - Configuration Manual 22
9.1 GCP setup . 22
9.2 EVPN Configuration . 22

9.2.1 Nexus Switch 1 . 22
9.2.2 Nexus Switch 2 Configuration . 26
9.2.3 Docker Configuration . 31

1 Introduction

Cloud Computing has created boom in the IT industry and evolved as a leading model.
Network-centric content and Network-centric computing is demand of the era. (Buyya
et al.; 2009) states that Cloud provisions the interconnection between parallel and dis-
tributed computing. Simulations are examples of Virtualization which is the method of
building virtual from something real (Ageyev et al.; 2018). Virtualization is a beneficial
tool in optimizing the resource utilization, logical adminstration and minimizing the in-
frastructure running costs.

Docker technology works on operating system virtualization (Wu and Yang; 2018).
One or more services can be run on Docker at a time.There can be a single service running
on multiple Docker to provide a merged output. The service hosted Docker can be on
same or different locations. But the services can be impacted due to latency when the
Docker are hosted on different geographical locations.

Research Question: Can latency be enhanced by deploying Docker- container cluster
across different network regions via Ethernet Virtual Private Network (EVPN) ?

Docker container is evolving technology which helps in quick resource provisioning,
allows flexibility to pack and move programs and allows to run apps on legacy infrastruc-

2

ture. It had provided an ease to developers, without worrying about the deployment
environment they can build the applications also saves time and money for organizations
in migrating application in its different environments such as testing,development and
deployment.

In this paper, the above stated research question will be assisted and the paper is
organized as follows - section 2 provides the theoretical background, section 3 focuses
on the related work done in the segment, section 4 proposes the methodology, section 5
provides the design specification, section 6 focuses on implementation, section 7 based on
evaluation and section 8 provides the conclusion and the future work.

2 Theoretical Background

This section provides theoretical background for the content of this research paper. The
topics covered in this section are Cloud Computing - domain of the paper, Virtualiza-
tion - area of the paper and Docker containers - topic of the paper. Virtual machine is
the ongoing technology in the IT industry which are being replaced by Docker containers.

2.1 Cloud Computing (Domain)

Cloud Computing provides a platform which facilitate the customers to rent IT services
like compute, storage etc via internet. As per NIST, its five characteristics are - Broad
Network access, Measured service, Rapid elasticity, Resource pooling and On-demand
self-service (Swenson; 2011). The consumer rents the IT service instead of buying it.
Cloud Computing has four service deployment models (Public, private, hybrid and com-
munity) and three delivery models (Software as a service, Infrastructure as a Service and
Platform as a service) (Al-Lawati and Al-Badi; 2016).

2.2 Virtualization (Area)

Virtualization is a technology used to abstract the real resources from the user (Ageyev
et al.; 2018). Resources are merged or multiplexed in virtualization such as RAID, vir-
tual memory address. Resources located in different geographical area can be pooled
up via cluster of servers (Zhang; 2018). Platform and resource virtualization are mainly
two types of virtualization. Emulation, Containerisation and Hypervisor usage are the
approaches to obtain Platform virtualization (Zhang; 2018). Docker containers are type
of Containerization platform.

Hypervisor acts an interface between guest OS and hardware communicating between
them. OS, Para and Full virtualization are the techniques to share physical resources.
There is no modification required in hardware for full virtualization as well as guest OS
has no information about the hardware. Para virtualization comprises with few modi-
fications as well as guest OS is aware of hardware. OS virtualization doesnt consider
hypervisor layer and has ability to launch virtual machine above the host (Blenk et al.;
2015).

3

2.3 Virtual machine (Ongoing Technology)

Virtualization is used to create virtual machines on top of hypervisors by OS disk images
above bare metal/hardware (Blair et al.; 2017). The implementation of vm depends on
their usage and they are like compute system emulations. Native vm communicates dir-
ectly with the bare metal. VMs are terminated after completion of process and created
by process initialization. Each VM has its separate OS and allocated resources. Now as
we discussed Virtual machines, we will move forward with which are getting popular over
vms day by day.

2.4 Docker Containers (Evolving Trend)

Docker containers are quite light-weighted virtualization techniques instead of VMs (Nadgowda
et al.; 2017). Linux kernel of host is used in to run vms on the host (Kovács; 2017). doesnt
emulate the physical resources but act as a wrapper for resource accounting and isola-
tion. Cgroups and Linux namespaces are used by Containers. Network ID, Process ID etc
are used in Linux namespaces for isolation and for resource management and accounting
Cgroups are used. The performance comparison shows containers are better than vm
(Felter et al.; 2015).

The next section provides overview of research work done in the segment till date.

3 Related Work

This section provides insights of relevant research works already done in the Docker seg-
ment which are - Docker communication, monitoring, automation, security and perform-
ance. Note that Table 1 in section 3.9 Discussion provides deeper insight, comparison and
critical analysis of present research works on the basis of their achievements and goals.
However, no existing research work directly covers inter-Docker communication but it is
required for high availability, fault tolerance and QoS.

3.1 Docker - Denial of Service attack

(Chelladhurai et al.; 2016) proposes solution for Docker container Dos attacks. The mo-
tivation behind the solution is that one of the vulnerable part of Docker is Control groups,
which can become base of four critical attacks (Chelladhurai et al.; 2016). Host kernel is
shared by the containers. An attacker can break from malicious containers to the host
machine to perform Dos attacks. Network Bridge is the interface between Containers to
send and receive packets. Network Bridge has no packet filtering mechanism, hence arp
flooding and mac spoofing can be done. Directories can also be responsible for attacks
as they are shared with guest container and Docker host has full rights to make changes.
Docker Daemon and host integrity can be also compromised as the Docker image comes
from insecure sources.

4

Best practices and existing security solutions are also proposed in the paper. Security
hardening is done by solutions such as AppArmor, GRSEC, Seccomp etc. The secure
communication with Docker Daemon is established by Unix and REST API. Docker
security policies offered by Selinux can be used by users to start container processes.
Mandatory Access Control (MAC) should be implemented so that guest containers cant
bypass system security policy.

Figure 1: Prevention Mechanism (Chelladhurai et al.; 2016)

The above Figure 1 describes the proposed solution for the DoS attacks which consists
three stages in which memory limit is assigned, memory is reserved on advance basis and
memory has been given a default value.

The experiment results suffices the aim of the paper but only Dos attacks has been
covered in the paper, any other attacks hadn’t been addressed. The author also doesnt
comment about the communication of Docker which is our research goal.

3.2 Network Virtualization built on Docker Engine

(Xingtao et al.; 2016) proposes Software defined Networking controller platform built on
Docker engine for network virtualization. The motivation behind the platform is the
deployment, development and testing speed in network virtualization is limited. The
platform will help to implement changes on large scale by creating, deploying and modi-
fying virtual resources rapidly according to requirements.

The current SDN controllers available such as Floodlight (Big Switch Networks), Ryu
(NTT Japan), Open Contrail (Juniper) and Opendaylight (open source) are restricted to
fast, scalable and dynamic requirements.

Figure 2: SDN controller based Network Virtualization (Xingtao et al.; 2016)

5

The above Figure 2 defines the network virtualization logical structure based on SDN
controller. Network resources and routing capabilities are managed by SDN controller.
There are three modules basic, application and REST module in Docker engine. Event,
manage, address, packet and controller are the components of basic module. Router, to-
pology component and configuration is managed by REST application module. Tunnel,
arp component, route, switch, forwarding and vlan is managed by Application mod-
ule. Virtualization platform is first created for network virtualization implementation.
The image built for controller is network-specific for Docker-container implementation on
hardware platform. The abstraction, virtualization and other activities are controlled and
performed by the image on hardware resource. The control and data plane are separated
to avoid contradiction in controllers.

The research work covers only routing functionality but leaves other modules of
the SDN controller. In addition, the SDN controller was based on but author doesnt
provides information about communication between which leaves our research question
unanswered.

3.3 Distributed Cloud Monitoring built on

(Dhakate and Godbole; 2015) proposes Distributed cloud monitoring based on Docker
for monitoring of cloud services. The motivation behind the solution is cloud portals can
be in large numbers as well as located in different geographical regions and monitoring
manually is difficult and tiresome process. The customer uses the portal to manage the
resources offered by the cloud vendor. The CP nodes are located physically in different
locations in consideration to be nearest to the customer for reducing the latency. The
manual monitoring process can be lengthy due to large number of portals as well as out-
put containing high ratio of error. There are tools such as OLA available for automation
but speed is the issue. The monitoring process of OLA includes spinning of VMs in
different locations, which further installs app, libraries, OS and scripts making it slow,
resource-consuming and costly.

The next generation virtualization platform Docker is used for solution (Anderson;
2015). The approach used for monitoring locally is distributed monitoring.

Figure 3: Network Virtualization using SDN controller (Dhakate and Godbole; 2015)

6

Figure 3 shows the logical diagram of cloud monitoring dashboard modules and its
architecture. The local Docker and test suite is spun up by the scheduler. The images
are imported from Docker Hub. The output from the logged results captured from the
nodes after running the scripts are sent to the Dashboard.

The experiment results verify the aim of the research but fault tolerance capabilities
are not addressed by the author and left for the future work. The author also doesnt
provides any information for the inter Docker communication which is our research aim.

3.4 Optimization of Docker Containers

(Sureshkumar and Rajesh; 2017) proposes Docker container optimization via energy-
aware algorithm and system. The motivation behind the optimization algorithm is due
to unmonitored running containers, either they are over-utilized or under which impacts
the performance, health of physical devices as well as energy consumption. To cope with
the problem author has used simple idea to spin up new instance when required and kill
them when requirement decreases.

The algorithm is focused to run maximum containers on their standard limits. The
first action of algorithm is to send the under- utilized containers on sleep state after
transferring their load to some other less loaded containers. The second step moves idle
containers to sleep state and they are moved back to active state when required as per
the load. The third step involves re-initiating the containers from sleep to active state
when load grows up.

Figure 4: Energy-aware system Architecture (Sureshkumar and Rajesh; 2017)

The above Figure 4 describes the four modules of the solution architecture (Sureshku-
mar and Rajesh; 2017). CPU and RAM utilization is displayed by container management
status which is retrieved by web application module hosted in jboss server. The jobs are
allocated to the Docker by energy aware scheduler part of second module. The third
module is responsible for migrating containers from sleep to active state after evaluating
the requirement as per the load. The configuration of Docker and its image creation is
done by the fourth module for the jboss server.

7

The presented outputs of the experiment proves the successful implementation of the
goal. However the solution focuses on overloaded containers but light and medium loaded
containers are ignored. In addition the solution is also focused on single system for mul-
tiple instances creation but for multiple systems is left for future work. If the will be
on multiple systems they need to communicate for the services which is the goal of our
research work and remains unanswered.

3.5 CPU scheduler for Docker container

(Wu and Yang; 2018) proposes dynamic scheduling of Docker containers via Flexible Def-
ferable Server (FDS). Docker container systems run mixed criticality systems consisting
real time as well as non-real time applications. The motivation behind cpu scheduler
is that non-real time application cpu needs are not static but the cpu allocation done
in by default are static. This leads to performance degradation when there is high cpu
requirement and to cope up with the problem FDS is proposed.

Upper bound guarantee (UBG) and Weighted fairness (WF) are the two strategies
used for cpu allocation in which is known as Completely Fair Scheduler (CFS) (Wu and
Yang; 2018).

Figure 5: FDS scheduler architecture (Wu and Yang; 2018)

The above Figure 5 defines the FDS scheduler using UBG strategy for CPU scheduling.
The real time workload gets allocated cpu by the scheduler to enhance the performance
on the first place. Then the scheduler allocate all the remaining CPU to a fake container.
On later stage the remaining cpu allocated to fake container is allocated to the non-real
applications dynamically as per their requirement. The fake container acts as deferrable
server in this scenario.

The experimental results proves the successful implementation of the goal by allocat-
ing the resources dynamically as per the need and increasing the performance. However,
the author doesnt specify when there is no cpu available situation for allocation. There

8

is also not any given information about the communication between the which makes our
research question unsolved.

3.6 Docker based Emergency communication system

(Pentyala; 2017) proposes communication app using Docker for emergency situations
such as natural disasters. The motivation behind the communication app is every year
in different part of world people get trapped in natural disasters and communication gets
failed. The solution aims to help in management of resources, re-uniting family mem-
bers, co-ordination in volunteers etc. The basic idea is to launch an editable map using
OpenStreetMap (OSM).

The app helps to check uploaded data, sensor data, present locations etc featured on
OSM based user interface. The needy person can check the map and know their help as
per the uploaded data. These setup will deployed on Docker containers. In experiment,
for hardware raspberry pi 3 is used in which 2 interfaces has been allocated to each pi
acting as ad-hoc network and access point.

Figure 6: Communication System (Pentyala; 2017)

The above Figure 6 describes the logical architecture of the communication system
which has five modules. Data is collected from sensors as wells as users and stored in
Data collection module. The data is merged and stored in Openstreet Maps database in
the form of files by Data processing module. The syncing of data with respective pi is
done by Data synchronization tool. The location of users is accessed by GPS. To avoid
failure and provide resiliency, multiple Docker containers have been used.

The author proposed solution serves the goal of the research work. However, author
hadnt provided any information for implementation and working of proposed multiple
Docker containers for resiliency which is our research question because for that inter-
Docker communication will be needed.

9

3.7 Honeypot systems built on Docker

(Sever and Kǐsasondi; 2018) proposes Docker based Honeypot infrastructure for evaluat-
ing security. The motivation behind this system is that cyber attacks is being common
today which impacts various organization services even letting them complete down. The
focus of Honeypots are to attract malicious attackers to know vulnerabilities or to distract
them from valuable resources. The main challenge is to make Honeypots feel genuine to
attract the malicious attackers. Some other challenges are security, flexibility and limited
ip address (Chin et al.; 2009).

Figure 7: Honeynet model (Sever and Kǐsasondi; 2018)

The above Figure 7 describes the model architecture of Honeynet. The cluster of Hon-
eypots are also known as Honeynets. Real time report generation, storage and centralized
sensor control are features of Honeynet. The virtual Honeypods are better as there is less
flexibility, leftover resources after deployment and time-taking process issues in physical
honeypots (Sever and Kǐsasondi; 2018). as virtual Honeypods provide efficient solution
from all these concerns.

The logs generated from the experiment shows various attacks such as Docker com-
promise, denial of service attack etc which serves the goals of creating Honeypods. The
best security practices has also been provided in the research work but the author provides
no solution for the detected vulnerabilities and leaves the same for future work. How-
ever, author talks to make the honeypods fault tolerant but provides no description to
perform that as it needs inter-Docker communication which leads our research question
still active.

3.8 Distributed software development tool built on Docker

(Naik; 2016) proposes distributed software development process on multiple cloud via
virtual system of systems (SoS). The motivation behind the tool is to cope up with the
Hybrid cloud scenario as to get benefits of both cloud environments clients are moving

10

towards Hybrid cloud. This will also ease customers stuck in vendor lock-in and provides
high availability. Docker swarm by Docker can be considered as an solution for dis-
tributed system development tool but the given solution has a new approach based on
multiple tools such as Docker swarm, Mac OSX, nginx, redis, VirtualBox etc (Naik; 2016).

Figure 8: Virtual SoS (Naik; 2016)

The above Figure 8 defines the SoS architecture. Virtual box is used to host four
swarm systems cluster to implement virtual SoS which supports any cloud which has
Docker support. The nodes are created by creating Docker swarm image. Cluster form
neighborship among themselves via discovery token. After consensus, one node becomes
master and rest three becomes slave to serve the request. Nodes can be managed from
any cloud irrespective of their creation.

The research work results obtained from the experiment meets the goal. However,
built infrastructure is on one physical device which can lead to single point of failure.
The research work doesnt provide any details of failure as well as how the Docker nodes
in different cloud will communicate which is our research question.

3.9 Discussion

Note that for better clarity, P1 refers to Docker - Denial of Service attack, P2 refers to
Network Virtualization built on Docker Engine, P3 refers to Distributed Cloud Monitor-
ing built on , P4 refers to Optimization of Docker Containers, P5 refers to CPU scheduler
for Docker container, P6 refers to Docker based Emergency communication system, P7
refers to Honeypot systems built on Docker and P8 refers to Distributed software devel-
opment tool built on Docker.

The characteristic elements compared are important for Docker Containers but there
is no research paper directly on inter-Docker communication although these papers are
related to implementation of and inter-Docker communication.

11

Table 1 : Important elements based on existing research work for inter-Docker com-
munication approach

As per the related work till now, either no approach has been taken for inter-Docker
communication or left for the future work. So, we need a new approach for inter-Docker
communication located in different geographical are. Hence, the next section.

4 Methodology

This section includes the components involved in lab building and methodology used to
implement the research - Google cloud platform, Eve-ng tool, Lab setup, EVPN setup.

4.1 Google cloud platform (GCP)

GCP had been used for the cloud resources(Google Cloud including GCP & G Suite Try
Free; n.d.). GCP only provides large instances with high compute and memory resources
on free tier, so it’s been considered for the project to avoid the charges. As per the project
requirement, instance had been created on the platform to host the Eve-ng tool. The
created instance has been hosted with Ubuntu image which supports nested virtualization.

4.2 Eve-Ng tool

Eve-ng tool is the first clientless network emulation tool which supports multi-vendor
network based emulation (Eve-NG; n.d.).It’s clientless emulator tool which supports a
wide range of networking devices, servers etc. The user- interface is accessed via browser.
This tool is implemented on the Google cloud platform created instance. Public ip has
been assigned to access the user interface from the internet.

4.3 Lab setup

The Lab has been created on the Eve-Ng tool which includes two layer 3 devices act-
ing as routers and 2 servers. In the current scenario Nexus series switches has been used
as layer 3 devices and the servers has been used to deploy the Docker container - Portainer.

12

4.4 EVPN setup

The two layer 3 devices has been configured with routing protocols to share their paths.
EVPN is configured on the both devices as well to pass the traffic and extend the vlan
id. Dockers hosted on the first server will communicate with the other one hosted on the
second server through the EVPN with minimum latency.

5 Design Specification

This section provides the specifications of the tools, os and other software used to imple-
ment the research work.

6 Implementation

The implementation of this research work has been done on five segments in a sequen-
tial order - GCP setup, Eve-NG tool setup, Lab setup, EVPN configuration and Docker
configuration. It is also focused on cost-optimizing regardless of Qos.

6.1 Google cloud platform (GCP) setup

In this scenario, as Nexus devices uses 16 Gb of memory and 4Gb for each servers and
calculating other requirements, an GCP instance has been created with 52 GB RAM, 8
vcPU’s and 300 GB boot disk. Eve-NG requires nested virtualization, so the OS uploaded
on the instance is ubuntu 16.04 Lts supporting nested virtualization.

13

6.2 Eve-NG tool setup

The community edition of the Eve-NG has taken for the research work as its free to use
for non-commercial purposes (Eve-NG; n.d.). The setup of the file has been downloaded
from http://eve-ng.net/downloads/eve-ng-2 and installed on the GCP instance. The GUI
of the tool is then accessed via public ip of GCP instance which can be login through
default credential admin as username and eve as password.

6.3 Lab setup

A new lab has been created naming Eve-NG2. The images of the nexus and other devices
had been uploaded via Filezilla tool using the public ip of the instance in the Qemu folder
of the Eve-NG tool. This allows access to the images and allows to create nodes in the
lab. As per the topology, the lab is been created with required nodes.

14

6.4 EVPN configuration

The interface ip of the nexus devices had been configured as per the topology. Then evpn
had been configured on both the nexus devices one by one by the script shared in the
configuration manual. The ip on server interfaces had also been configured as per the
topology.

6.5 Docker configuration

After configuration of server network interfaces, we configured Docker containers on the
linux server. To cross-verify the service, docker services status has been checked. Then
the portainer Docker image is pulled from the Docker hub and hosted on the server
(portainer/portainer - Docker Hub; n.d.). The communication port configured for the
docker is 9000.

15

7 Evaluation

This section provides the detailed information of evaluation procedure followed and the
extracted results from the implementation. The ”PING” feature of ubuntu and win-
dows OS has been used to get the latency. Ping is one of the most used commands for
troubleshooting purposes. To get the latency, ping command is used to ping the docker
hosted on second server(Linux4 - 192.168.1.3) on the other side from the first docker
hosted on server(Linux3 - 192.168.1.2).The latency test has been carried in 6 iterations
with varied packet size for better analysis.

The above table shows the different packet size selected for the latency test. Latency
has been measured in milliseconds and packet size in bytes.

16

Figure 9: Minimum latency Graph

Figure 9 graph shows the minimum latency recorded in 6 iterations with variable
packet size. The minimum latency recorded is 5.111 ms in the first iteration with smal-
lest packet size and greatest of 145.817 ms in 5th iteration.

Figure 10: Maximum Latency Graph

Figure 10 graph shows the maximum latency recorded in 6 iterations with variable
packet size. The maximum latency recorded is 15.103 ms in the first iteration with least
packet size and greatest of 218.043 ms in 4th 5th iteration.

17

Figure 11: Average Latency Graph

Figure 11 graph shows the average latency recorded in 6 iterations with variable packet
size. The average latency recorded is 8.557 ms in the first iteration with smallest packet
size and greatest of 178.495 ms in 6th iteration.

As their is no research work done till date with inter-docker communication, to com-
pare the results we had recorded latency in reachability from one end device/server to
another server. We had taken my pc, as an end device and recorded the latency to reach
the server hosted on Google cloud. Two iterations of result has been taken and compared.

Figure 12: Latency comparison - Iteration 1

Figure 12 graph shows the latency variance in EVPN and normal scenario. The graph
shows the min,max and avg latency recorded in iteration 1.

18

Figure 13: Latency comparison - Iteration 2

Figure 13 graph shows the latency variance in EVPN and normal scenario. The graph
shows the min,max and avg latency recorded in iteration 2.

7.1 Discussion

This subsection covers critical analysis of output generated from the implementation of
the research work. The above graphs clearly shows that the latency increases when the
packet size increases. In both iterations of comparison, the graph clearly states that the
latency in EVPN is quite smaller as compared to traditional communication. The min
latency difference in both scenarios is approx 32 ms which is quite significant in terms of
Qos.

Although evaluation had been done on live scenarios but results may vary on real en-
vironment as simulations may cause vary in actual latency. Latency also increases when
the distance between location increases.

8 Conclusion and Future Work

This section includes overall insights of the research paper and future work in the seg-
ment. The research work concludes two main points. The latency increase with the
increase in packet size as well as latency is quite less in EVPN scenario as compared
to the traditional technologies. The goal of the research work to enhance the latency
in inter-docker communication via EVPN is accomplished and verified by the obtained
result. In addition latency can vary as per the distance between the nodes. The results
obtained can also vary in real environment has virtual environment have their own lim-
itations.

The future research work can be carried in two directions- to improve the latency to
more significant values and security flaws in EVPN.

19

Acknowledgements

I would like to thank specially my mentor Vikas Sahni, who has been a guiding light
during my whole research work till the submission and provided deep insights to proceed
the research work in right direction. In addition, I would also thank my friends family
who had supported and motivated to complete the research work.

References

Ageyev, D., Bondarenko, O., Radivilova, T. and Alfroukh, W. (2018). Classifica-
tion of existing virtualization methods used in telecommunication networks, 2018
IEEE 9th International Conference on Dependable Systems, Services and Technolo-
gies (DESSERT), IEEE.

Al-Lawati, A. and Al-Badi, A. H. (2016). The impact of cloud computing it departments:
A case study of oman’s financial institutions, Big Data and Smart City (ICBDSC), 2016
3rd MEC International Conference on, IEEE, pp. 1–10.

Anderson, C. (2015). Docker [software engineering], IEEE Software 32(3): 102–c3.

Blair, W., Olmsted, A. and Anderson, P. (2017). Docker vs. kvm: Apache spark ap-
plication performance and ease of use, Internet Technology and Secured Transactions
(ICITST), 2017 12th International Conference for, IEEE, pp. 199–201.

Blenk, A., Basta, A., Reisslein, M. and Kellerer, W. (2015). Survey on network virtual-
ization hypervisors for software defined networking, arXiv preprint arXiv:1506.07275
.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J. and Brandic, I. (2009). Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as the
5th utility, Future Generation computer systems 25(6): 599–616.

Chelladhurai, J., Chelliah, P. R. and Kumar, S. A. (2016). Securing docker containers
from denial of service (dos) attacks, Services Computing (SCC), 2016 IEEE Interna-
tional Conference on, IEEE, pp. 856–859.

Chin, W., Markatos, E. P., Antonatos, S. and Ioannidis, S. (2009). Honeylab: large-
scale honeypot deployment and resource sharing, Network and System Security, 2009.
NSS’09. Third International Conference on, IEEE, pp. 381–388.

Dhakate, S. and Godbole, A. (2015). Distributed cloud monitoring using docker as next
generation container virtualization technology, India Conference (INDICON), 2015
Annual IEEE, IEEE, pp. 1–5.

Eve-NG (n.d.).
URL: http://eve-ng.net/

Felter, W., Ferreira, A., Rajamony, R. and Rubio, J. (2015). An updated performance
comparison of virtual machines and linux containers, Performance Analysis of Systems
and Software (ISPASS), 2015 IEEE International Symposium On, IEEE, pp. 171–172.

20

Google Cloud including GCP & G Suite Try Free (n.d.).
URL: https://cloud.google.com/

Kovács, Á. (2017). Comparison of different linux containers, Telecommunications and
Signal Processing (TSP), 2017 40th International Conference on, IEEE, pp. 47–51.

Nadgowda, S., Suneja, S. and Kanso, A. (2017). Comparing scaling methods for linux
containers, Cloud Engineering (IC2E), 2017 IEEE International Conference on, IEEE,
pp. 266–272.

Naik, N. (2016). Building a virtual system of systems using docker swarm in multiple
clouds, Systems Engineering (ISSE), 2016 IEEE International Symposium on, IEEE,
pp. 1–3.

Pentyala, S. K. (2017). Emergency communication system with docker containers, osm
and rsync, Smart Technologies For Smart Nation (SmartTechCon), 2017 International
Conference On, IEEE, pp. 1064–1069.

portainer/portainer - Docker Hub (n.d.).
URL: https://hub.docker.com/r/portainer/portainer

Sever, D. and Kǐsasondi, T. (2018). Efficiency and security of docker based honey-
pot systems, 2018 41st International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), IEEE.

Sureshkumar, M. and Rajesh, P. (2017). Optimizing the docker container usage based
on load scheduling, Computing and Communications Technologies (ICCCT), 2017 2nd
International Conference on, IEEE, pp. 165–168.

Swenson, G. (2011). Final Version of NIST Cloud Computing Definition Published.
URL: https://www.nist.gov/news-events/news/2011/10/final-version-nist-cloud-
computing-definition-published

Wu, J. and Yang, T.-I. (2018). Dynamic cpu allocation for docker containerized mixed-
criticality real-time systems, 2018 IEEE International Conference on Applied System
Invention (ICASI), IEEE, pp. 279–282.

Xingtao, L., Yantao, G., Wei, W., Sanyou, Z. and Jiliang, L. (2016). Network virtu-
alization by using software-defined networking controller based docker, Information
Technology, Networking, Electronic and Automation Control Conference, IEEE, IEEE,
pp. 1112–1115.

Zhang, Y. (2018). Virtualization and Cloud Computing, Network Function Virtualization:
Concepts and Applicability in 5G Networks, IEEE.
URL: https://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=8268600

21

9 Appendix - Configuration Manual

This section provides the scripts used for implementation of the research work in three
segments- GCP setup, EVPN Configuration and Docker configuration.

9.1 GCP setup

The instance is created on GCP (Google Cloud including GCP & G Suite Try Free; n.d.)
with os specification provided in section: Design specification using below script:

9.2 EVPN Configuration

EVPN had been configured on both the nexus devices one by one which are L3 devices
acting as a internet gateway.

9.2.1 Nexus Switch 1

Figure 14:

22

In above Figure 14 snapshot, hostname of the device and ospf protocol has been
configured with enabling jumbo packet.

Figure 15:

In Figure 15 snapshot, the ip address is configured for the device reachability.

Figure 16:

In Figure 16 snapshot, loopback interface is configured and its ip is being added in
the network area 0.

Figure 17:

In Figure 17 snapshot, evpn is configured.

23

Figure 18:

In Figure 18 snapshot, loopback ip is being added in bgp route.

Figure 19:

In Figure 19 snapshot, vlan 101 is being created and vn-segment is being assigned.

Figure 20:

In Figure 20 snapshot, vrf is being created.

24

Figure 21:

In Figure 21 snapshot, vlan 101 is being assigned as member of vrf group-1 and vni
id is assigned to the interface.

Figure 22:

In Figure 22 snapshot, vrf group is being assigned to bgp and vn-segment to vlan
1000.

25

Figure 23:

In Figure 23 snapshot, layer 3 vlan is being configured.

Figure 24:

In Figure 24 snapshot, evpn and switchport is configured.

9.2.2 Nexus Switch 2 Configuration

Figure 25:

26

In above snapshot, nexus second device hostname of the device and ospf protocol has
been configured with enabling jumbo packet.

Figure 26:

In Figure 26 snapshot, the ip address is configured for the device reachability.

Figure 27:

In Figure 27 snapshot, loopback interface is configured and its ip is being added in
the network area 0.

Figure 28:

In Figure 28 snapshot, evpn is configured.

27

Figure 29:

In Figure 29 snapshot, loopback ip is being added in bgp route.

Figure 30:

In Figure 30 snapshot, vlan 101 is being created and vn-segment is being assigned.

28

Figure 31:

In Figure 31 snapshot, vrf is being assigned to vlan and nve interface is configured.

Figure 32:

In Figure 32 snapshot, vrf group is being assigned to bgp and vn-segment to vlan
1000.

29

Figure 33:

In Figure 33 snapshot, layer 3 vlan and evpn is being configured.

Figure 34:

In Figure 34 snapshot, switchport is configured.

30

9.2.3 Docker Configuration

Figure 35:

In above Figure 35, system is updated.

Figure 36:

In Figure 36, Docker is installed.

31

Figure 37:

In Figure 37, Docker is enabled and its services has been started.

Figure 38:

In Figure 38, Docker services has been checked as active.

32

Figure 39:

In Figure 39, (portainer/portainer - Docker Hub; n.d.) Portainer Docker image is
being pulled from Docker hub and 9000 port has been assigned for communication.

33

	Introduction
	Theoretical Background
	Cloud Computing (Domain)
	Virtualization (Area)
	Virtual machine (Ongoing Technology)
	Docker Containers (Evolving Trend)

	Related Work
	Docker â•ﬁ- Denial of Service attack
	Network Virtualization built on Docker Engine
	Distributed Cloud Monitoring built on
	Optimization of Docker Containers
	CPU scheduler for Docker container
	Docker based Emergency communication system
	Honeypot systems built on Docker
	Distributed software development tool built on Docker
	Discussion

	Methodology
	Google cloud platform (GCP)
	Eve-Ng tool
	Lab setup
	EVPN setup

	Design Specification
	Implementation
	Google cloud platform (GCP) setup
	Eve-NG tool setup
	Lab setup
	EVPN configuration
	Docker configuration

	Evaluation
	Discussion

	Conclusion and Future Work
	Appendix - Configuration Manual
	GCP setup
	EVPN Configuration
	Nexus Switch 1
	Nexus Switch 2 Configuration
	Docker Configuration

