
Cloud Latency Optimization Using
Mathematical Modelling

MSc Research Project

Cloud Computing

Douglas Sheriff Usman
Student ID: x17155924

School of Computing

National College of Ireland

Supervisor: Sean Heeney

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Douglas Sheriff Usman

Student ID: x17155924

Programme: Cloud Computing

Year: 2018

Module: MSc Research Project

Supervisor: Sean Heeney

Submission Due Date: 20/12/2018

Project Title: Cloud Latency Optimization Using Mathematical Modelling

Word Count: 6849

Page Count: 44

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 18th December 2018

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Cloud Latency Optimization Using Mathematical
Modelling

Douglas Sheriff Usman
x17155924

Abstract

Cloud computing has not ascended to the heights it was predicted to reach,
recent network outage of Azure Cloud Service. Cloud users have been unable to tap
into the infinite computing power that was promised with the birth of Cloud. This is
due to the prolonged battle with cloud latency, which is the delay in communications
between the cloud provider and cloud users. In this paper, we propose to explore
the feasibility of mathematical modelling in mitigating cloud latency. We propose
to focus on relevant methodology to actively model fuzzy logic control, implement
the fuzzy logic control to mitigate cloud latency and evaluate the result from the
research into this optimization process. This work is dedicated to all cloud users
without specific IT skills to manage cloud services in their chosen cloud platform.
Keywords: Cloud; Networking; Fuzzy Logic Control; Fuzzy Inference System;
Latency Optimisation; Mathematical Algorithms; Mathematical Modelling; Qual-
ity of Service.

1 Introduction

The term cloud computing does has series of definitions with all focused on sharing of
computer resources via the Internet (Labba et al.; 2018). Cloud computing makes it pos-
sible to achieve coherence and economies of scale by sharing resources (Liu et al.; 2016).
These attributes make cloud computing commercially acceptable, globally. Presently,
the world of cloud computing presently, is mainly commercially oriented with business
focused clouds being the expected platform for researching (Rao et al.; 2011). The
eventual evolution of data centres from the traditional one server to modern-day cloud
computing environment is an indication of how rapidly the field of IT is evolving. The
driving forces behind this evolution are Moores law and the demand of end users with
the latter not showing any sign of slowing down (Kashyap and Viradiya; 2014).

Quality of Service (QoS) is the description of the entire performance of a cloud com-
puting service (Hans; 2018). Since cloud provides shared resources via the Internet,
recent cloud environments are believed to be hitting climax with milestones about to be
broken in terms of storage, computing power, cost and security. As a result, QoS has
been greatly threatened in keeping up with demands. Latency which is a major problem
to Internet providers is described as the delay in sending information from the provider
to the end-user (Shrestha et al.; 2013). When latency occurs on the cloud, it is known as
cloud latency (Lyu and Zhang; 2015). Internet being the only medium sharing resources
on the cloud, this makes latency a challenge in the cloud environment.
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Latency on the cloud is such a major challenge that it was highlighted as one of the
very serious drawback in cloud computing courtesy of Rajkumar Buyya (Zhang et al.;
2010). Presently, demand for high performance computing resources is at an all-time high
backed by the recent emergence of privately owned high performance computing (HPC)
systems (Jarschel et al.; 2011). With cloud latency in the mix, the chain reaction has
led to inconsistent performance from cloud services. Organization and new comers will
have to make alternate arrangements (alternate compute power) to sustain future, very
high performance because of the rising latency.

Amazon Web Services (AWS) resolved some of these issues by patching the kernel
version and introducing auto scaling capacity. Nevertheless, latency and throughput
issues persist because auto scaling capacity takes time to scale up and down leading
to lag and bottleneck respectively. This research project would attempt to answer the
pertinent question:

”Can we optimize cloud’s latency using mathematical modelling?”
The term mathematical model is defined as describing a system utizing mathematical

concepts and languages (Department of Computer Science Engineering, Jain University
et al.; 2014). A mathematical model can be designed, modified and implemented on any
system. Examples of good mathematical modelling software are Mathematica, Simulink,
MATLAB and IBM SPSS (Sturm; 1999). By this medium, an experiment to mitigate
latency issues, using mathematical modelling is very possible. (Bashar; 2014) stated
that as far back as 1968, engineers were able to generate a mathematical model for an
operational radio. Though this feat is regarded as obsolete technology in modern day, it
is a testament to how mathematical modelling is evolving and compatible with various
control apparatus. An example of utilizing mathematical model is the bee colony. The bee
colony was the main inspiration that led to load balancing of project in cloud computing
(L.D. and Venkata Krishna; 2013).

Fuzzy Logic Control (FLC) is a subsection of mathematical modelling, which is a lo-
gic control paradigm that is nonlinear in nature with the capability of deducing complex
nonlinear connection between input and output variables (Mendel and Mouzouris; 1997).
Mathematical modelling is the conversion of applied or application problem into control-
lable mathematical formulations whose numerical analyses provide reasonable answers
and procedure to more often than not, solve problems (Chen; 2011). Mathematical
model is the system that houses numerical concepts and languages. A mathematical
model is created and simulated on a computing platform like MATLAB that can inter-
face with a wide range of programming language, algorithm and matrices ( (Chopra;
2012), (Lofberg; 2004) and (Selinger and Katze; 2013)). This is the reason that FLC
could easily run on the mathematical model platform (Chopra; 2012). A calculation
platform like MATLAB and a mathematical model like Simulink are the mathematical
computer software that are most popular in terms of mathematical modelling (Entchev
and Yang; 2007).

In this paper, we propose to explore the feasibility of mathematical modelling in
mitigating cloud latency. We propose to focus on relevant methodology to actively model
FLC, implement the FLC to mitigate cloud latency and evaluate the result from research
into this optimization process. To mitigate latency, we hope to understand how to manage
and detect latency thus researching into auditing, low-latency data labelling and cloud
gaming would help in understanding cloud latency a lot more.

The paper is organized into 6 sections. section 2, examines related works on existing
approaches and projects on managing and detecting latency as well as mathematical

2



modelling and FLC applications. Section 3, details our Artifacts methodology. Section
4 implements this Artifact to mitigate cloud latency. Section 5 evaluates result of the
Artifact and discusses the result. Section 6 concludes paper and presents perspectives in
cloud computing.

2 Related Work

In this section we considered existing projects, approaches and concepts related to FLC,
understanding latency and mathematical modelling. The research on Auditing Cloud
Latency, Speeding up for Low-latency Data Labelling and Executing High-Demand Ap-
plications on the Cloud assisted us in understanding cloud latency in terms of managing
and detecting latency. The research on mathematical modelling assisted us in under-
standing behaviour of the Artifact.

2.1 Auditing Cloud Latency

The term audit is the systematic screening of vouchers, statutory records, books, ac-
counts and documents of an organization to establish its fair view (Moulder et al.; 2010).
The same definition can be related to auditing on the cloud in terms of cloud latency.
(Tomanek and Kencl; 2013) focused on latency and its impact on cloud computing. This
was important because it ascertain how a remote data centre would perform while it is
in full operation. The aim was to design tools or methods to monitor and optimize inter-
national cloud service latency. The methodology was to utilize Cloud Latency Auditing
(CLAudit), a prototype planetary scale cloud latency auditing platform (Selinger and
Katze; 2013). CLAudit made use of PlanetLab network to site worldwide distributed
probes that continuously measure cloud service latency at various layers of the commu-
nication stack. The test was carried out on the platform using original deployment, which
showed that CLAudit could detect both normal and abnormal cloud behaviours. Test
results were able to pinpoint problem using data analysis thus confirming how valuable
CLAudit could be to both research community and cloud service providers (Shrestha
et al.; 2013).

The test concluded that with new cloud networking protocols, proposed future tech-
nologies would address the different applications latency (Touch; 2010). For now, there
is none (Zhu et al.; 2013).

2.2 Speeding up for Low-latency Data Labelling

In a research by (Haas et al.; 2015), a way was discovered to increase the speed of
data labelling without impeding evolution of interactive systems. There has been an
increase in demand for data labelling according to (Haas et al.; 2015) but with the
absence of work addressing and the presence of unpredicted latency, there is need to
improve the speed. This report introduced CLAMShell, which is a system that should
improve the speed of crowds to achieve consistent low latency. Studies of large crowds
for labelling deployments, increased understanding of latency. Tackling every labelling-
source of latency led to state-of-the-art techniques that was able to optimise current
methods like active learning. CLAMShell, was evaluated in simulation and on live, which
showed that the proposed techniques would provide the extent of speedup and variance
reduction over current alternative strategies (Edmondson et al.; 2012).
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The test concluded that, CLAMShell takes broad approach to the reduction of latency
for data labelling (Haas et al.; 2015). The test also demonstrated that work could be
conducted in the system that trains a single-model on the section labelled by active and
passive learners (hybrid learning). The hybrid learning platform would be studied to
discover if better models can be trained (Lyu and Zhang; 2015).

2.3 Executing High-Demand Applications on the Cloud

In a report by (Chen et al.; 2011), there was a burning desire to answer the question;
how good is the real-timeliness of current cloud gaming systems? To answer the question,
the response latency of two cloud gaming platforms ONLive and StreamMyGame, were
analysed. A general methodology was proposed to measure the latency of cloud gaming
systems with little or no exceptions. This methodology was applied to the two cloud
gaming platforms and was observed that the OnLive platform had the most reasonable
latency for real-time cloud gaming compared to the StreamMyGame which was twice
that. They concluded that their methodology should help in understanding latency in
PC-based cloud gaming platform and should results in further improvements in cloud
latency.

A report by (Choy et al.; 2012) commend the changes that cloud computing has
brought in terms of deployment of web application and services with emphasis on gam-
ing. It also brought forward a limitation in terms of architecture of the cloud platform.
The limitation is that several cloud computings vital design such as fine-grain partitioning
or consolidating resources do clash with recent multimedia applications. These applica-
tions are highly sensitive to latency and most times would require unique hardware like
fast memory. A study was undertaken that placed all the emphasis on on-demand gam-
ing. This study included an extensive evaluation of the present state of cloud computing
infrastructure using a case study from Amazon EC2, measurement of settings (BitTor-
rent), the effects of large cloud infrastructure and the probe of the impact of increasing
present cloud infrastructure with servers detected close to the end-users (Shahdi-Pashaki
et al.; 2018).

From extensive evaluation of current cloud infrastructure, it was proven that decent
results was achieved. This results were only achieved by providing local content distri-
bution servers with the essential hardware to aid gaming demands thereby expanding
current infrastructure. This resulted in an addition of 28 percent of the end-users that
could meet the required 80 milliseconds (ms) response time. (Choy et al.; 2012) trusts
that by including current resources into cloud data centres, on-demand gaming could
improve notably and possibly revolutionize the multi-billion-dollar video game industry.

2.4 Mathematical Modelling of Cloud Services

There were research works in mathematical modelling of cloud services, which were carried
out and were believed to be the future of cloud services (Lyu and Zhang; 2015). A
report by (Islam et al.; 2012) included developing an elastic model for cloud instances
using mathematical modelling that considers all resource types, network bandwidth and
so on that could be allocated with users permission and users could convert measured
overprovisioning and underprovisioning into approximate financial results. This designed
model also added cost of provisioned but did not make use resources and performance
degradation costs to mimic underprovisioning. Users issue in terms of overprovisioning
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is the distinction between the imposed demand and imposed supply. Underprovisioning
on the other hand is the measurement done from an observation of the percentage of
refused requests point of view. (Islam et al.; 2012) paper concluded that by running
different workloads on cloud, closely studying results and calculating geometric mean
of costs, it was possible to effectively measure underprovisioning and overprovisioning
metrics, respectively.

(Abdelsalam et al.; 2009) examined the mathematical correlation between Service
Level Agreements (SLAs) that control most cloud applications and number of servers
used in operating them. The assumuption was that the cloud is consistent, each device
could operate at its own frequency with varied power consumption. SLAs also identified
each clients requests by gathering the computed demand of applications executed. Ex-
amination was achieved by assuming that one job would be divided evenly over multiple
servers with focused applications being web applications and web services. (Abdelsalam
et al.; 2009) proposed and effectively executed a successful examination with correlation
between SLAs and the number of server in operation being the highlight of the research.

A report by (Gelenbe et al.; 2012) solved the option between a local or remote cloud
service in terms of the energy and QoS. This study created a mathematical formula,
based on the PollaczekKhintchine formula and estimating Poisson arrival that mimics
optimization issue of the load sharing between a local and a remote cloud service. Service
time and power consumption (output) for a server was duly observed. This observation
brought about the conclusion that by regulating the system load between local and remote
cloud services the best result would be achieved (Smola and Schlkopf; 2004). Thus, they
attained the best balance between energy consumption and service times.

(Mi et al.; 2010), also generated a formula that represented the multi-constraint
optimisation problem, which finds best number of physical machines that makes best
use of their resource while reducing power consumption. It was assumed that the Cent-
ral Processing Unit (CPU) is the only resource of a physical machine (Sakellari and
Loukas; 2013). Forecasting load of applications by using the Browns quadratic exponen-
tial smoothing formula and proposed a self-configuration genetic algorithm to get best
reconfiguration policy (Mi et al.; 2010).

2.5 Fuzzy Logic System and its Application

An understanding of fuzzy logic system via mathematical model has been researched into
and documented ( (Entchev and Yang; 2007) and (Ruhit et al.; 2018)).

A research paper by (Frey et al.; 2013), looked in using fuzzy logic to regulate QoS of
cloud services. The intention was to achieve desired result by utilizing merit of the cloud,
which is the ability of scalability to monitor performance load metrics. The system was
monitored and decision made from initial observation either to scale up or scale down
the process by provision or revoke of cloud resources. This action assured the QoS and
invoked the Service Level Objectives (SLO). The purpose of research was to demonstrate
the normal cloud computing scaling service that ensures QoS.

The research concluded by showcasing essential parameters like request-response-time
which highlighted the real-time QoS of the cloud. The use of the fuzzy control module
for this project, brought about an extended QoS provisioning architecture.

This paper by (Sule et al.; 2017), looked in the reliability of the cloud platform
in terms of trust and security. The project focused on creating a layer of security and
trust using the FLC. The result was the creation of a Multi-Layer Trust Security Model
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(MLTSM) that utilizes the fuzzy logic combination of various security mechanisms like
in-direct and direct trust.

The project concluded with MLTSM being able to improve the security of deployment
within cloud infrastructure in very critical area like the electrical power system and the
cooling sensors. This was achieved by the result from the MLTSM that showed the on-
demand verification and determination of the trust level of all proposed cloud computing
platform.

2.6 Discussion

In this subsection we would discuss the above related works, highlighting research works
with the strongest ideas that are related to our project proposal and comparing all the
above research works with each other.

Cloud latency is essential to the operation and evolution of the cloud environment.
The works of ( (Haas et al.; 2015), (Chen et al.; 2011) and (Choy et al.; 2012)) examined
latency in terms of heavy applications like gaming on the cloud, which requires very
low latency. We were able to understand the structure and how to formulate latency.
Cloud environment in practical terms is random at best. Most mathematical models
cannot effectively represent cloud but the article, Mathematical Modelling Project for
Cloud Systems best describes cloud environment and how to generate a formula for it.

The works from ( (Frey et al.; 2013) and (Sule et al.; 2017)) shows that FLC can be
used in the cloud platform to guarantee QoS and enforce security respectively.

Table 1 below, Table 1 below, highlights key findings from review of other research
papers. This is in comparison with terms of latency, mathematical modelling, networking
and content.

For clarity: A1 refers to understanding of latency; A2, measurement of cloud latency;
A3, application of mathematical model; A4, networking with physical devices; A5, in-
formation presented; P1, Auditing Latency in the Cloud; P2, Speeding up for Low-latency
Data Labelling; P3, Compilation of Case Studies in Cloud Gaming; P4, Mathematical
modelling project for cloud systems and P5, approach Fuzzy Logic Inference system and
its Application. Finally, Y refers to YES, N refers to NO and (-) refers to undetermined.

Table 1: Important elements based on other existing projects relating to Modelling
A1 A2 A3 A4 A5

P1 Y N Y - Y
P2 Y - - - Y
P3 Y - Y - Y
P4 - Y Y Y Y
P5 - - Y - Y

Table 1 is the results of comparing all the literature or journal with each other. This
was necessary to evaluate the present level of all the research materials. The table shows
the elements that makes up this research project and would determine the direction of
the research project.

From Table 1, some elements came close to our proposed approach. Elements such
as P5 that used MATLAB to model a fuzzy logic for QoS of the cloud deployment infra-
structure. The research from (Mi et al.; 2010) generated a formula using mathematical
modelling to represent the multi-constraint optimization of a CPU of a physical machine.
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The research work from (Haas et al.; 2015) proposed that the next phase of evolution
would depend on reduction of cloud latency. The research work by P5 however predicted
future work in employing real test environment in developing user friendly interface using
fuzzy inference system.

2.7 Concluding Remarks on Related Works

Previous research works provided support for the idea that optimization issues could
be resolved using mathematical modelling with a particular emphasis on FLC. These
issues which are very complex for the traditional models can be solved with FLC and
further using controlled mathematical modelling. The literature review helped us in
understanding latency, which is the current challenge that plagues the cloud platform. It
also, brought our attention to the very significant impact of high latency and why cloud
has to overcome latency to advance to the next stage of cloud evolution.

Consequently, no suggested approach fulfills requirements to tackle all of the import-
ant elements in Table 1. These important elements included latency, mathematical model,
network and content (A1, A2, A3, A4 and A5). With these limitations brought by the
literature, there is a need for a feasible approach to solving cloud latency and we are
going to implement in the report.

At the introduction of this section, we highlighted an Artifact that would address
cloud latency. We strongly believe that through FLC, we should mitigate latency in the
cloud platform. The implemented FIS, utilizes the FLC that accepts erratic wave pattern
and tolerant to nonlinearities.

In section 3, we will look at the methodology of the proposed Artifact.

3 Methodology

In this section we are going to outline the proposed research approach and method to
designing the Fuzzy Inference system (FIS). We will justify the choice of our proposed
method, and consider FIS functional goal.

3.1 Approach

FIS is the mathematical modelling method that we employed to mitigate cloud latency
issue in cloud platform. We would further explain the operational approach of this
Artifact in Figure 1. Figure 1 is the operational approach of FLC that is to be attached
to end user in the cloud ecosystem.

Figure 1 is the activity diagram of the FLC integrated with the cloud environment
from the view of the end-user. It demonstrates how FLC integrated to the end-users
cloud framework to form the FIS. End-user would access cloud network via the Internet
and should automatically activate the FIS when there is a sudden prolonged downtime.

The FIS, highlighted in red, analyses the input (Fuzzifier), regulates the cloud network
(Inference), bind the input by certain entities (Rules), fine tune the output (Defuzzifier)
and merge the output (Linearization) (Kasabov and Song; 2002).
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Figure 1: Activity Diagram of Operational Fuzzy Interface System.
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3.2 Functional Architectural Goals

Supplying paying customers and users with seamless operation of cloud applications and
services is one of the top priorities of a cloud provider. This priority is the motive behind
the design of the FLC via mathematical modelling. The resulting merger between fuzzy
and mathematics’ yield FIS. The FIS should provide a controlled environment to reducing
clouds latency by ensuring the communication time between the end-user and the cloud
provider does not exceed one second per packet ( less than or equal to 1 second per packet)
by means of network baseline that the control system will provide (Sule et al.; 2017). As
a result, the cloud platform from the customers end becomes a control system with very
predictable network traffic. With the FLC ability to be taught complex algorithms, it
could even assist in terms of authentication by virtue of cybernetics and neural network
(Sungkap Yeo and Lee; 2011). This research project however, will be exploring solely the
creation of a control system that includes the cloud environment from view of the end
user.

3.3 Functional Architecture

According to (Juang et al.; 2007), FIS is a system paradigm that is based on the fuzzy
set theory, fuzzy if-then rules and fuzzy reasoning. According to Mendel and Mouzouris
(1997), there are two forms of FIS: Mamdani FIS and the Takagi FIS. This project
employed the Mamdani FIS because of its architectural openness, ability to support
multiple inputs/outputs similar to the cloud platform and its compatibility on most
hardware (Hans; 2018).

The Mamdani FIS consists of the input, fuzzier, set of rules and de-fuzzification that
provide sharp output Mendel and Mouzouris (1997) as seen below.

Figure 2: Fuzzy Inference System Mendel and Mouzouris (1997).

Figure 2 is a chart representation of the FIS that shows each of the parameters (fuzzi-
fier, inference engine defuzzifier and rules) and how these relate and interact with one
another. The idea of representation is to understand the operation of FIS. Two member-
ships could be launched at the same time but the one with maximum degree of member-
ship would be selected. Subsequently, membership function with the minimum degree of
membership would be preferred from both inputs. The resulting formula from the above
action, is given below.

G(t) = max[min[G1[input(i)], G2[output(j)]
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Above process occurs randomly, and the launched memberships would be summed
up and a good value obtained from the added membership functions. The process of
obtaining this good value is called de-fuzzification (Chang and Chang; 2006). Figure 3
below is an example of the FIS used to breakdown instructions for the steering angle of
a car (Mukherjee and Sahoo; 2010).

Figure 3: Example of Mamdani FIS for a Cars Steering Angle Mukherjee and Sahoo
(2010).

Figure 3 is a section of the input from Figure 2, which shows that a crisp value is
acquired from the sum of membership functions after de-fuzzification is completed. This
is what guides the steering angle within an acceptable degree. This crisp values are also
bound by rules that assist in its self-learning ability (Jang; 1993).

3.4 MATLAB and its Uses

MATLAB is a numerical computing environment and a fourth-generation programming
language. It was developed to allow plotting of functions, implementation of algorithms,
matrix manipulation and interfacing with programs such as C, C++, Java and FOR-
TRAN (Sungkap Yeo and Lee; 2011). Cleve Moler who was the Chairman of the Com-
puter Science Department, University of New Mexico, developed MATLAB in 1971. He
created this software for his students to calculate mathematical functions without the
need to have knowledge of FORTRAN (L.D. and Venkata Krishna; 2013). In 1983 an
engineer along with Steve Bangert joined Cleve Moler to rewrite MATLAB to C-language.
MATLAB was adopted by control engineering in 2001 and was used to model and calcu-
late numerical analysis of a control system (Yassein et al.; 2017). Although MATLAB
is intended for numerical calculations and computing, it also has additional packages for
designing various accessories. The package we would use for the fuzzy logic modelling is
known as Simulink.

In Figure 4 black highlight represents editor window were the C++ script are input
and executed. Red highlight is the command window that displays result or error in
relation to the inputted script. Yellow highlight shows file path of the C++ script and
brown highlight is the workspace that displays what function is currently operating.
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Figure 4: The MATLAB User Interface.

The choice of MATLAB is because of its compatibility and accessibility on regular
PCs. MATLAB is well-suited because of its programmable User Interface (UI) and its
self-learning algorithm that keep on improving in terms of mathematical modelling. It
also has additional packages such as Simulink and mathematical computation that gives
it more value in terms of modelling. Essentially, MATLAB and Simulink are easily ac-
cessible, compatible and available in most academic institutions, unlike the other options
(Mukherjee and Sahoo; 2010).

3.5 Applying Fuzzy Logic

It is a popular belief that latency can be measured and if it can be measured, then it can
be controlled. FLC would make the latency in the cloud platform to auto-correct itself
back to the predicted and controlled value. We would model the latency as a time delay
in the system, and then design the fuzzy logic by invoking required sets of linguistic
fuzzy rules for the cloud platform. Currently, we assigned numerical values to these
linguistic rules to represent the centre of each membership function. Then, all the inputs
and output membership function set along with the rules are entered in the FIS Editor
available in MATLAB.

Figure 5 is the FIS editor in the UI that configures the controller. This is the UI
that is responsible for setting pattern that guides the FLC. Brown highlight is the input
variables of the FIS, Pink highlight is the output variable and Yellow highlight is the
editor UI for the membership function.

FIS can also be made to use solely logic rules. The minimum degree of two-launched
memberships, functioning from both inputs are taken to be the output based on users
selection of membership function. This is achieved with minimum degree of membership
of the fuzzy controller.
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Figure 5: The FIS Editor of MATLAB.

3.6 S-Function Level-1 Language and Code Explanation

Graphical User Interface (GUI) that was designed, simulated the control system of the
cloud platform including latency and FLC. This was obtained by using MATLABs level-
1 codes embedded within Simulink Function (s-function) block of Simulink. S-function
language was selected based on its compatibility with s-function Application Protocol
Interface (API). This API allows for interaction between MATLAB and the Simulink
engine to generate a real time simulation.

S-function API Level-1 consists of nine flags with each flag representing an integer
value of the s-function tasks. These tasks perform predefined functions known as ”call-
backs” that are operated using case expression. The table below shows various ”callbacks”
used in this research project (Yassein et al.; 2017).

Table 2: MATLAB Level-1 callback Methods (Yassein et al.; 2017).
Flag ”Callback” Usage
0 mdlInitializeSizes Initialize variables and sample time.
2 mdlUpdate Update values with each next hit.
4 mdlGetTimeOfNextVarHit Determine the time for the next hit.

Table 2 consists of the elements for ”callback” and the ways to utilize this ”callback”
methods. ”Callback” methods are necessary to initiate the s-function in MATLAB by
tagging inputs and outputs to functions. Without ”callback”, it would be impossible to
execute the s-function.

Coding the s-function was generated by using 3 ”callback” methods: mdlInitializeS-
izes, mdlUpdate and mdlGetTimeOfNextVarHit as described in Table 2. The mdlInitial-
izeSizes method was used to initialize all number of inputs, number of outputs, sample
time, variables and to insert the main GUI window codes. The ”callback” mdlUpdate
inserts the control system and assigns inputs to the s-function block of the Simulink
model. We primarily included mdlUpdate ”callback” because of its ability to initiate an
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infinite loop which will continue to repeat itself with each operation. And finally, ”call-
back”, mdlGetTimeOfNextVarHit ensures the next operation occurs for every 0.1 second
to include updates of the array inputs.

Full list of code is available in the configuration manual (appendix) of this research
project.

In section 4, we would look at the implementation process of the FLS in a practical
scenario.

4 Implementation

This section will examine the final stage of implementation of the FLC in a FIS environ-
ment.

Our first task was to design the cloud latency environment for the implementation of
the FLC. The figure below is the simulation of cloud latency using MATLAB.

Figure 6: Cloud Latency Representation in MATLAB.

Figure 6 above is the representation of cloud latency using MATLAB. The environ-
ment consists of 2 inputs that represents the network and internal latency respectively
and some limiting factors for hardware utilized. We can observe that input 1 peaks at
5 seconds and input 2 peaks at 1 second meaning the both have a combine latency of 6
seconds, which signifies that the environment is very laggy. Figure 6 is quite unrealistic
in today’s standard but it helps us in understanding the impact of cloud latency on the
simulated environment.

Our next course of action to implementing desired fuzzy logic on the cloud platform is
to virtualize the control system model to incorporate the cloud platform and controller.
We deduced that the FLC would try and correct the cloud’s latency (Figure 6) back
to normal value of one second. We created 9 linguistic fuzzy rules using a logic table
designed to control the cloud platform. The figure below is the summarized 9 linguistic
rules that was derived for this project.

Figure 7, depicts 9 rules that governs the optimization of cloud’s latency. This was
written using MATLAB ruling with the objective to bound FIS to the environment of
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Figure 7: Fuzzy Linguistic Rules.

cloud computing. The rules works by assigning maybe logic to the FLC to compensate
for grey areas in the cloud.

Table 3 The Fuzzy Rules.

Table 3: Fuzzy Logic Rules Generator
Error/Time Delay Good Normal Bad
Negative Zero Zero Zero
Zero Zero Zero Small
Positive Small Normal Large

Top row represents the time delay input. Left column represents the normal error
input. Middle section is the output of desired optimal latency.

Table 3 is the logic table that was used to configure the rules for FIS. This table was
necessary to accurately create the rules for the FLC. We assigned these linguistic rules to
represent the automation of the cloud platform with all the membership function (inputs
and output). Membership function was set along with the 9 rules in FIS Editor available
in MATLAB. The result of this action can be observed in Figures 7, 8 and 9 below.

Figure 8: Input Fuzzy Sets of the Fuzzy sets for Input of the Normal Error (Error).

Figure 8 is the membership function plot for the network error. This is used to
predict parameters that makes up network error. This is necessary for accurate design of
the FLC.
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Figure 9: Input Fuzzy Sets of the Fuzzy sets for Input of the Time Delay.

Figure 9 is the membership function plot for time delay. This is used to predict the
time delay. It is necessary for the accurate design of the FLC from the view of time delay.

Figure 10: Output Fuzzy Sets of the Fuzzy Sets for Resulting Input of Time Delay and
Normal Error.

Figure 10 is the membership function plot for the output of the FLC. This is used
to predict output from the combined input parameters that makes up network error and
time delay. This is necessary for accurate design of the FLC baseline.

Figure 8, Figure 9 and Figure 10 are the inputs and Output of the Fuzzy Sets. The
first fuzzy set, is for the first input which is the normal error. Normal error is known
as the input plus the feedback loop, which ensures signals are free from errors thus the
name normal error.

The second fuzzy sets, for the input is the time delay which serves as latency in this
simulation. The third fuzzy sets, for the output is the resulting end product of the test
with desired optimized latency.

Finally, a Simulink model was generated to demonstrate 2 step wave inputs which
would enter the fuzzy controller block as seen in Figure 8 and Figure 9. Output from
the fuzzy controller that represents optimal latency was passed through a transport delay
and saturation before simulation. Delay was added to emulate processing delay of signal
through the router, switch or hub as well as delay in network traffic. Moreover, a sat-
uration block was added to create some form of hardware or software limitation similar
to normal operation of the cloud. Figure 11 below is the Simulink representation of the
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designed model.

Figure 11: Simulink Model for the Fuzzy Inference System.

Figure 11 is the environment for simulating the cloud environment with the FLC. All
components add to life-like model of the cloud environment with FLC. Network error and
time delay are adjusted to mimic desired latency which is executed to observe response
time. Response time show the reaction of the fuzzy logic to the set latency.

In section 5, we would look at the evaluation of the implemented process using live
data in a practical scenario.

5 Evaluation

In this section, we will carry out test on the FIS in a practical environment and generate
a comprehensive analysis of the results. Test will include the GUI, analysis of live test
data and a discussion on outcome of the analysis.

5.1 Testing the GUI Simulation

The developed GUI simulation model shown in Figure 12 below is the mathematical eval-
uation of the fuzzy logic controller in the course of the simulation process of this project.
During and after the simulation, there were no significant error related to optimization of
clouds latency using the Fuzzy controller. Optimization was as we hoped and real-time
algorithms worked to an okay degree with noticeable lag but nothing too serious. How-
ever, with all the good results we got, the GUI did not represent a real-life scenario of
clouds latency because there were many factors we had to assume. Factors like nature of
the network traffic, distance from source of cloud to the user and various authentication
protocols that exist in real life cloud environment.

Figure 12 above, shows the GUI of the FIS platform. This representation helps in
describing the process of the FIS when simulated. The representation is a 3-D window
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Figure 12: GUI Window for the Project.

which has 3 axes. The X-axis shows the optimization of the latency in relation to the
normal error and time delay. The Y-axis shows time delay and the Z-axis shows the
normal error. Both Y and Z-axes are the input with relation to output which is the
X-axis. Figure 12 clearly shows that as normal error and time delay increases, optimal
latency increases as well. This means that a lot of work is done in the fuzzy logic controller
to maintain optimal latency (less than or equal to 1 seconds).

5.2 Analysis

In this section, we would analyse implementation of the FIS model. As explained in the
previous section (implementation), we only created 9 rules. It is possible to create a fuzzy
controller with more rules for complex control of the network but we opted for 9 rules
for simplicity and simulation time-reduction that is only possible with 9 rules. None the
less, 9 rules will still provide similar effect as the more complex rules with more time
allowance.

Figure 13 is the fuzzy rules viewer for the FIS model. It is used to further show
operation of the FIS at every value of inputs. First column represents executed member-
ships functions of the normal error input for the 9 rules. The second column represents
executed memberships functions of time delay input for the 9 rules. The third and fi-
nal column represents the result of both mentioned inputs that includes the added and
defuzzified memberships (Frey et al.; 2013).

From Figure 13,we observe that output, optimisation latency is 0.666 when network
error is 2 seconds and time delay is 0.886 seconds; are high (i.e lagging network). This is
calculated by MATLAB in relation to the executed memberships of the two inputs. Inputs
were both set to zero and result was 0.216 at the output. This set the scenario of some
encoding latency in hardware of the cloud platform. Thus the selected input memberships
from both rules are summed up to create a new set with distinct degree of membership.
This is because, only single value affects time delay in the model. Centroid technique is
carried out by MATLAB to achieve single crisp value. This operation occurs swiftly that
all the crisp values are shown in the output as a continuous wave that oscillates between
0 and 2 as seen in Figure 13.
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Figure 13: The Fuzzy Rules Viewer for the FIS Model.

Figure 14: Fuzzy Simulink Model Output.
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Figure 14 above represents the wave pattern of the optimal latency in respect to
the fuzzy controller. This result was achieved by setting inputs to the maximum known
network latency recorded (Barker and Shenoy; 2010). The input values for network error
and time delay were 5 seconds and 1 seconds respectively. Result shows a steep climb to
the baseline of 1 second and then a pause period of 4 seconds and finally another climb
to 1.78 seconds. This action is known as response and time taken for the action to be
completed is known as response time. The response time for Figure 14 was 5.02 seconds
which means that it took 5.02 seconds for the FLC to enforce some normality in the
system.

Using live test data from (Cooperation; 2018), we were able to test the fuzzy logic in
a practical sense and arrived at the graphical result shown in Figure 15 below. Table 4
below, contains element of the average output of the fuzzy logic with the measured latency.

Table 4: The Statistical Data of the Measured Latency of Singapore to Sydney from 2017
to 2018 (Cooperation; 2018)

Month and Year Measured Latency (ms) Average Fuzzy Response time (ms)
October 2017 125.803 3040
November 2017 107.458 2918
December 2017 172.111 3189
January 2018 134.337 3004
February 2018 104.185 2923
March 2018 109.323 2982
April 2018 103.951 2736
May 2018 143.932 3082
June 2018 103.069 2928
July 2018 97.948 2774
August 2018 87.852 2774
September 2018 160.941 3278

Table 4 is the input (latency) and output (response time) of FIS via mathematical
modelling. The mathematical model showed correlation and linear regression between
the input and output (see configuration manual or appendix). Table 4 and IBM SPSS
were very important in designing the graphic seen in Figure 15 below.

Figure 15 is the histogram representation of the test of FIS. We can observe perform-
ance of the FLC when subjected to real life parameters. Blue bar is the latency from the
live data and the red bar is the response time of FLC. The response is how long it took
FLC to adjust to the latency. Fuzzy logic does show promise in dealing with latency as
observed in Figure 15.

5.3 Discussion

We started by building an Artifact to mitigate latency. We simulated latency by creating
a Simulink model with network error and time delay as the input (see Figure 11). Both
inputs were utilized in varying the cloud latency courtesy of statistical data of Singapore
to Sydney from 2017 to 2018 (Cooperation; 2018).

We configured FLC to serve as a baseline (cut-off), we were able to limit the excess
latency even when it exceeded the normal latency of 1 second to a reasonable extent.
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Figure 15: Graphical Representation of the FIS Test.

With initiated real life data courtesy of statistical data of Singapore to Sydney from 2017
to 2018 (Cooperation; 2018), we observed high performance in mitigating latency.

While experimenting with latency values higher than 5 seconds (6 seconds) we ob-
served a change in the baseline from 1 seconds to 1.78 seconds. We were aware of how
unrealistic the value was but we decided on this unrealistic value as a safety measure and
as a way to improving FLC response time (see Figure 6). It resulted in the performance
that can be observed in Table 4 and Figure 15 respectively.

Figure 14 showed the control system’s tolerance to high latency (Barker and Shenoy;
2010) with a response time of 5.02 seconds. Table 4 and Figure 15 respectively, show
control performance test with real life data which it handled relatively well.

The response time observed in Table 4 and Figure 15 is the time it takes for FIS to
detect, shut down unessential activities and stabilize the system. It does take some time
to respond as seen in Figure 14 and Figure 15. This is because it is detecting, managing
essential activities, stabilizing the system and enforcing the baseline of 1 second.

Besides the increased baseline of FLC which was due to very high latency (6 seconds)
and response time (inconsistent), which we can attribute to lack of a detection system
for latency we can say FIS is reasonably successful in optimizing cloud latency.

In section 6, we would conclude the research project.

6 Conclusion and Perspectives

In conclusion, we needed to mitigate cloud latency, as it is a major challenge worth
investing time in solving as seen in the literature review of this research report. The world
of cloud computing would evolve a lot with mitigation of latency because it would boost
the computing power of shared resources. We researched cloud latency by examining
research papers in relation to managing and detecting latency. We then proposed an
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artifact (FLC) to be integrated into the cloud environment to mitigate cloud latency.
This integrated environment was called FIS and we ran tests using live statistical latency
data of Singapore to Sydney from 2017 to 2018 courtesy of (Cooperation; 2018).

The result shows that FLC is feasible in mitigating latency in the cloud to a reasonable
extent. The FLC did take some time to complete its response to latency, which shows
some of its weaknesses in detection. However, the proposed FLC could attain the best
result in latency to date because of the controls robustness, learning capabilities and
frankly the lack of any serious latency mitigation method.

In revised versions of FLC, the current control system can evolve to incorporate and
develop its own detection system to accurately predict network latency that would make
its response time quicker. Also, the FLC can be deployed on a private or hybrid cloud with
the FLC acting as a network, service or application monitoring and detection tool that
would be service model (application-as-a-service) or a defense against network latency
from the view of the end user. Thus, in the years to come, FLC would be the ideal
network latency defender that would defend customers Internet from latency and would
improve the QoS of cloud.

6.1 Acknowledgments

We sincerely thank our supervisor, Sean Heeney for his valuable suggestions and ideas to
the final outcome of this research project.

7 Appendix

In this section, we have all other figures and informations that were utilized to build and
test the Artifact. The did not make it to the final report but the were important in their
own way.

This section is broken down into 6 subsection below.

7.1 User Guide

The artifact is simple to operate but a bit complex to run effectively. In this section we
would look to execute the artifact with extreme simplicity and less complexity.

Prerequisite:

• First of we would have to ensure that the personal computer used has MATLAB
2016a or later installed. The version of MATLAB must be the full version with
controller design, control system, digital processing and feedback control package
installed.

• The artifact can be downloaded from a folder in our Dropbox Account (//www.
dropbox.com/sh/7cuoej66wmdn5x1/AAD_3MrE6sD1EfCHa6yRheK8a?dl=0). The folder
contains 4 files including a read me.txt file, which is important in accurately running
the artifact.

To Run the Artifact

1. We start up by opening MATLAB on your PC or Mac.
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2. Open the m-file. Double clicking on the m-file will bring you to the editor page see
Figure 16 below. Click on the run command (green highlight). NB: In the Editor
window, click run Animationxxx.m.

Figure 16: The MATLAB Editor of Animationxxx.

3. 3- Open the **.mdl file. Double clicking on the **.mdl file would bring up the figure
see Figure 17 below.

Figure 17: The Simulink Model of the FIS.

4. Type fuzzy in the MATLAB command window as seen in Figure 18 below.

Figure 18: The Command Window of MATLAB.

5. In the FIS Editor Window, from file menu to select Import and From File. As
shown in Figure 19 below.

6. Select Latency Optimisation Demo.fis from Files and you will be welcomed to the
controller for this artifact as seen in Figure 20 and Figure 21 below.

7. In the FIS Editor Window, from file menu to select Export to Workspace as shown
in Figure 22 below.

8. Return to the *.mdl window and edit the network error (double click). See Figure 23
below.

9. 9- Finally, click run from the *.mdl window. See Figure 24 below.
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Figure 19: The FLC Editor Window 1.

Figure 20: The FLC Editor Window 2.

Figure 21: The FLC Editor Window 3.
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Figure 22: The FLC Editor Window 4.

Figure 23: The Simulink Modelling Window.

Figure 24: The Simulink Modelling Execution Window.
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7.2 Fuzzy Logic Design in a Nutshell

Fuzzy Logic System or Fuzzy Inference System (FLS or FIS) is predominantly nonlinear
systems that are capable of deducing complex non-linear relationships between input
and output variables (Chopra; 2012). The nonlinearity property of the FIS is the most
important attribute its possess in relation to modelling physical mechanism. FIS or FLS
has the ability to learn the nonlinear mapping by being presented a sequence of input
signal and desired response pairs, which are used in conjunction with an optimization
algorithm to determine the values of the system parameters (Frey et al.; 2013). This is one
of the most commonly used learning paradigms, called supervised learning. Even if the
process to be modeled is non-stationary, the system can be updated to reflect the changing
statistics of the process (Entchev and Yang; 2007). Unlike conventional stochastic models
used to model such processes, FLSs do not make any assumptions regarding the structure
of the process, nor do they invoke any kind of probabilistic distribution model, i.e., they
belong to the general family of model-free, data driven, nonparametric methods (Chang
and Chang; 2006).

• Description of FLS : FLS are a combination of intuitive and numerical systems. The
system maps crisp input, x into a crisp output, y. Every FLS are associated with a
set of rules known as meaningful linguistic interpretations that are all assigned to
membership functions. The membership function of this interpretation is given in
the formula below.

Yx : Z = [0, 1]

Where Y is membership function associated with each element (x) with universal
discourse within an interval [0,1] (Lofberg; 2004).

Non-singleton fuzzification is another type of fuzzification that exists in FLS (Sule
et al.; 2017). It is mostly used in cases where the training data (input) includes
some kind of uncertainty (such as noise, or linguistic imprecision). Theoretically,
the non-singleton fuzzifier states that the given input value is solely the correct
value, however due to the presence of uncertainty the neighboring points are likely
to be the correct value (L.D. and Venkata Krishna; 2013). The designer determines
the shape of the membership function base on the estimated quantity of uncertainty.
The ideal choice for membership function to be symmetric at point, x with the effect
of noise is given below.

Y(x(xi))e
([−(x− xi)

2/(22)])

When the designer is configuring the FLS it is important undergo some for of
descriptive statistics for the input in order to get the best possible output (Sturm;
1999).

• Designing of FLS for FIS : The figures below are the 2-D GUI plot of Optimization
Latency against Error and Optimization Latency against Time Delay.

Figure 25 shows the plot of ’Optimization Latency’ against ’Error’ of the FIS plat-
form. This representation is an exclusive look at FIS from the view of one input
(Error). Figure 26 shows the plot of ’Optimization Latency’ against ’Time Delay’

25



Figure 25: Optimization Latency vs Error.

Figure 26: Optimization Latency vs Error.
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of the FIS platform. This representation is an exclusive look at FIS from the view
of one input (Time Delay).

7.3 Simulink Function (S- function)

In this section we would look at s-function. The s-function code helps in producing
a real-time simulation environment. This involves animating the output response via
DrawMode.

The full line of code used in MATLAB script is given below.

1
2
3 function [sys ,x0,str ,ts,simStateCompliance] = Animationxxx(t,

x,u,flag)

4
5 % Switch through the functions

6 switch flag ,

7
8 case 0,

9 [sys ,x0,str ,ts ,simStateCompliance ]= mdlInitializeSizes;

10
11 case 2,

12 sys=mdlUpdate(t,x,u);

13
14 case 4,

15 sys=mdlGetTimeOfNextVarHit(t,x,u);

16
17 case { 1,3,9 }

18 sys =[];

19
20 otherwise

21 DAStudio.error('Simulink:blocks:unhandledFlag ', num2str(

flag));

22
23
24 end

25
26
27
28 function [sys ,x0,str ,ts,simStateCompliance ]=

mdlInitializeSizes

29
30 sizes = simsizes;

31
32 sizes.NumContStates = 0;

33 sizes.NumDiscStates = 0;

34 sizes.NumOutputs = 0;

35 sizes.NumInputs = 2;

36 sizes.DirFeedthrough = 1;
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37 sizes.NumSampleTimes = 1; % at least one sample time is

needed

38
39 sys = simsizes(sizes);

40
41 clear functions;

42
43
44 % Define Global variables

45 global Position_X

46 global Position_Y

47 global Input_1_Angle

48 global Input_2_Time

49
50
51 % Initializing the variables with values

52 Position_X = 10;

53 Position_Y = 100;

54 Input_1_Angle = 0;

55 Input_2_Time = 0;

56
57
58
59
60 global Demo

61 fuzzy_animinit('Animation ');
62 Demo=findobj(0,'Name','Animation ');
63
64 % Set Properties for fuzzy_animinit

65 set(gcf ,...

66 'Color ' ,[0.9 0.8 0.9],...

67 'Units ','normalized ',...
68 'Resize ','on',...
69 'Toolbar ','none',...
70 'MenuBar ','none');
71
72 set(0,'CurrentFigure ',Demo);
73
74 % Create main axis for the car show and sets its properties

and location.

75 global mainax

76 mainax= axes('Parent ',Demo , 'XLim' ,[0 10],'YLim' ,[0 10], ...

77 'Units ','normalized ',...
78 'OuterPosition ' ,[0.27 0.1 0.8 0.8],... %[0 0 1 1]

normalized

79 'XColor ','black ','YColor ','black ', ...

80 'Box','on',...
81 'DrawMode ','fast');
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82
83 axis equal;

84 title('Show Panel');
85 grid('on');
86
87
88 % Create a Panel for the Buttons

89 Buttons_Panel= uipanel('Parent ',Demo ,...
90 'Units ','normalized ',...
91 'Position ' ,[0.07 0.1 0.21 0.27],...

92 'Title ','Operations ',...
93 'BackgroundColor ',get(Demo ,'Color '),...
94 'HandleVisibility ','callback ',...
95 'Tag','tunePanel ');
96
97 % Create Start button and calls its function

98 uicontrol('Parent ',Buttons_Panel ,...
99 'Style ','pushbutton ',...

100 'Units ','normalized ',...
101 'Position ' ,[0.15 .7 0.7 0.2],...

102 'String ','Start ',...
103 'SelectionHighlight ','on',...
104 'ButtonDownFcn ', 'on',...
105 'Callback ' ,@(src ,evt) start1);

106
107 % Create Stop button and calls its function

108 uicontrol('Parent ',Buttons_Panel ,...
109 'Style ','pushbutton ',...
110 'Units ','normalized ',...
111 'Position ' ,[0.15 .45 0.7 0.2],...

112 'String ','Stop',...
113 'ButtonDownFcn ', 'on',...
114 'Callback ' ,@(src ,evt) stop1);

115
116 % Create Close button and calls its function

117 uicontrol('Parent ',Buttons_Panel ,...
118 'Style ','pushbutton ',...
119 'Units ','normalized ',...
120 'Position ' ,[0.15 0.2 0.7 0.2],...

121 'String ','Close ',...
122 'ButtonDownFcn ', 'on',...
123 'Callback ' ,@(src ,evt) Close_1);

124
125
126 % Creating second axis for the input signal.

127 global secondax

128 secondax = axes('Parent ',Demo ,'Units ','normalized ',...
129 'Position ' ,[0.05 0.44 0.25 0.4],... %[0 0 1 1]
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normalized

130 'XColor ','black ','YColor ','black ', ...

131 'Box','on',...
132 'DrawMode ','fast');
133
134
135 x0 = [];

136
137 str = [];

138
139 ts = [-2 0];

140
141 simStateCompliance = 'UnknownSimState ';
142
143
144
145 % Main window

146 function figNumber=fuzzy_animinit(namestr)

147
148 if (nargin == 0)

149 namestr = 'Simulink Animation ';
150 end

151
152 figNumber = findobj('Type','figure ','Name',namestr) ';
153
154 if isempty(figNumber),

155 % Initialize figure

156 position=get(0,'DefaultFigurePosition ');
157 position (3:4) =[750 500];

158 figNumber=figure( ...

159 'Name',namestr , ...

160 'NumberTitle ','off', ...

161 'BackingStore ','off', ...

162 'Position ',position , ...

163 'MenuBar ', 'none');
164
165
166
167 bottom =0.05;

168 left =0.80;

169 btnWid =0.15;

170 btnHt =0.10;

171
172 else

173 % bring figure to foreground

174 figure(figNumber)

175 end

176
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177 cla reset;

178 set(gca ,'DrawMode ','fast');
179 axis off;

180
181
182
183
184 function sys=mdlUpdate(t,x,u)

185 global Demo

186 global Position_X

187 global Position_Y

188 global mainax

189 global secondax

190
191
192 if any(get(0,'Children ')==Demo),
193 if strcmp(get(Demo ,'Name'),'Animation '),
194
195 Input_1_Angle = u(1);

196 Input_2_Time = u(2);

197 % 2 = u(3);

198
199 Track = 12;

200
201
202
203 cla(mainax); % Clear the axis mainax

204
205
206 % Corners of the car

207
208 Reference_1_X = Position_X;

209 Reference_1_Y = Position_Y;

210
211 Point_1_X = Reference_1_X;

212 Point_1_Y = Reference_1_Y;

213
214 Point_2_X = Point_1_X;

215 Point_2_Y = Point_1_Y;

216
217 Point_3_X = Point_2_X;

218 Point_3_Y = Point_2_Y;

219
220 Point_4_X = Point_3_X;

221 Point_4_Y = Point_3_Y;

222
223
224
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225 % Lines

226 Line_1 = line([ Point_1_X Point_2_X],[ Point_1_Y Point_2_Y],'
Parent ',mainax ,'linewidth ',1,'color ','b');

227 Line_2 = line([ Point_2_X Point_3_X],[ Point_2_Y Point_3_Y],'
Parent ',mainax ,'linewidth ',1,'color ','b');

228 Line_3 = line([ Point_3_X Point_4_X],[ Point_3_Y Point_4_Y],'
Parent ',mainax , 'linewidth ',1,'color ','b');

229 Line_4 = line([ Point_4_X Point_1_X],[ Point_4_Y Point_1_Y],'
Parent ',mainax , 'linewidth ',1,'color ','b');

230
231
232 % The x and y axis plot for the small axis

233 plot (Input_2_Time ,Input_1_Angle ,'parent ',secondax ,'LineWidth
',2,'Marker ','.');

234 grid('on')
235 hold on

236 drawnow ()

237
238
239
240 end

241 end

242 sys = [];

243
244
245
246
247 function sys=mdlGetTimeOfNextVarHit(t,x,u)

248
249 sampleTime = 0.1; % Next Hit after 0.1 seconds

250 sys = t + sampleTime;

251
252
253 % Stop and Close GUI

254 function Close_1 ()

255 set_param ('FIS_LO/Gain','Gain','1')
256
257 close (gcf)

258
259
260 % Start the simulation

261 function start1 ()

262 global mainax

263 global secondax

264 set_param ('FIS_LO/Gain','Gain','1')
265
266 cla (mainax);

267 cla(secondax);
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268 cla (mainax);

269 cla(secondax);

270 cla (mainax);

271 cla(secondax);

272
273 set_param ('FIS_LO/Gain','Gain','0')
274 sim('FIS_LO ');
275
276 % Stop the simulation

277 function stop1()

278 set_param ('FIS_LO/Gain','Gain','1')
279 cla (mainax);

The lines of codes listed above were used to create the real time simulation of FIS.
Each function was linked to the ”callback” that started and updated the inputs and
output respectively.

7.4 Linear Regression of Latency against Fuzzy Control

In this section, we have all the tables that initiated the correlation between latency and
fuzzy logic control. This evaluation were done using IBM SPSS software.

The table result of testing the FLC with live data are given in the figures below. The
data used for this test was courtesy of Live Data (https://enterprise.verizon.com/
terms/latency/).

The tables and figures below represents the framework that constitute the Linear
Regression model.

Table 5: The Elements of the Descriptive Statistics of Measured latency against Average
Control time.

Mean Std. Deviation N
Measured Latency (ms) 120.90917 26.593225 12
Average Fuzzy Control (response time,ms) 2969.00 165.096 12

Table 5 above, represents the descriptive part of the elements and houses the most
common descriptive statistics such as the mean, standard deviation, dependent variable
(measured latency) and the independent variable (average fuzzy control). The result
from the view of the standard deviation shows that most of the variables from both the
independent and dependent are closely spread (low standard deviation values) in relation
to their normal values.

Table 6 above, is the pearson correlation table for this variables. It shows the correl-
ation between the dependent variable (measured latency) and the independent variable
(average fuzzy control).

The term correlation comes from co which mean together and relation which means
connection (Lofberg; 2004). The technique correlation is used to know whether variables
that are studied are correlated and it is also to test their strength of association. In
correlation, the output (r) must be equal to +1 or -1 (r=+1 or r=-1) to be significant
and the p-value should be less or equal to 0.05. r=+1 means that the variables correlated
all increase together while r=-1 means when one of the variable increases, then the other
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Table 6: The Elements That Makes Up The Correlations Between The Measured latency
and The Average Control time.

Latency (ms) Avg. FLC (ms)
Pearson Correlation Measured Latency (ms) 1.000 .910

Average Fuzzy Control (ms) .910 1.000
Sig. (1-tailed) Measured Latency (ms) . .000

Average Fuzzy Control (ms) .000 .
N Measured Latency (ms) 12 12

Average Fuzzy Control (ms) 12 12

decreases. The above significance (r=+1 or r=-1) means there is a relationship while if the
output is greater than +1, less than -1 or greater than 0.05 then there is no relationship
meaning that there is no correlation. Therefore, the variables used in this research project
were significantly correlated.

Table 7: The Elements of the Variables Entered/Removed(a)
Model Variables Entered Variables Removed Method
1 Average Fuzzy Control (response time,ms)[b] . Enter

a. Dependent Variable: Measured Latency (ms) b. All requested variables entered.
From Table 7 above, we can observe that this model has only one-type model. This

model shows that all the independent variable is accounted for. This also shows that the
variables entered contains one independent predictors.

Table 8: Model Summary
Model R R Square Adjusted R Square Std. Error of the Estimate
1 .910a .829 .812 11.543506

a. Predictors: (Constant), Average Fuzzy Control (response time,ms)
From Table 8 above, we can observe that this model is a single model. This model has

its value of r as 0.910 which is significantly correlated (r is less than 1) and has just one
model. This model shows that all the independent variables are account for. The value
for R Square is 0.829 which is 83 percent of the variances and shows that the dependent
variables can be accounted for the independent variables.

Table 9: The Table of ANOVA(a)
Model Sum of Squares df Mean Square F Sig.
1 Regression 6446.671 1 6446.671 48.379 .000b

Residual 1332.525 10 133.253
Total 7779.196 11

a. Dependent Variable: Measured Latency (ms) b. Predictors: (Constant), Average
Fuzzy Control (response time,ms)

From Table 9 above, we have the ANOVA table that is testing sequentially the stat-
istical significant of the model. From the model we can see that the F-value is 48.379
with 1 and 10 degree of freedom and it is statistically significant with 0.000 which is less
than 0.001.
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Figure 27: The Snapshot of The Table of Coefficients(a).

From Figure 27, we have the intercept (constant) as -314.448 with the other unstand-
ardized betas. From the standardized and correlation column, we can see a mixture of
negative and positive value which shows the complexity in this regression model. The
model has sig values that are 0.001 meaning it is statistically significant.

Figure 28: P-P Plot Representation of Linear Regression.

Figure 28 is the linear regression model of the research project values. Figure 28 shows
the location of the project values in respect to linearity. Figure 29 is the scatterplot which
represents the statistical significants of the model because it does not exceed -2 and +2
respectively.

7.5 Project Plan

This section consists of the project plan for the duration of this research project. The
plan consists of the task done for this project , a chart to show the time spent on each
task and a Gantt chart that gives a general idea of the duration of the project.
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Figure 29: Scatterplot of the Linear Regression.

Table 10: The Table of Tasks Carried Out During the Research Project Life Cycle
Task Number Description
1 Get information about the Latency in Cloud
2 Research into journals that supports cloud latency as a major issue
3 Identify the essential literature for the research project literature review
4 Research into the various available Mathematical Models
5 Formulate the parameters that would be required for the mathematical model
6 Compare all found mathematical model in terms of complexity and feasibility
7 Design and configure the rules of fuzzy logic control via mathematical modelling
8 MATLAB system design and investigation into other forms of controller design
9 MATLAB S-function design
10 Test uncertainties (saturation and transport delay) on the fuzzy logic control
11 Complete all MATLAB design and Live Data testing
12 Mathematical evaluation of tested data
13 Completed the first draft of the report
14 Completed the final draft of the report
15 Creating presentation slides and submitting the final report

Table 10 is the task number and description of each task. The purpose of the table is
to understand what each task number stands for.

Figure 30 is a chart of the research project task execution for semester 3. This
included how long each task took to complete and how we balanced it with our other
module (Research Methods).

Figure 31 is a Gantt chart of the research project task execution for semester 3. This
included a more detailed look into the progression of each task.
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Figure 30: A chart of the allocated task along with the expected completion date.

Figure 31: Gantt Chart of The Research Project.
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7.6 Glossary of Terms

• Actuating signal: It is the signal that drives the controller. If this signal is the
difference between the input and output, it is called the error.

• Analogue-to-digital converter: It is a device that converts analogue signals to digital
signal.

• Block diagram: It is a representation of the interconnection of subsystem that makes
up a system.

• Bode diagram: It is a sinusoidal frequency response plot, where the magnitude
response is plotted separately from the phase response. The magnitude plot is dB
against log W, and the phase versus log W.

• Break frequency: It is a frequency where the Bode magnitude plot change slope.

• Breakaway point: It is a point on the real axis of the s-plane where the root locus
leaves the real axis and enters the complex plane.

• Break-in point: It is a point on the real axis of the s-plane where the root locus
enters the real axis from the complex plane.

• C-language: It is a high level programming language used for system programming.

• Characteristic equation: It is the equation formed by settling the characteristic
polynomial to zero.

• Characteristic polynomial: It is the denominator of a transfer function. Simply it
is the unforced differential equation, where the differential operators are replaced
by s.

• Closed-loop system: It is a system that monitors its output and corrects for dis-
turbances. It is characterized by feedback path from the output.

• Compensation: it is the addition of a transfer function in the forward or feedback
path for the purpose of improving the steady-state performance of a control system.

• Compensator: It is a subsystem inserted into the forward or feedback path for the
purpose of improving the steady-state error.

• Controllability: It is a property of a system that were an input can be found to
take every state variable from a desired initial state to a desired final state in finite
time.

• Controlled variable: it is the output of a plant that the system is controlling for the
purpose of desired transient response, stability and steady-state error characterist-
ics.

• Controller: It is the subsystem that generates the input to the plant.

• Critically damped response: It is the step response of a second-order system with a
given natural frequency that is characterized by no overshoot and a rise time that
is faster than any possible over damped response with the same natural frequency.
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• Damping ratio: It is the ratio of the exponential decay frequency to the natural
frequency.

• Digital-to-analogue converter: It is a device that converts digital signals to analogue
signals.

• Disturbance: An unwanted signal that corrupts the input or output of a plant.

• Dominant poles: It is the pole that predominantly generates the transient response.

• Error: It is difference between the input and output of a system.

• Feedback: It is a path that a signal uses to flow back to a previous signal in the
forward path so that it could be added or subtracted.

• Fortran: It is an all-purpose programming language that is suited for scientific and
numerical calculation.

• Gain: It is the ratio of output to input, usually used to describe the amplification
in the steady state of the magnitude of sinusoidal inputs.

• Gain margin: It is the amount of additional open-loop gain, expressed in decibels
(dB), required at 180 degree of phase shift to make the closed-loop system unstable.

• Instability: It is the characteristic of a system defined by a natural response that
grows without bounds as time approaches infinity.

• Laplace transformation: It is a transformation that transforms linear differential
equations into algebraic expressions. This transformation is very useful for model-
ling and designing a control system.

• Linear system: It is a system possessing the properties of superposition and homo-
geneity.

• Observability: It is the property by which the state variables can be estimated from
knowledge of the input, u(t) and output, y(t).

• Open-loop system: It is a system that does not monitor its output or correct dis-
turbances.

• Peak time: It is the time required for the under damped step response to reach the
first or peak.

• Per cent overshoot, Percent OS: It is the amount that the under damped step
response overshoot the steady state, or final, value at the peak time, expressed as
a percentage of the steady-state value.

• Phase margin: It is the amount of additional open-loop phase shift required at unit
gain to make the closed-loop system unstable.

• Poles: It is the roots of the characteristic equation in the denominator that are
common to the numerator of the transfer function.
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• Rise time, Tr: It is the time required for the step response to go from 0.1 of the
final value to 0.9 of the final value.

• Root locus: It is the locus of closed-loop poles as a system parameter is varied.

• Routh-Hurwitz criterion: It is a method for determining how many roots of a
polynomial in s are in the right half of the s-plane, the left half of the s-plane, and
on the imaginary axis.

• Sensitivity: It is the fractional change in a system characteristic for a frictional
change in a system parameter.

• Settling time, Ts: It is the amount of time required for the step response to reach
and stay within 2 percent of the steady-state value.

• Stability: it is that characteristic of a system defined by a natural response that
decays to zero as time approaches infinity.

• State-space representation: it is a mathematical model for a system that consists
of simultaneous, first-order differential equations and an output equation.

• Steady state error response: it is the difference between the input and output of a
system after the natural response has decayed to zero.

• Subsystem: it is a system that is a portion of a larger system.

• Summing junction: it is a block diagram symbol that shows the algebraic summa-
tion of 2 or more signals.

• Transfer function: It is the ratio of the Laplace transform of the output of a system
to the Laplace transform of the input.

• Under damped response: It is the step response of a second-order system that is
characterized by overshoot.

• VLSI microchip: It is a set of electronic circuits on one small plate of a semicon-
ductor material

• Z-transformation: It is a transformation related to the Laplace transformation that
is used for the representation, analysis and design of sampled signals and systems.

• Zero-order sample-and-hold: It is a device that yields a staircase approximation to
the analogue signal.

• Zeros: This is the root of the numerator that is common to the characteristic
equation in the denominator of the transfer function.
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