~

""—-
\ National
College

Ireland

Cloud Gaming System in Docker Container
Image

MSc Research Project
Cloud Computing

Arun Pugalendhi
Student ID: X17127874

School of Computing
National College of Ireland

Supervisor: Divyaa Manimaran Elango

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Arun Pugalendhi
Student ID: X17127874
Programme: Cloud Computing
Year: 2018
Module: MSc Research Project
Supervisor: Divyaa Manimaran Elango
Submission Due Date: 20/12/2018
Project Title: Cloud Gaming System in Docker Container Image
Word Count: XXX
Page Count: [7

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 28th January 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Cloud Gaming System in Docker Container Image

Arun Pugalendhi
X17127874

28th January 2019

Abstract

Cloud gaming is the future technology for the gaming industry and it is a cutting
edge technology. This is developed based on the bases of gaming on demand. with
this application the user can play the game anywhere and any time. the main
feature of this application is, it can be used from any device, which is much more
scalable. The main challenges in the cloud gaming handling the resource based
on the user requirement or Resource allocation and QoE. these problems Arieses
because each and every game has its own requirements, which will differ on the bases
of game-play also, by which this problems lead to improper resource allocation, by
which this will lead to loss in QoE and the over all performance. In this paper
it explains how to improve the performance of the cloud gaming by initializing
the cloud gaming package inside the containers which will allow the application to
be more reliable by secularizing its resource allocation and increasing the overall
performance of the cloud gaming system and makes it more reliable with utilizing
less resource.

Contents

[3 Methodology|

[4 Design Specification|
4.1 Architecture for the base cloud gaming system|
[4.2 Architecture for the cloud gaming system on top of the container|

[> Implementation|
[>.1 Cloud gaming system|.,
(5.2 Initializing Containers| L

6 Evaluationl
6.1 Test case 1.o

w

© 0o

[f__Conclusion and Future Workl 15

1 Introduction

Cloud gaming is the current technology which was developed based on the gaming on de-
mand. Cloud gaming is divided into 2 types which is based on video streaming and
file streaming. Hence most of the gaming instance will be moved to the cloud. It
will be an advantage for the users where they can play the games from anywhere like
PC, mobile and TV using a thin client. This technology allows the user to access the
games without owning the gaming console or highly configured gaming PC. Hence it
is totally depended on the internet, which is the most challenging part. This enables
the user to access the games from multiple devices which doesnt have high hardware
setup. It is well known as gaming as service or gaming on demand. Hence through
this technology the users can access any type of game from anywhere, any time and
from any devices. The user can access the technology thin client. The thin client
can be accessed from a less powerful device, from the thin client user will be able to
play games based on the subscription. In the thin client the game logic will be ap-
plied from that the signals will be decoded and will be transmitted to the cloud server.

In the cloud gaming system, the user will access the service through a thin client,
which is provided by the service provider. The user will be able to play his requested
game, based on his subscription and requirements the resource will be allocated from
the server side. When the user plays the game, the gaming logics will be will be en-
coded and will be transmitted to the server through internet. In the server the logics
will be decoded and it will be applied on the game. Thus, the game will run based on
the inputs and the video/audio is captured. The captured video and audio is encoded
through an encoder and it is transmitted through real time protocols, where it helps to
transmit the video as an encoded format. In the client side the video will be decoded
and it will be streamed in the user end. The user will able to see the output in a video
streamed format. Hence the user doesnt need to upgrade their in-house resources and they
can play any new gen games without buying it or creating any dedicated system for it.
Thus, this technology will reduce the CAPEX and OPEX in both server and client,
hence this paper talks about the development of cloud gaming system which is en-
abled through containers. A cloud gaming system will be developed inside the con-
tainers instance. This helps by reducing the value, responsibility, keeps the use up-
dated, a lot of scalable and fewer resource utilization. Virtualization plays a serious
role within the cloud gaming wherever within the server aspect the resources are vi-
talized supported the user necessities. Hence the most challenging task is resource
scheduling and performance enhancement through handling the GPU and FPS of the
system. There are many problems faced in this area. This differs based on each game,
where each and every game has its own requirements, because the game developer, de-
velops the game by thinking that the total resource present in the system is for the
particular game and develops it based on it. By which the resource utilization var-
ies by each and every game. The total quality of the game also depends upon it.

Containers are OS level virtualization which allows the user to run an application on
top of it without any OS. Containers are more scalable and it is more reliable. Containers

reduces the cost and it can increase the usage instance without any issue. With less
resource large number of users can access the resource using containers. In this paper
we are developing a cloud gaming system with the help of gaming anywhere application
Huang et al.| (2013)Where the system will be created inside the containers, thus this
helps to increase the overall performance of the cloud gaming system. This a container
is developed on top of Host OS and the cloud gaming system is executed inside the
containers. This cloud gaming system is developed using multiple library functions.
Hence this system will help to increase the overall performance of the cloud gaming
system and helps to reduce the overall cost and by updating the users regularly with
more scalability and less resource utilization

Game Servers

Game Game
Conguration Interaction

Portal Servers Clients/Users

Figure 1: Cloud gaming system

1.1 Contribution

Our Contribution
The proposed solution is for increasing the overall performance based on frame rate
and resource of the cloud gaming system. The solution provides

e There will be an overall increase in the FPS and the latency of the system

e The required resources will be scheduled properly based on the user requirements
and the gaming instance

e The overall performance of the system will be enhanced by implementing the system

inside the containers technology

1.2 Use Case Scenarios

the main focus is to reduce the performance degradation, lower FPS rate which is caused
due to lower latency and improper resource allocation

e FPS (Frames per second): The quality of the game depends upon the FPS rate,
when the system renders higher rate of FPS the quality of the game will be high.
FPS determines the QoE (Quality of Experience) of the game. These QoE will be
determined by the focus of the player in the game. hence due to latency problem
the FPS drops in each and every frame. if there is problem in the instance or with
the resource also the FPS of the game will drastically drop

e Resource Allocation: Each and every game has its own resource requirements and
workloads or even a single game it will be having a different workload based on the
game-play. Because a server may not be able to run a n number of high graphics
games, it is fair to run a single high graphics game and n number of low graphics
game in the server, but when many number of users go for high graphics game the
server is not able to allocate perfectly and it is not able to be more sustainable as
per the suggestion of (Chen et al.; [2014]).

Hence in this paper we propose a cloud gaming system which will be implemented inside
the containers to increase the overall performance.

2 Related Work

The author (Zhang et al.; 2016]) proposes a specially designed cloud gaming system called
G cloud which follows a hybrid clustering system for scheduling the CPU/GPU. It ba-
sically depends on user-level virtualization, which helps to enhance the cloud gaming
experience. Hence the G Cloud system defines the cloud gaming into 2 types which is
CPU critical and memory-IO-critical which totally relies on the total capacity consumed
by the game from server. Here the proposed G cloud builds a user-level virtualization
which helps to run the gaming instance separately which runs in a single server from
other servers and consumes the outputs of the game and streams it to the user end. Here
they are fixing the FPS and to allocate the right amount of resource to perform well.

Here the author (Wang et al.; 2016]) explains the barriers in the CPU optimization
with high Quality of Services. The author is proposing 3 algorithms which helps to
over come the barriers. The algorithms are SLA-aware scheduling for handling the GPS
resource precisely, Open loop control algorithm for handling the CPU and Adaptive
control algorithm for CPU scheduling. These algorithms are developed based on the
resource allocation without compensating with the QoS.

Where else (Yadav and Annappa; 2017)) explains the problems the improper schedul-
ing process in GPU virtualization in the datacentres. here the author proposes a adaptive
scheduling mechanism to handle the GPU resources properly. Hence the adaptive schedul-
ing system is developed based on scheduling controller, monitor, VM scheduler, VM list,
Process ID and involves in interacting with the GPU host (Yadav). By implementing
these operations helps to give detailed review on running VM and its resource allocation
process.

(SanWariya et al.; 2016) tries to analyse the processing overhead of 3 type zero hy-
pervisors, hence the 3 type zero hypervisors are KVM, Hyper-V and ESXI. Thus, the
overall performance for these hypervisors is evaluated in the game on the bases of Graphic
benchmarking and FPS rate. To gain a better result the author uses a average FPS rate
and achieves that the ESXI is the best hypervisor for cloud gaming system for getting
results based on reliability, QoS and Scalability.

The author (Shea et al.; [2015)) proposes a new design to create a connection between
online and cloud gaming system by implementing it in fully virtualized cloud gaming
system. Thus, it analysis many design flow which exist in cloud gaming system. It
suggests methods to improvise the performance of the hardware and software encoding.
Thus, the author concludes that the hardware encoding improves the overall cloud gaming
experience rather that software encoding.

FGCG is a new cloud gaming design which was proposed by (Zhang et al.; 2018)
to enhance the high resource consumption on CPU-GPU cluster. This system works
on the basis segregating the gaming workloads into small tasks, by which this task can
be continuously segregated to multiple devices. Hence a trace driven simulation was
implemented which helped to recognize that the FGCG system improvises the utilization
of the resources in the system when compared to other cloud gaming systems.

The author (Usman et al.; 2017)) proposes a architecture implement the unavailable
bandwidth which is required to support the remote rendering system. Thus, the author
uses the AWS cloud to implement the remote rendering process by using a game for
testing. Thus, the outcome of the process, it was able to transfer on 1kbps of data
between the player and cloud. Hence the author improvises the system by implementing
the system with 3 layers client end, cloud end and data between the game client and the
cloud service. Hence these layers are used to run the game which gives initial information
from client end through cloud end and the information is again transmitted between
client and the cloud. By which this model helps to load, maintain and scale the gaming
instance from anywhere. Where else the remote rendering process is not applicable in
this process.

To enhance the overall performance the author (Hong et al.f [2015) proposes a trace
driven simulation and a heuristic algorithm, where the author calculated the outcomes
using this simulation test. Based on the user requirements for the highest QoE there are
multiple VMs are installed in the server. The algorithm follows QDH where it allocates
the server for the users and sorts it in ascending order to perfectly allocate the right
and the required VM to the required user which has the competence to run the system
perfectly.

The author (Zhang et al.;|2014) proposes an end to end latency improvising technique
in the data centre, which is developed using a OpenFlow controller. By which the al-
gorithm called as Lagrangian Relaxation time efficient heuristic algorithm, hence which
reduces the end to end variation and delay.

VGASA is a resource scheduling mechanism which was proposed by (Qi et al.; 2014).
This VGASA concept follows 3 scheduling algorithms, the algorithms are SA, FSA and
ESA. By which the SA algorithm achieves the SLA parameters of a running game. The
FSA algorithm is used for allocating GPU resource to the required game and avoids any
loss in resource, by which has a better performance than the SA. The ESA allows the
instance to run the game in a highest FPS rate with more GPU utilization.

(Kmrinen et al.f 2015) scheduling algorithm called vGRIS. vGRIS is a virtualized GPU
isolation and Scheduling in cloud computing management framework. the scheduling is
done through various workloads by using the set of APIs initiated for designing the
scheduling algorithm. Hence this is the light weight resource scheduler between the client
and the server, by which the VMs like vimware and VirtualBox only shares single GPU.
This scheduling process interrupts the libraries of the GPU instead of VMs. This system
has 3 scheduling algorithms. The algorithms are SLA aware scheduling, hybrid scheduling
and proportional scheduling. To avoid the SLA breaching, SLA aware scheduling is

used which allocates the required amount of GPU to the VM. In the proportional share
scheduling the total GPU resources are allocated to the active VMs. in the hybrid
scheduling it has both characteristics of the previous algorithm, hence these concepts can
be used for the maximum utilization of the resources.

Based on the various factors the SLA sharing between the client and the service
provider this strategic cloud environment is developed which is based on the interaction
between multiple clients and multiple server in the server environment which was proposed
by (Zhang and he Zhou; |2017). Based on the users desire a Nash equilibrium is achieved
and the resource allocation is being handled through Bayesian strategic game. thus, this
system allocates the SLA based on the task and criteria.

The author (Wang et al.; 2009) describe the values of container than the virtual ma-
chines increase the performance overall, by which the original performance of the instance
will be increased. Hence by this the author suggest that the cost can be minimised and
the will be able to increase the maximum number of instances.

(Seneviratne and Leungj 2011) enhances the energy efficiency by two methodologies.
One is based on non-cooperative game where it will be used for developing the resource
allocation process which is located inside the cloud with the help of NG-TSRA resource
allocation algorithm. To achieve the Nash equilibrium the process should be implemented
in iteration algorithm.

More frequently than not, different end user systems have been a part of the cloud
gaming system. This set of different end user systems have helped in improving the net-
work quality that influences the experience of gamers in a positive manner. Keeping this
in mind, this project proposes a component-based gaming system that is equipped with
cognitive abilities that learn about players and optimizes itself and allocates resources for
the software units in a game. This paper (Cai et al.; 2018)) concludes that a well-balanced
software segment will guarantee better performance with cloud gaming.

A Buyer status and content aware packet scheduling was proposed for the enhance-
ment of video quality and playback continuity. The client buyer is predicted by making
use of creation of buyer module. This is further used in determining packet urgency and
the significance of the users in cloud gaming systems. A well-developed adaptive segment
request strategy proposed by (He et al.; |2014) with respect to client buyer and MAC
queue..

This paper (Chuah et al.| (2014)) puts forward details involving the evolution of cloud
gaming into an environment sustainable in reducing hardware utilization and improving
the software utilization. With reduced game streaming bit rate, graphic processing ability
is improved significantly in mobile gaming. This provides with high scalability, long life
for hardware accessories, and cost reduction.

The technology growth in the field of cloud computing has contributed many oppor-
tunities to various industries and one such is Gaming. Cloud gaming allows users to access
high quality games remotely through the internet irrespective to the devices configura-
tion. This technology cuts down the barrier of compatibility issue while accessing certain
high-quality games from devices that has lower computational power. According to Shea
et al. (2013) Cloud Computings features such as on demand resource along with offloading
techniques, these cloud gaming applications came into existence and were largely benefit-
ted. Having said, cloud gaming technology has entered into the field of cloud computing
and is exploring many ways to deepen its root. After careful observation on the state of
art in cloud gaming platform, the author describes about how the design pattern for cloud
gaming is derived. The major factors considered for the design were delay tolerance and

Thin client Cloud gaming
platform

User Game
. - !
; USEI'. ommands| .Thm (|I§nt actions Gan)e
interaction interaction logic
_

Game world
changes

GPU
rendering
-/

Rendered
scene

Video Encoded
Video stream Video video Video
decoder <€ streaming encoder

P—— \ J

Figure 2: Architecture For cloud gaming

streaming seamlessly and encoding the video. Since these two were critical in providing
fulfilled gaming experience, developers designed the cloud gaming framework based on
this. For analyzing the interaction delay the author has configured a demo test system
and has installed into the server. To analyze its performance and various other metrics
corresponding to GPU usage, he used a tuning software called MSI Aferburner Shea
et al. (2013). These tests were carried out to measure three major factors: Performance
Optimization, Network latency, Image Quality. Apart from all these, according to [Shea
et al. (2013) there has been constant improvement from hardware side as well toward the
cloud gaming platform. One such is NVIDIAs GeForce grid graphical processor. In a
concluding note, this cloud gaming has been evolved to a certain extent that it facilitates
all the advance opportunity to experience gaming in almost all the devices from lower
configuration to high configuration. These tests provide positive results and opens many
challenging possibilities to enhance its operational abilities.

The author (Yadav et al. [2018)) introduced a novel flexible solution for the users
in the cloud gaming platform by providing a Gaming as a Service. They found an
alternative way in reducing cost, by increasing the anticipated factors for the gaming
users to provide a valuable gaming experience. The novel approach of component based
game was implemented to reduce the resource management and throughput optimization
in the cloud platform. The approach significantly increases the Quality of Services for
the game players by efficiently reducing the network data in the terminal of the users.

3 Methodology

The solution which is proposed here is totally based on enhancing the performance of the
cloud gaming system. To implement the cloud gaming system. Hence the Docker CE is
used for creating the containers, the container must be created in the docker image. The
docker image will be build with ubuntu OS in it with the required specifications, where
it will be having the prerequisites files in the image. To allocate the graphics resources,
NVIDIA graphic driver is used in the containers. The prerequisites software which is im-
portant to run the cloud gaming system such as GNU c++ compiler, package config files
and with a list of library files with binaries and developers file which will be installed in the

containers.

The source code will be executed inside the containers. The output and input data
between the client and the server is executed based on the (Huang et al.; 2014), by which
these inputs and outputs are transmitted into video and audio format where the video
will be encoded by capturing the instance which runs in the server side. It works based
on screen capturing in real time and transmitted to the client where the screen rendering
is based on the real time. It follows 2 implementation formats that is desktop capture
module and API interception module. By video streaming the FPS rate can be main-
tained. For the Audio streaming ALSA library is used where it captures the audio and
transmits to the user by audio encoding using the library. The containers will be con-
nected with client through a x-window called VNC. By which it will accessed through
the console. From the container the game will be deployed to the client side by accessing
the configurations file based on the events which is selected from the application. After
hosting the system, the benchmark tests will be initialized using Phoronix - test suite.
This testing process will be initialled based performance of the overall system based on
the FPS of the game. Where it will be tested on the game directly and on the cloud
gaming system.

4 Design Specification

4.1 Architecture for the base cloud gaming system

The user initially logs onto the system through a portal server that shows a list of games
that are available. User selects the game that he/she prefers and sends out a request to
play it. On receiving the request from the user, the portal searches and finds the available
server for that particular game. It launches the game on the server and returns the URL
of that server to the user. The user logs on to the server and plays the game. If the login
and game selection are both sent from a client, it needs not, a user interface.

The two types of network flows present in the architecture are the control flow and
the data flow. The data flow is used for audio and video frame streaming from the server
to client. The control flows are used for delivering user actions from the client to the
server. The architecture of cloud gaming system allows it to handle both PC based and
Web-based games was explained by (Huang et al.; 2014)) . The game selected by the user
runs on a game server and an agent runs along with the game on the same server, this
agent can be a stand-alone process or can be a thread attached into the game selected.
The choice between the two depends on the manner of implementation of the game and
its type. The agent has two fundamental tasks, one is which, the A/V frames of the game
need to be captured and encoding frames to the client using the data flow, the second
task being, interaction of the agent with the game. On receiving the data from the users
actions from the client, the agent must behave as the user and play along the game by
re-playing all of the users gestures. Albeit, there does not exist a standard protocol
for involving the users actions. For this reason, we manually select the framework and
implement the transport rules for user actions (Huang et al.; [2014)).

Server Client

Game Thin Client
Y
. Audio Video Decoder Inputs
Game Logics
Olp
Encoder
Real Time Encoder
Protocols
Decoder Real Time
Protocols

Figure 3: GamingAnywhere Architecture

A The client is a game console created in a custom manner and is implemented
by combining the RTSP/RTP multimedia player and a keyboard/mouse logger. The
system architecture of cloud gaming system, traditionally permits the client as the server
provides encoded A/V frames using the standard RTSP and RTP protocols based on
(Huang et al.; 2014). In this manner, an observer may be allowed in watching a game
play by just accessing the particular game URL with the complete featured multimedia
players. These multimedia players may include VLC media player, that are available
locally on most of the systems.

4.2 Architecture for the cloud gaming system on top of the
container

Containers is used for os level virtualization by which multiple users can access the
kernel. It will handle the instance mare scalable and reliable, n number of instances can
be implemented in it. It reduces the cost and resource usage. Basically, containers dont
need a huge OS to run it. The containers can directly communicate with the hardware.
The containers will be placed on the host OS. Here the containers are implemented
through Docker image. The cloud gaming application is place inside the containers. The
containers will be hosting the cloud gaming system. Hence the cloud gaming inside the
container will be considered as the server where else from the container the client will
be connected through X - window. Thus, the X-window will help the user to access the
application from the container.

Container Thin client

Game logics
Cloud gaming system Video code 'l'
A Decoder
A

Figure 4: Architecture for the Cloud gaming system with container

5 Implementation

The proposed solution is by developing the cloud gaming system with the help of existing
open source cloud gaming system called GamingAnwhere (Huang et al. 2014)). Thus,
system will be implemented inside the containers using a docker image. The current
cloud gaming system will virtualize their GPU setup through hypervisor based on the
priority of the user. Here we are Developing the cloud gaming system on the docker
container system

10

Cloud Gaming System

Game inputs

Thin Client ~ Resounce
with Containers
i i
i i
i i
i i
i i
i i
i i
Connect : :
i
> i
. 1 i
Autheniicats ' '
i
> .
i i
Select Game : . :
l-‘l Requests for required :
| resources :
i i
b o
Allocates the resource :
through WM '
i
____________________ 4
i
Game staris i
oL i
] i
i
i
i
i
i
i
i
i
i
i
i

______"!________ﬂ_____

' ' Resource allocation
Video decoder i -

v

\fideo stream output

el
-

Figure 5: The flow Diagram of Interaction between the Thin client, Cloud gaming system
and the Resource

11

5.1 Cloud gaming system

This cloud gaming system is initialized with help of open source cloud gaming system
called gaming anywhere. This system was developed based on client server process, where
it follows 2 process namely periodic mode and event-driven mode. In the periodic driven
the whole host system will be virtualized to the client side while in the other hand in the
event-driven mode the particular application will only be virtualized. The application
is developed using C++ by which the application which is implemented on Linux OS
is totally depends on number of library files like libbz2, libfreetype6, libval, libasound2,
libsdl2, zliblg, libswscale2, 1ibX11, libstdc++6 and libxtst6 hence it is consists of devel-
opment file and binary file. These are the library files which is used for video processing,
audio processing, file compressing and data compressing.

e libbz2 - It is used for the package container which will be used for the data com-
pressor.

e libfreetype6 - It is used for managing font style, anti-aliasing and performance.
e libval - It is a video acceleration API which is used for GPU acceleration in Linux.

e libasound2 - This lib file is architecture for the sound management in the ALSA
library.

e libswscale2 - this lib is mainly used for video scaling for the rendered video.

e libx11 - it is used in X window which supports the protocols of the client lib in the
C++

e libstdc++ - this is a library package which is used to built the programs within the
GNU compiler

e libxtst6 - it is used as the client interface for x window protocol.

5.2 Initializing Containers

The containers are being initialized by using Docker. So, to execute the containers,
Docker-ce is installed. After the installation we need to permit the local connection to
the X server by accessing the root file by this process it will allow to execute the graphics
application run inside the docker containers. Each and every container which is created
will be having its own container ID where else we can pull the docker image from the
docker website which ever docker container we need. After creating the container, we can
access the container through container image. Here we are creating a docker container
with ubuntu installed which is customized based on our requirements. To create a docker
image, an installation file is created which consists of software, driver installation and
updates which helps to build a docker image. An interactive file is created where it is used
for calling the docker image. Nvidia driver is installed, which used for the graphic driver
settings. The CRIU functionality is used for the live migration which helps to provide the
docker with the checkpoint and the restore point. Hence it helps to create a backup point,
if the application fails or throws an error, the backup point will help to start from that
part. The X-server should be started for the containers to run with graphic application.
After initializing the backup point. To create a docker image, the cloud gaming system

12

is installed inside the docker and with the required library files and the execution file for
installing the cloud gaming system. The docker image with the cloud gaming system will
be created. After building the docker image create the container with image name in the
required location.

6 Evaluation

This cloud gaming application is developed based on the increase in the overall perform-
ance of the system by calculating the FPS rate of the game running in the in the cloud
gaming system and the CPU usage as well. These FPS rate will determine the qual-
ity, when there is a higher FPS rate the quality of the game will be high. The most
important process of the cloud gaming is rendering the video from server to client us-
ing the Server GPU driver. When the game runs in the system directly there will be
higher rate of FPS, The GPU rendering will be high and overall performance will be
high. Here we are going to compare the performance of the game by its FPS rate and
over all performance. To measure these performances with Phoronix test suite bench-
mark tool. By taking these results the FPS rate and the overall performance will be
determined. These results will be based on the cloud gaming system which is implemen-
ted inside the containers. these benchmark results will be compared with results of the
previously tested results of GamingAnywhere application and running the game on a PC.
The specification of the host system which runs the Cloud gaming system with containers
has a 8GB of ram, NVIDIA GPU driver and i7 7th gen processor. Here the docker will
be installed in the ubuntu OS and connected to the client

6.1 Test case 1

Here the benchmarking test is executed to analyse the overall performance for the game
where we will be running an open source game called AssaultCube. The game is first run
on the system and the results will be derived from the Phoronix test suite benchmark
tool

Hence by above results was derived from the benchmarking tool where the overall
performance of the application is analyzed based on the FPS(frames per second) rate of
the each game. The performance of the game in the PC is maximum. While the scores
for the game when it is hosted from the Gaming anywhere application is much lower, but
when the similar system is initialized in the docker,Where the performance of the docker
image which contains the cloud gaming system is quite similar to the performance of the
game in PC . Hence test case 1 proves that the cloud gaming system inside the docker
has a better performance this test case is valuated based on the FPS rate of the game.
The performance results are shown in Figure 5.

13

System with AssuItCube| Docker Gaming anywhere PC
Benchmark score 164 141 168

Benchmark score

175
170
165

160
155
150
145
140
135
130
125

Docker Gaming anywhere PC

Figure 6: Test Case 1 compared based on FPS rate

6.2 Test Case 2

In this test case Cube2: Sauerbraten game is executed by which the overall performance
of the game will be analyzed using the same benchmark tool based on the FPS rate
(Phoronix test suite).

System with Sauerbraten Docker Gaming anywhere PC
Benchmark score 178 152 185

Benchmark score

| Docker Gaming anywhere PC

Figure 7: Test Case 2 compared based on FPS rate

From the above results of the benchmark shows that the overall performance the
Gaming anywhere system is increased when the similar system is implemented in the
containers. the results are shown in Figure 6

14

6.3 Discussion

From the above 2 cases the games are running with different graphics settings, where
else the games are AssultCube and Cube2: Sauerbraten. When the games run directly
from the Gaming anywhere there is considerable amount of performance drop in the
games. When the similar cloud gaming system is initialised through Docker containers
aby pulling the docker image. The overall performance increases. By which the docker
system has made the system more performable, reliable and scalable.

7 Conclusion and Future Work

In this paper the proposed solution increases the overall performance of the cloud gaming
system which is initialized in Docker container, which helped to increase the FPS rate
and overall performance of the cloud gaming system.

In future the cloud gaming system will be enhanced with the auto-scaling process
in the docker and with Advanced Scheduling algorithm the handle the resource more
efficiently and by this many high graphics game can be run in the Cloud gaming system
which would be more reliable and scalable.

References

Cai, W., Chi, Y., Zhou, C., Zhu, C. and Leung, V. C. M. (2018). Ubcgaming: Ubiquitous
cloud gaming system, IEEE Systems Journal pp. 1-12.

Chen, K., Huang, C. and Hsu, C. (2014). Cloud gaming onward: research opportunities
and outlook, 201/ IEEFE International Conference on Multimedia and Expo Workshops
(ICMEW), pp. 1-4.

Chuah, S., Yuen, C. and Cheung, N. (2014). Cloud gaming: a green solution to massive
multiplayer online games, IEEE Wireless Communications 21(4): 78-87.

He, L., Liu, G. and Yuchen, C. (2014). Buffer status and content aware scheduling scheme

for cloud gaming based on video streaming, 201/ IEEE International Conference on
Multimedia and Expo Workshops (ICMEW), pp. 1-6.

Hong, H., Chen, D., Huang, C., Chen, K. and Hsu, C. (2015). Placing virtual machines to
optimize cloud gaming experience, IEEE Transactions on Cloud Computing 3(1): 42—
53.

Huang, C.-Y., Chen, D.-Y., Hsu, C.-H. and Chen, K.-T. (2013). GamingAnywhere: An
open-source cloud gaming testbed, Proceedings of ACM Multimedia 2013 (Open Source
Software Competition Track).

Huang, C.-Y., Chen, K.-T., Chen, D.-Y., Hsu, H.-J. and Hsu, C.-H. (2014). Gamingany-
where: The first open source cloud gaming system, ACM Trans. Multimedia Comput.
Commun. Appl. 10(1s): 10:1-10:25.

URL: http://doi.acm.org/10.1145/2537855

15

Kmrinen, T., Shan, Y., Siekkinen, M. and Yl-Jski, A. (2015). Virtual machines vs.
containers in cloud gaming systems, 2015 International Workshop on Network and
Systems Support for Games (NetGames), pp. 1-6.

Qi, Z., Yao, J., Zhang, C., Yu, M., Yang, Z. and Guan, H. (2014). Vgris: Virtualized gpu
resource isolation and scheduling in cloud gaming, ACM Trans. Archit. Code Optim.
11(2): 17:1-17:25. CORE RANKING:A.

URL: http://doi.acm.org/10.1145/2632216

SanWariya, A., Nair, R. and Shiwani, S. (2016). Analyzing processing overhead of type-0
hypervisor for cloud gaming, 2016 International Conference on Advances in Computing,
Communication, Automation (ICACCA) (Spring), pp. 1-5.

Seneviratne, C. and Leung, H. (2011). A game theoretic approach for resource allocation
in cognitive wireless sensor networks, 2011 IEEFE International Conference on Systems,
Man, and Cybernetics, pp. 1992-1997.

Shea, R., Fu, D. and Liu, J. (2015). Cloud gaming: Understanding the support from
advanced virtualization and hardware, IEEE Transactions on Circuits and Systems
for Video Technology 25(12): 2026—2037.

Shea, R., Liu, J., Ngai, E. C. . and Cui, Y. (2013). Cloud gaming: architecture and
performance, IEEE Network 27(4): 16-21.

Usman, M., Igbal, A. and Kiran, M. (2017). A bandwidth friendly architecture for cloud
gaming, 2017 International Conference on Information Networking (ICOIN), pp. 179
184. CORE RANKING:B.

Wang, B., Ma, R., Qi, Z., Yao, J. and Guan, H. (2016). A user mode cpu-gpu scheduling
framework for hybrid workloads, Future Gener. Comput. Syst. 63(C): 25-36. CORE
RANKING:A.

URL: http://dz.doi.org/10.1016/j.future.2016.03.011

Wang, Z., Xu, W., Yang, J. and Peng, J. (2009). A game theoretic approach for re-
source allocation based on ant colony optimization in emergency management, 2009
International Conference on Information Engineering and Computer Science, pp. 1-4.

Yadav, H. and Annappa, B. (2017). Adaptive gpu resource scheduling on virtualized serv-
ers in cloud gaming, 2017 Conference on Information and Communication Technology

(CICT), pp. 1-6.

Yadav, R. R., Sousa, E. T. G. and Callou, G. R. A. (2018). Performance comparison
between virtual machines and docker containers, IFEE Latin America Transactions
16(8): 2282-2288.

Zhang, C., Yao, J., Qi, Z., Yu, M. and Guan, H. (2014). vgasa: Adaptive scheduling
algorithm of virtualized gpu resource in cloud gaming, IEEE Transactions on Parallel
and Distributed Systems 25(11): 3036-3045. CORE RANKING:A*.

Zhang, L. and he Zhou, J. (2017). Task scheduling and resource allocation algorithm in
cloud computing system based on non-cooperative game, 2017 IEEE 2nd International
Conference on Cloud Computing and Big Data Analysis (ICCCBDA), pp. 254-2509.

16

Zhang, W., Liao, X., Li, P., Jin, H., Lin, L. and Zhou, B. B. (2018). Fine-grained schedul-
ing in cloud gaming on heterogeneous cpu-gpu clusters, IEEE Network 32(1): 172-178.

Zhang, Y., Qu, P., Cihang, J. and Zheng, W. (2016). A cloud gaming system based
on user-level virtualization and its resource scheduling, IEFE Transactions on Parallel

and Distributed Systems 27(5): 1239-1252. CORE RANKING:A*.

17

	Introduction
	Contribution
	Use Case Scenarios

	Related Work
	Methodology
	Design Specification
	Architecture for the base cloud gaming system
	Architecture for the cloud gaming system on top of the container

	Implementation
	Cloud gaming system
	Initializing Containers

	Evaluation
	Test case 1
	Test Case 2
	Discussion

	Conclusion and Future Work

