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A COMPARATIVE ANALYSIS OF STOCK 

MARKET VOLATILITY 
 

Oluwagbenga Abayomi Seyingbo   

X18126421@student.ncirl.ie   
 

 

Abstract 
The importance and estimation of stock market volatility cannot be overemphasized, as it helps 

in risk management, asset allocation, option pricing and portfolio management, and as such, 

several attempts have been made by various scholars to build forecasting model that can give 

accurate predictions of stock market volatility and returns.  The primary objective of this study 

is to compare stock market volatility using the developed stock market index, while the 

secondary objectives are to investigates the presence of volatility clustering, conditional 

volatility and leptokurtosis distribution in the stock market index and compare the forecasting 

ability of symmetry and asymmetry GARCH. The datasets used for this comprises of S & P 500, 

NSADAQ Composites and DOWJONES covering the period from January, 2015 to June 2019. 

The symmetry and asymmetry GARCH models adopted for this study are GARCH (1,1), 

EGARCH (1,1) and GJRGARCH (1,1) and the models were evaluated through Information 

Criterion such as (AIC), (BIC), (SIC) and (HQIC). The findings, the study reveals that S & P 

500, NSADAQ, DOWJONES possesses the same attributes such as high returns, high risk, 

presence of volatility clustering, serial correlation, leptokurtosis distribution and conditional 

volatility. The findings also revealed that there is ARCH and GARCH effect in each of the 

models were positively significant and there exists the presence of leverage or asymmetry effect 

on S & P 500, NSADAQ Composites and DOWJONES. The study concludes that BIC of and 

GARCH (1,1) model has the smallest values, and as such, GARCH (1,1) gives the best 

forecasting ability than EGACRH (1,1) and GJRGACRH (1,1) models. 

 

1.0 Introduction 
Among the key concerns of stakeholders in the stock market is the ability to 

appropriately model and forecast stock market volatility, as it is of key importance in 

forecasting future returns and risk. The stock market crash of 1987 reportedly triggered massive 

anxiety for investors which eventually led to a huge investment loss. This incidence 

undoubtedly led to a major deleveraging in the stock market. Therefore, to come up with 

appropriate investment and financing decisions including but not limited to asset allocation, 

risk and portfolio management, asset and options pricing, and hedging strategy, investors and 

stakeholders to a significant extent would rely on forecasted stock returns, risk and volatilities 

to avoid huge losses (Bollerslev, Pattona & Quaedvlieg, 2016). 
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The volatility of stock market returns often occur upon the arrival of new information. 

For example, buying and selling decisions are mostly influenced by news concerning corporate 

profits, interest rates, dividends or the economy (Oyelami and Ademola, 2014). It is as well 

important to stress that factors such as government policies, political instability, positive or 

negative shocks, international capital flights likewise influence the volatility clustering, 

asymmetry effect, leptokurtosis distributions, conditional and time varying volatility of stock 

market returns. Oyelami and Ademola (2004) further emphasized that updates in the above-

mentioned factors usually bring about positive or negative news which hastily spreads across 

markets. In addition, the leverage or asymmetry effect of stock market returns that often ensue 

from the movements in stock returns are negatively related to changes in volatility while, 

volatility clustering on the other hand emerge from substantial changes in stock returns and 

vice versa (Black, 1976; Taylor, 1986). 

Similarly, Meia, Liu, Ma and Chenc (2017) acknowledged that the examination of 

volatility features such as leverage effect, time varying volatility, volatility clustering and 

leptokurtosis are of paramount importance in ascertaining accurate forecast of stock market 

volatility. In recap, uncertainties and fluctuations in the prices of securities as well as the fear 

of a potential huge loss instilled massive fear on the investors thereby leading to the stock 

market crash of 1987. The crash influenced the emergence of forecasting models such as the 

Autoregressive Conditional Heteroscedasticity (ARCH) model which was developed by Engle 

(1982) and the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model 

which was subsequently developed by Bollerslev in 1986 (Andersen, Bollerslev, and Diebold, 

2003; Bollerslev, 1986)  

 

1.1 Motivation for the study 

The ARCH and GARCH models were developed to process historical information of 

stock market returns for the prediction of future returns since such information holds the 

characteristics of heteroskedasticity (Ching and Siok, 2013). Regardless of the benefits of these 

models, they have been reported as vulnerable to significant setbacks based on their ability to 

accurately estimate volatility asymmetric and leverage effect, thereby rendering their 

contributions in ensuring appropriate forecasting less effective. At corollary, volatility 

asymmetric is a phenomenon that occurs when stock market returns persistently grows 

particularly when market performance is at low-ebb as opposed to when it is highly-peaked 

(Meia, Liu, Ma and Chenc, 2017).   
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Furthermore, the downsides of these models (ARCH and GARCH) prompted the need 

for more improvement in attaining more accuracy, thereby leading to the advent of other 

variants of the GARCH models such as the Exponential Generalized Autoregressive 

Conditional Heteroscedasticity (EGARCH), Non-Linear Asymmetric Generalized 

Autoregressive Conditional Heteroscedasticity (NGARCH), GARCH-in-mean (GARCH-M), 

Threshold GARCH (TGARCH), Quadratic GARCH (QGARCH), Integrated Generalized 

Autoregressive Conditional heteroskedasticity (IGARCH), and Glosten-Jagannathan-Runkle 

GARCH (GJR-GARCH) (Nelson, 1991; Higgins and Bera, 1992; Glosten, Jagannathan & 

Runkle, 1993; Zakoian, 1994; Sentana, 1995; Qifa, Zhongpu, Cuixia, and Yezheng, 2019). 

 

1.2 Research Objectives 

Brandt and Kinsley (2003) reported that even though the advantages of symmetry and 

asymmetry GARCH models have been shown in various studies, these models have been said 

to sometimes yield conflicting and inconsistent outcomes, not only because the studies are 

conducted on different stock market indices or for the varying temporal scope, but more 

importantly the heterogeneity of stock markets world over, since they are susceptible to 

different exposures such as macroeconomic and political instabilities, capital flight, external 

shocks amongst several others (Gong and Lin, 2019). This phenomenon varies across 

countries. In respect of this, this study therefore is aimed at:  

(1) estimating and comparing the volatility clustering, conditional volatility, leverage 

effect and volatility estimator of developed stock markets index and;  

(2) estimating and comparing the performance and forecasting ability of symmetry and 

asymmetry GARCH models of developed stock market index. 

To evaluate and compare the performance and forecasting ability of symmetry and 

asymmetry GARCH models, this study employed information criterion estimates such as 

Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Hannan Quinn 

Information Criterion (HQIC) for model selection and evaluation. The rest of the study is 

structured as follows: Section two discusses the review of related work conducted on stock 

market volatility with evidence from emerging and developed stock market index. The 

methodology is explained in section three with special focus to methodological approach, 

modelling, data sourcing and model evaluation. Section four, explains how the findings was 

implemented, while section five and six provide a detailed evaluation and discussions of the 

study’s findings and section seven provides conclusion and suggestions for future work. 
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2. 0 Related Work 

According to Robert et al., (1987), GARCH-M model was developed to determine the risk-

return relationship of time series. The EGARCH model was also introduced by Nelson in 1991 

to estimate the logarithmic feature of conditional volatility for the purpose of identifying 

asymmetric effects in the time series. In addition, Zakoian (1994) founded the TGARCH model 

to help investigate the affiliation between return on asset and its asymmetric volatility.  

As emphasized by Wei (2012), the Quadratic GARCH (QGARCH) model is much more 

efficient in estimating and forecasting stock market volatility compared to GARCH model 

whereas, Yeh and Lee (2000) in a study carried out in forecasting Chinese stock market returns 

argued that GJR-GARCH model performs better than other GARCH models. As the argument 

persists, Awartani and Corradi (2005) also emphasized that symmetry GARCH model such as 

GARCH (1,1) is less effective in the forecasting stock market returns and volatilities compared 

to asymmetry GARCH models.  

However, the findings of McMillan, Speight and Apgwilym (2000) contradicts that of 

Awartani and Corradi (2005) which revealed that GARCH model gives a better forecast of 

stock market volatilities and returns in comparison to EGARCH model. In addition, Lin (2008) 

revealed that SSE composite index are characterised with clustering volatility, time-varying 

volatility, and leptokurtosis distribution with ARCH and GARCH effects. The study further 

revealed that EGARCH (1,1) model provides more reliable and accurate stock market returns 

and volatilities. 

In addition, the study of Wong and Kok (2005) revealed that ARCH-M model is 

superior than GARCH model in forecasting the stock market volatility of Thailand, Malaysia 

and Singapore stock market returns, while random walk model is superior than ARCH and 

GARCH models in forecasting the volatility of Indonesia and Philippines stock market, the 

study of Omar and Halim (2015) revealed that there is presence of volatility clustering, 

leverage and persistence effects on Malaysian stock market index and EGARCH (1,1) model 

is superior than other GARCH model in forecasting the Malaysian stock market returns and 

volatilities. 

  

3.0 Research Methodology 

The aim of the study was to compare stock market volatility using the developed stock 

market index as a case study. This study adopted the KDD approach. The data used for the 

study were retrieved from Yahoo Finance from June 2015 to June 2019 and it comprises of 
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developed stock market index such as S & P 500, NASDAQ Composites and DOWJONES. 

Various pre-possessing tests such as checking for missing values in the datasets, descriptive 

statistics, unit root test and serial correlation test were carried out. The datasets were also 

transformed into a time series format in order to prepare the data ready for exploration and 

mining. The data mining entails data modelling, while the last procedure that was executed 

under the KDD approach is the interpretation and evaluation of the modelling. 

The KDD diagram below shows the sequential methodological steps which comprising 

of data selection, data pre-processing, data transformation, data mining, interpretation and 

evaluation. This approach also ensures that the datasets chosen for this study are processed to 

ensure meaningful insight, analysis, interpretation and evaluation are drawn from the datasets. 

 

 

Figure 1 KDD 

 

3.1 Sourcing of Data  

Three datasets comprising of top stock market index including Standard and Poor’s 

500, NASDAQ Composites and Dow Jones Industrial Average were adopted for the study. 

This study covers the period between January 2015 to June 2019. These periods were 

considered for the study because the stock market experienced sell-off in 2015 and the Brexit 

vote which started in 2016. These incidents inevitably caused a global decline in the value of 

stock prices. The datasets were sourced from Yahoo Finance, and it consist of 1130 

observations. 

 

3.2 Modelling 

The study adopted the symmetry and asymmetry GARCH models, which consist of 

GARCH (p, q), GJRGARCH (p, q), EGARCH (p, q). This model was adopted based on the 

study of Omar and Halim (2015). The justification for choosing these models were based on 
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the objectives of the study, which was aimed at investigating the volatility clustering, 

conditional volatility and leverage effect of stock market index and to estimates and compare 

the forecasting ability of symmetry and asymmetry GARCH models of developed stock market 

index. The models are specified below:  

(i). GARCH Model: The GARCH (p, q) model introduces conditional variance with the 

ARCH (q) model. The GARCH (p, q) uses the order of previous conditional variance and 

previous residual to determine conditional variance. The GARCH (p, q) model is specified in 

order (p, q).  

𝜎
2

𝑡
 = 𝜆o + Σ

𝑞
𝑖 = 1⁄  𝛼𝑖 ε2 𝑡 − 𝑖⁄  + Σ

𝑝
𝑗 = 1⁄  𝛽𝑗 𝜎2 𝑡 − 𝑗⁄  …………………..…... (1) 

Where: 

𝜎𝑡2 = current volatility  

𝛼𝑖 = parameter measuring the effect of previous residual of 𝜀2 𝑡 − 𝑖⁄  

𝛽𝑗 measures the effect of change in its lagged value, of 𝜎2 𝑡 − 𝑗⁄ . 

(ii). The Glosten-Jagannathan-Runkle (GJR) Model: The GJRGARCH (p, q) models 

explains the asymmetry and leverage effect of volatility. The model also shows the influence 

of positive and negative incidences on volatility by using t 1a −  as a threshold. The GJR-GARCH 

(1,1) model is generally expressed as 

m m r
2 2 * 2 2
t 0 i t i i jt i t i t j

i 1 i 1 j 1

a (a ) a−− − −
= = =

 =  +  +  +    I

 ………………………………….… (2) 

where t i(a ) 1− =I  if t ia 0−   and t i(a ) 0− =I  if t ia 0−  .    

(iii). EGARCH Model: The EGARCH (p, q) model also explains the asymmetric effect of 

news or shocks on the conditional volatility. The EGARCH (p, q) model is generally expressed 

as:  

2 2 2
t 0 1 t 1 t 1 m t m t m 1 t 1 r t r( ) (| |  ) (| |  ) ( ) n( )− − − − − − =  +  −  + +  −  +  ++ n n ….. ( 3)  

2 2 2
t 0 1 t 1 2 t 2 m t m 1 t 1 r t r( ) g( ) g( ) g( ) ( )− − − − − =  +  +  ++  +  ++ n n …………… (4)  

where t t ta / =   and 1 1 = .  Nelson choose the function tg( )  to be a linear combination of t  

and t| |  such as 

t t t tg( ) [| | E(| |)] =  +   −   ………………………………………………………….. (5) 

where   and   are constant terms to be estimated.  In the above function, both t  and 

t t| | E(| |) −   are i.i.d variable with zero mean.   
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3.3 Model Selection and Evaluations  

The symmetry and asymmetry GARCH models of S & P 500, NASDAQ Composites 

and DOWJONES daily returns were evaluated using information criterion such as Akaike 

Information Criterion (AIC), Bayesian Information Criterion (BIC), Shibata Information 

Criterion (SIC) and Hannan Quinn Information Criterion. These model selection criterions 

were used to compare the forecasting ability of GARCH (1,1), GJRGARCH (1,1) and 

EGARCH (1,1) models and the choice of this model evaluation techniques was based on the 

study of Omar and Halim (2015). 

 

4.0 Implementation 

The implementation of the data modelling, analysis, interpretation and evaluation were 

carried out in the following steps: 

(i). Step one: The datasets chosen for this study were retrieved from Yahoo Finance. The 

datasets consist of S & P 500, NASDAQ Composites and DOWJONES. The datasets cover the 

period from January 2015 to June 2019, and it comprises of 1130 observations. 

(ii). Step two: The second step is the installation of different packages such as ("zoo"), ("xts"), 

(curl), (TTR), (quantmod), (lattice), (timeDate), (timeSeries), (parallel), (rugarch), (aTSA), 

(forecast), (ggplot2), (FinTS), (pdfetch), (rmgarch),(e1071), (MLmetrics), (tseries), (psycho) 

and (Metrics) for the purpose of data exploration, analysis, interpretation and evaluation. 

(iii). Step three: The third step in the implementation stage was feature engineering, which 

entails: checking for missing values, checking for the summary, dimensions, descriptive 

statistics of the datasets.  

(iv). Step four: The fourth step entails the estimation of the daily returns of stock market index 

and checking for the descriptive statistics such as minimum, maximum, mean, median, 

variance, standard deviations, kurtosis and skewness of daily returns. The volatility clustering, 

autocorrelation functions and partial autocorrelation functions of daily returns was also 

examined.  

(v). Step five: In this stage, pre-estimation tests such as unit root test including Augment 

Dickey Fuller test (ADF), serial correlation test such as Ljung box test and ARCH test were 

conducted. 

(vi). Step six: The sixth step in the implementation state is the data modelling, at this stage, 

GARCH (1,1) EGARCH (1,1) and GJRGARCH (1,1) was estimated. The data modelling 

entails estimation of coefficient, measurement of value at risk, estimation of conditional 
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variance and squared residuals, plotting of estimation of conditional variance and squared 

residuals and model forecasting and volatility estimator. 

 

5.0 Evaluation 

This section categorically analyzed, interpret and compare the data used for the study. 

The data used for the study comprises of S& P 500, Dow Jones Industrial Average and 

NASDAQ and based on the acronyms from Yahoo Finance were the data were retrieved. S & 

P 500 was proxied as GSPC, Dow Jones Industrial Average was proxied as DJI while, 

NASDAQ was proxied as IXIC. Furthermore, this sections also used the information criterion 

such as (AIC), (BIC), (SIC) and HQIC) to compare the forecasting ability of symmetry and 

asymmetry GARCH models. 

5.1 Standard and Poor’s 500 (S & P 500)  

Table 1: Descriptive Statistics of Daily Returns (S & P 500) 

Statistics Values 

Minimum -0.04097923 

Maximum 0.04959374 

Mean 0.0003522956 

Median 0.0003934001 

Skewness -0.3931364 

Kurtosis 3.840201 

Variance 7.283338e-05 

Standard Deviations 0.008534247 

Source: Author’s Computation, (2019) 

The table above shows that there is a significant difference between the maximum value 

of daily returns of S & P 500 (0.04959374) and minimum value of daily returns of S& P 500 

(-0.04097923). The standard deviation of the daily returns of S & P 500 is also high, with a 

value of 0.008534247. The standard deviation was considered high because, it is far from the 

mean value which is 0.0003522956. The mean value of daily return is positive (0.0003522956), 

and this implies that S & P 500 offers high average returns, however, these returns are subjected 

to high volatility.  

In addition, the skewness of S & P 500 shows a negative value of (-0.3931364), which 

indicates an asymmetric tail that exceeds more towards negative values rather than positive 

values. Thus, it shows that S & P 500 has non-symmetric returns. The kurtosis statistics shows 
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a value of (3.840201), which exceeds the normal value of three thus indicating that the return 

distribution is fat-tailed and a heavier tail than a standard normal distribution. The daily returns 

of S & P 500 also reveal that its kurtosis distribution is leptokurtic. 

  

Figure 2: Volatility Clustering and Chart Series of S & P 500 

The figure 2 as shown above explains the volatility clustering of daily returns and the 

chart series of closing returns. The graph reveals that volatility of the daily returns of S & P 

500 changes over time, and a such tends to cluster with periods of low volatility and periods of 

high volatility. This turbulence and tranquillity suggest the existence of volatility clustering in 

the graph of daily returns. The implication of this therefore is that that large price fluctuations 

are followed by large price fluctuations and small price fluctuations are followed by small price 

fluctuations of both signs (positive and negative). 

Table 3: Stationary Test: Augment Dickey Fuller Test 

Parameters S & P 500 Nasdaq Composites DOWJONES 

x-squared -10.969 -11.152 -10.564 

P-value 0.01 0.01 0.01 

Source: Author’s Computation, (2019) 

The Augment Dickey Fuller test was employed to measure the stationarity of S & P 

500, Nasdaq Composites and DOWJONES. The hypothesis for this test is as follows: 

Ho: There is presence of unit root, which means that the series is nonstationary. 

Hi: There is no presence of unit root, which means that the series is stationary. 

The ADF presented above shows that there is presence of unit root test in the series. The 

probability value of ADF test is less than 0.05, thus, S & P 500, Nasdaq Composites and 

DOWJONES is stationary, and as such, the null hypothesis which states that there is unit root 

in the series should be rejected. 
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Table 4: Serial Correlation Test: Ljung Box Test 

Parameters S & P 500 Nasdaq Composites DOWJONES 

x-squared 11.53 15.086 9.83 

P-value 0.3177 0.1289 0.4555 

Source: Author’s Computation, (2019) 

The Ljung-Box Q-test was employed to investigate the presence of serial correlation in 

the series. The hypotheses for this test are as follows: 

Ho: There is no serial correlation in the series  

Hi: There is serial correlation in the series 

The Ljung box-test presented above reveals that are no serial autocorrelations up to lags 10. 

From the table above, The Ljung Box Q-test revealed that we cannot reject the null hypothesis 

of no serial correlation at 5% level of significance.  

Table 5: ARCH LM-test  

Parameters S & P 500 Nasdaq Composites DOWJONES 

x-squared 167.32 147.73 166.65 

P-value 2.2e-16 2.2e-16 2.2e-16 

Source: Author’s Computation, (2019) 

The ARCH LM- test was employed to investigate the presence of ARCH effect in the 

time series. The hypotheses for this test are as follows. 

Ho: There is no ARCH effect. 

Hi: There is ARCH effect. 

The ARCH LM-test presented above revealed that there is presence of conditional 

heteroskedasticity in the time series, and as such, the null hypothesis of no ARCH effect was 

rejected. This therefore implies that the volatility of S & P 500, Nasdaq Composites and 

DOWJONES daily returns was serially correlated. This also indicate that the conditional mean 

model is needed to be used for return series. The Engle’s ARCH test rejects the null hypothesis, 

to agree that there is an ARCH effect in the series, with a low p-value at 5% level of 

significance, and as such, we proceed with the GARCH models. 
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Figure 3: Value at Risk with Estimated Returns and Squared Residuals and the 

Estimated Conditional Variances 

Table 6: Estimated Coefficient of GARCH models (S & P 500) 

Parameters GARCH (1,1) EGARCH (1,1) GJRGARCH (1,1) 

Mu 6.181447*** 0.0003303576 0.000455*** 

ar1 9.5622***  0.969487*** 

ma1 -9.83797***  -0.988027*** 

Omega 4.10454 -0.611530520*** 0.000004*** 

alpha1 1.893505*** -0.211560769*** 0.000000 

beta1 7.56766*** 0.9374269492*** 0.794099** 

Gamma  0.1749959016*** 0.270189*** 

Source: Author’s Computation, (2019) 

Note: *** represent 1%, ** represent 5% and * represent 10% 

The table above revealed that the ARCH (α) and GARCH (β) coefficient in GARCH 

(1,1) are (1.893) and (7.567) respectively. These coefficients are positive and statistically 

significant, and as such, the significance of the alpha (α) and beta (β) reveals that the lagged 

conditional variance and lagged squared disturbance have an impact on the conditional 

variance, and as such, it implies that the information about volatility from the previous periods 

have an explanatory power on current volatility. Furthermore, the addition of the estimated 

ARCH and GARCH coefficients in the GARCH (1,1) model also indicated that the volatility 

shocks have a persistent effect on the conditional variance. 

The result shown in the table above as well reveal that ARCH (α) and GARCH (β) 

coefficient in EGARCH (1,1) model are (-0.211560769) and (0.9374269492), which are 

smaller than 1. This therefore implies that conditional variance is not volatile and there is no 
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atypical increase or decrease in prices, but a gradual movement is observed. The results also 

revealed that the coefficient of the leverage effect (0.1749959016) of EGARCH (1,1) model is 

positive and significant at 5% level as the p-value is less than 0.05. The study implies that 

negative shocks or bad news have a greater effect on the conditional variance than the positive 

shocks or good news because the value of 0.1749959016 is significant at 5% level. 

In addition, the ARCH (α) and GARCH (β) coefficient in GJRGARCH (1,1) model are 

(0.000000) and (0.794099), which are smaller than 1. The ARCH (α) is not statistically 

significant in GJRGACRCH, while the GARCH (β) is positively significant. The leverage 

effect (0.270189) of GJRGARCH (1,1) model is positive and significant at 5% level as the p-

value is less than 0.05. The study implies that negative shocks or bad news have a greater effect 

on the conditional variance than the positive shocks or good news because the value of 

0.270189 is statistically significant at 5% level. The positive sign indicates that positive shocks 

imply a higher next period conditional variance than the negative shocks. This therefore implies 

that there is a presence of leverage effect in S & P 500 

Table 7: Model Selection and Evaluation of S & P 500 

Information 

Criterion 

GARCH 

(1,1) 

EGARCH 

(1,1) 

GJRGARCH 

(1,1) 

Akaike -6.9819 -7.0414 -7.0237 

Bayes -6.9552 -7.0192 -6.9925 

Shibata -6.9820 -7.0415 -7.0237 

Hannan-Quinn -6.9718 -7.0330 -7.0119 

Source: Author’s Computation, (2019) 

 The table above shows the AIC, BIC, SIC and HQIC of the GARCH model and bearing 

in mind that the smaller value of the Information Criteria provides a better fit for the daily 

return series.  From the table, it can be inferred that Bayesian information criterion reveals the 

smallest value from each of the models. In addition, the Bayesian value for GARCH (1,1) is 

also lower than that of EGARCH and GJRGARCH.  

5.2 NASDAQ Composites 

The daily returns of Nasdaq Composite were used to show the trend and descriptive 

statistics. The descriptive statistics consists of minimum, maximum, mean, median, variance, 

standard deviation, kurtosis and skewness of daily returns of Nasdaq Composite.  
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Table 8: Descriptive Statistics of NASDAQ Composites Daily Returns 

Statistics Values 

Minimum -0.0442539 

Maximum 0.05836341 

Mean 0.0005133327 

Median 0.0008546306 

Skewness -0.3855541 

Kurtosis 3.117142 

Variance 0.0001060718 

Standard Deviations 0.01029912 

Source: Author’s Computation, (2019) 

The table above shows that there is a large difference between the maximum value of 

daily returns of NASDAQ Composites (0.05836341) and minimum value of daily returns of 

NASDAQ Composites (-0.0442539). The standard deviation of the daily returns of NASDAQ 

Composites is also high, with a value of 0.01029912. The standard deviation was considered 

high because, it is far from the mean value which is 0.0005133327. The mean value of daily 

return is positive (0.0005133327), and this implies that NASDAQ Composites offers high 

average returns, however, these returns are subjects to high volatility.  

In addition, the skewness of NASDAQ Composites shows a negative value of (-

0.3855541), which indicates an asymmetric tail that exceeds more towards negative values 

rather than positive values. Thus, it shows that NASDAQ Composites has non-symmetric 

returns. The kurtosis statistics shows a value of (3.117142), which exceeds the normal value of 

three, indicating that the return distribution is fat-tailed and a heavier tail than a standard normal 

distribution. The daily returns of NASDAQ Composites also reveal that its kurtosis distribution 

is leptokurtic. 
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#  

Figure 4: Volatility Clustering and Chart Series of Nasdaq Composite 

The figure 4 shown above explains the volatility clustering of daily returns and the chart 

series of closing returns. The graph reveals that volatility of the daily returns of NASDAQ 

Composites changes over time, and as such, it tends to cluster with periods of low volatility 

and periods of high volatility. This turbulence and tranquillity suggest the existence of volatility 

clustering in the graph of daily returns. This therefore implies that that large price fluctuations 

are followed by large price fluctuations and small price fluctuations are followed by small price 

fluctuations of both signs (positive and negative). 

Table 9: Estimated Coefficient of GARCH models (NASDAQ Composites) 

Parameters GARCH (1,1) EGARCH (1,1) GJRGARCH (1,1) 

Mu 8.32617*** 0.0003782108 0.000652*** 

ar1 9.45726*** 0.00000*** 0.954148s*** 

ma1 -9.7891*** 0.00000*** -0.981145*** 

Omega 6.48816*** -0.551925*** 0.000007*** 

alpha1 1.52588*** -0.208756*** 0.000000 

beta1 7.84922*** 0.9411141*** 0.799946*** 

Gamma  0.0856786*** 0.229477*** 

Source: Author’s Computation, (2019) 

Note: *** represent 1%, ** represent 5% and * represent 10% 

The table above revealed that the ARCH (α) and GARCH (β) coefficient in GARCH 

(1,1) are (1.525) and (7.849) respectively. These coefficients are positive and statistically 

significant, and as such, the significance of the alpha (α) and beta (β) reveals that the lagged 

conditional variance and lagged squared disturbance have an impact on the conditional 

variance and as such it implies that the information about volatility from the previous periods 

have an explanatory power on current volatility. Furthermore, the addition of the estimated 



15 
 

 

ARCH and GARCH coefficients in the GARCH (1,1) model also indicated that the volatility 

shocks have a persistent effect on the conditional variance. 

Furthermore, the result shown in the table above reveals that ARCH (α) and GARCH 

(β) coefficient in EGARCH (1,1) model are (-0.208756) and (0.9411141), which are smaller 

than 1. This therefore implies that conditional variance is not volatile and there is no atypical 

increase or decrease in prices, but a gradual movement is observed. The results also reveal that 

the coefficient of the leverage effect (0.0856786) of EGARCH (1,1) model is positive and 

significant at 5% level as the p-value is less than 0.05. The study implies that negative shocks 

or bad news have a greater effect on the conditional variance than the positive shocks or good 

news because the value of 0.0856786 is statistically significant at 5% level. 

In addition, the ARCH (α) and GARCH (β) coefficient in GJRGARCH (1,1) model are 

(0.000000) and (0.799946), which are smaller than 1. The ARCH (α) is not statistically 

significant in GJRGACRCH, while the GARCH (β) is positively significant. The leverage 

effect (0.270189) of GJRGARCH (1,1) model is positive and significant at 5% level as the p-

value is less than 0.05. The study implies that negative shocks or bad news have a greater effect 

on the conditional variance than the positive shocks or good news because the value of 

0.229477 is statistically significant at 5% level. The positive sign indicates that positive shocks 

imply a higher next period conditional variance than the negative shocks. This therefore implies 

that there is a presence of leverage effect in NASDAQ Composites. 

 

Figure 5: Value at Risk with Estimated Returns and Squared Residuals and the 

Estimated Conditional Variances 
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Table 10: Model Selection and Evaluation of NASDAQ Composites 

Information 

Criterion 

GARCH 

(1,1) 

EGARCH 

(1,1) 

GJRGARCH 

(1,1) 

Akaike -6.5330 -6.5931 -6.5756 

Bayes -6.5063 -6.5708 -6.5445 

Shibata -6.5330 -6.5931 -6.5757 

Hannan-Quinn -6.5229 -6.5847 -6.5639 

Source: Author’s Computation, (2019) 

 The table above shows the AIC, BIC, SIC and HQIC of the GARCH model and bearing 

in mind that the smaller value of the Information Criteria provides better fit for the daily return 

series. From the table, it can be deduced that Bayesian information criterion reveals the smallest 

value from each of the models. In addition, the Bayesian value for GARCH (1,1) is also lower 

than that of EGARCH and GJRGARCH. 

5.3 Dow Jones Industrial Average  

The daily closing price of Dow Jones Industrial Average was used to show the trend and 

descriptive statistics of the stock market index. The descriptive statistics comprises minimum, 

maximum, mean, median, variance, standard deviation, kurtosis and skewness of Dow Jones 

Industrial Average.  

 Table 11: Descriptive Statistics of Dow Jones Industrial Average 

Statistics Values 

Minimum -0.04604885 

Maximum 0.04984582 

Mean 0.0003916169 

Median 0.0004887411 

Skewness -0.4045638 

Kurtosis 3.79531 

Variance 7.431192e-05 

Standard Deviations 0.008620436 

Source: Author’s Computation, (2019)  

The table above shows that there is a large difference between the maximum value of 

daily returns of DOWJONES (0.04984582) and minimum value of daily returns of 

DOWJONES (-0.04604885). The standard deviation of the daily returns of DOWJONES is 

also high, with a value of 0.01029912. The standard deviation was considered high because, it 
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is far from the mean value which is 0.008620436. The mean value of daily return is positive 

(0.0003916169), and this implies that DOWJONES offers high average returns, however, these 

returns are subjects to high volatility.  

In addition, the skewness of DOWJONES shows a negative value of (-0.4045638), 

which indicates an asymmetric tail that exceeds more towards negative values rather than 

positive values. Thus, it shows that DOWJONES has non-symmetric returns. The kurtosis 

statistics shows a value of (3.79531), which exceeds the normal value of three and this indicate 

that the return distribution is fat-tailed and a heavier tail than a standard normal distribution. 

The daily returns of DOWJONES also reveal that its kurtosis distribution is leptokurtic. 

  

Figure 6: Volatility Clustering and Chart Series of Dow Jones Industrial Average 

The figure 6 shown above explains the volatility clustering of daily returns and the chart 

series of closing returns. The graph reveals that volatility of the daily returns of DOWJONES 

changes over time, and as such, it tends to cluster with periods of low volatility and periods of 

high volatility. This turbulence and tranquillity suggest the existence of volatility clustering in 

the graph of daily returns. This therefore implies that that large price fluctuations are followed 

by large price fluctuations and small price fluctuations are followed by small price fluctuations 

of both signs (positive and negative). 
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Table 12: Estimated Coefficients of GARCH Models (DOWJONES) 

Parameters GARCH (1,1) EGARCH (1,1) GJRGARCH (1,1) 

Mu 7.63803*** 0.0004601** 0.000531 

ar1 -2.92030  -0.518388 

ma1 2.50776  0.463692 

Omega 3.69938  -0.595251*** 0.000003*** 

alpha1 1.77319*** -0.175885*** 0.000005 

beta1 7.73765*** 0.9389629*** 0.824942*** 

Gamma  0.1887279*** 0.243439*** 

Source: Author’s Computation, (2019) 

Note: *** represent 1%, ** represent 5% and * represent 10% 

The table above revealed that the ARCH (α) and GARCH (β) coefficient in GARCH 

(1,1) are (1.773) and (7.737) respectively. These coefficients are positive and statistically 

significant, and as such, the significance of the alpha (α) and beta (β) reveals that the lagged 

conditional variance and lagged squared disturbance have an impact on the conditional 

variance and as such it implies that the information about volatility from the previous periods 

have an explanatory power on current volatility. Furthermore, the addition of the estimated 

ARCH and GARCH coefficients in the GARCH (1,1) model also indicated that the volatility 

shocks have a persistent effect on the conditional variance. 

Furthermore, the result shown in the table above reveals that ARCH (α) and GARCH 

(β) coefficient in EGARCH (1,1) model are (-0.175885) and (0.9389629), which are smaller 

than 1. This therefore implies that conditional variance is not volatile and there is no atypical 

increase or decrease in prices, but a gradual movement is observed. The results also reveal that 

the coefficient of the leverage effect (0.1887279) of EGARCH (1,1) model is positive and 

significant at 5% level as the p-value is less than 0.05. The study implies that negative shocks 

or bad news have a greater effect on the conditional variance than the positive shocks or good 

news because the value of 0.1887279 is statistically significant at 5% level. 

In addition, the ARCH (α) and GARCH (β) coefficient in GJRGARCH (1,1) model are 

(0.000005) and (0.824942), which are smaller than 1. The ARCH (α) is not statistically 

significant in GJRGACRCH, while the GARCH (β) is positively significant. The leverage 

effect (0.243439) of GJRGARCH (1,1) model is positive and significant at 5% level as the p-

value is less than 0.05. The study implies that negative shocks or bad news have a greater effect 

on the conditional variance than the positive shocks or good news because the value of 
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0.243439 is statistically significant at 5% level. The positive sign indicates that positive shocks 

imply a higher next period conditional variance than the negative shocks. This therefore implies 

that there is a presence of leverage effect in DOWJONES. 

  

Figure 7: Value at Risk with Estimated Returns and Squared Residuals and the 

Estimated Conditional Variances 

Table 13: Model Selection and Evaluation of DOWJONES 

Information 

Criterion 

GARCH 

(1,1) 

EGARCH 

(1,1) 

GJRGARCH 

(1,1) 

Akaike -6.5330 -7.0123 -6.9583 

Bayes -6.5063 -6.9900 -6.9316 

Shibata -6.5330 -7.0123 -6.9583 

Hannan-Quinn -6.5229 -7.0039 -6.9482 

Source: Author’s Computation, (2019) 

 The table above shows the AIC, BIC, SIC and HQIC of the GARCH model and bearing 

in mind that the smaller value of the Information Criteria provides better fit for the daily return 

series. From the table, it can be deduced that Bayesian information criterion reveals the smallest 

value from each of the models. In addition, the Bayesian value for GARCH (1,1) is also lower 

than that of EGARCH and GJRGARCH. 

6.0 Discussion 

The findings of the study revealed that the mean value of S & P 500, NASDAQ 

Composites and DOWJONES daily returns is positive and the standard deviation for these 
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stock market index such as S & P 500, NASDAQ Composites and DOWJONES is also high 

compared to their mean value. This therefore implies that S & P 500, NASDAQ Composites 

and DOWJONES offers high average returns which are subjects to high volatility. The findings 

also revealed that S & P 500, NASDAQ Composites and DOWJONES are negatively skewed, 

while the kurtosis distribution of these stock market index is leptokurtic, thus showing fat-

tailed and heavier tail distribution.  

Furthermore, the series of S & P 500, NASDAQ and DOWJONES daily returns are 

stationarity. The volatility of the daily returns of S & P 500, NASDAQ and DOWJONES 

changes over time, and as such tends to cluster with periods of low volatility and periods of 

high volatility. The findings of the study also show the presence of serial correlation, 

conditional heteroskedasticity and volatility clustering in S & P 500, NASDAQ and 

DOWJONES. Consequently, the ARCH (α) and GARCH (β) coefficient of S & P 500, 

NASDAQ and DOWJONES in the three model such as GARCH (1,1), EGARCH (1,1) and 

GJRGARCH (1,1) are positively significant. The information about volatility from the 

previous periods have an explanatory power on current volatility on each of the stock market 

index.  

The findings also revealed that the volatility shocks of S & P 500, NASDAQ and 

DOWJONES have a persistent effect on the conditional variance. The EGARCH (1,1) and 

GJRGARCH (1,1) was used to measure the presence of the leverage effect in the series and it 

was revealed that there exists a significant and positive influence of leverage effect on S & P 

500, NASDAQ and DOWJONES daily returns, and as such, the negative shocks or bad news 

have a greater effect on the conditional variance than the positive shocks or good news. The 

findings of this study align with the study of Omar and Halim (2015) which reveals the presence 

of volatility clustering, leverage effect and fat tailed distributions in the Malaysian stock market 

index. However, the study of Omar and Halim (2015) revealed that EGARCH (1,1) is superior 

than other GARCH models and this contradicts with the findings of this study. 

Furthermore, the findings of McMillan, Speight, Apgwilym (2000) agrees with the 

result of this study which revealed that GARCH (1,1) model gives a better forecast of stock 

market volatilities and returns than GARCH model. However, the study of Yeh and Lee (2000) 

and Awartani and Corradi (2005) revealed that GJR-GARCH and GARCH (1,1) model 

performs better than other GARCH models, and this contradicts with the findings of the study. 

In addition, the information criterion such as AIC, BIC, SIC and HQIC was used for model 

selection and evaluation and the findings revealed that in all of the models such as GARCH 
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(1,1), EGARCH (1,1) and GJRGARCH (1,1) examined in the study, the Bayesian Information 

Criterion (BIC) reveals the smallest value from each of the models, and as such, GARCH (1,1) 

gives the best forecasting ability that EGARCH and GJRGARCH. 

7.0 Conclusion and Future Work 

The primary objective of this study was to compare stock market volatility using the 

developed stock market index such S & P 500, NSADAQ, DOWJONES as a point of reference. 

The secondary objective was to investigate the presence of volatility clustering, conditional 

volatility and leptokurtosis distribution in the stock market index; to estimates and compare the 

forecasting ability of symmetry and asymmetry GARCH models such as GARCH (1,1), 

EGARCH (1,1) and GJRGARCH (1,1) using the information criterion such as Akaike 

Information Criterion (AIC), Bayesian Information Criterion (BIC), Shibata Information 

Criterion (SIC) and Hannan Quinn Information Criterion (HQIC) and to estimate the volatility 

estimator of each of the stock market index examined in the study.  

Based on the findings, the study concludes that S & P 500, NASDAQ, DOWJONES 

possesses the same attributes such as high returns which was offset by high risk, presence of 

volatility clustering, serial correlation, leptokurtosis distribution and conditional volatility. The 

study also concludes that there exists the presence of leverage or asymmetry effect on the stock 

market index examined in the study. The ARCH and GARCH effect in each of the models 

examined were positively significant and this implies that previous information of returns can 

be used to predict the future returns.  The study also concludes that the GARCH (1,1) models 

gives the best forecasting ability than EGACRH (1,1) and GJRGACRH (1,11) models. 

In conclusion, this study recommends that further studies can be conducted in the 

following areas: 

(1). To compare stock market volatility using developed and emerging stock market 

index as a case study. 

(2).  To compare the forecasting ability of symmetry and asymmetry GARCH models 

of developed and emerging stock market index using other model evaluation techniques such 

as Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute 

Percentage Error (MAPE). 
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