ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc in FinTech

Ranjani Chandrasekaran
Student ID: X18108423

School of Computing
National College of Ireland

Supervisor: Victor Del Rosal

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name: Ranjani Chandrasekaran
Student ID: X18108423
Programme: MSc in FinTech Year: 2018-2019
Module: Research Project
Lecturer: Victor Del Rosal
Submission Due
Date: 12% August 2019

Project Title: Prediction of Litecoin Prices using ARIMA and LSTM
Word Count: 1083 words Page Count: 16

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 12% August 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project a
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Ranjani Chandrasekaran
Student ID: X18108423

1 Introduction

This user configuration manual provides a step by step account of the product and process
requisites to complete the thesis titled “What is the impact of ARIMA and LSTM in the level
of accuracy for prediction of Litecoin prices?” The steps also include the hardware and
software requirements. Further, samples of the codes that are run in the different models and
results are provided for effective guidance.

2 Data Gathering

The data collected is from 2014 to 2019 having 1991 observations. It is collected from
coinmarketcap.com. Among the different type of prices that is high, low, open and close,
close price is considered as the predictor variable. The data is read in CSV format and
formatting of date (pre-processing) is executed.

3 System Setup

The hardware system configuration is Intel core i5+ 8th Gen used with a 4GB ram. The
software installed is RStudio and RStudio cloud. For the R studio cloud an account is created
to implement the neural network algorithm.

4 Libraries Installed

In RStudio and RStudio cloud relevant libraries are installed to process machine learning
algorithms. The Libraries included are CaTools, Libridate, forecast, MImetrics, dplyr, grid,
stargazer, seasonal, fma, keras, tidyverse.

Using the above setup and running the data in ARIMA and LSTM the results are below-

1. Importing library

library(fpp2)
library(seasonal)
library(fma)
library(stargazer)
library(grid)
library(forecast)
library(dplyr)
library (MLmetrics)
require(caTools)

require(lubridate)

2. Pre-processing, splitting the data into 0.6 train and 0.4 test data
#Splitting the dataset into train and test data
set.seed(1)
bd$date=parse_date_time(bd$date, orders = c¢("ymd", "dmy", "mdy"))
bd = bd[,c(1,3)] # we retain the closing price.
#Summary

summary(bd)

3. Converting the data to time series

vl d=ts(bd[,2], frequency = 365, start = ¢(2014,1))

4. Plotting the data set to examine stationary

price

Clasing price

Closing price per day

100-

2016 2017 2018 2019
Days

Taking a deeper look at the seasonality for which Seasonal plot and seasonal
subseries plot has been plotted:

2014 2015

taking a look abt seasonality:
ggseasonplot(vl_d, year.labels=TRUE, year.labels.left=TRUE) +

ylab("Closing price™) +
ggtitle("Seasonal plot: Closing price per day")

taking a deep look about seasonality:
ggsubseriesplot(vl_d) +
ylab("Closing price") +
ggtitle(Seasonal subseries plot: Closing price per day™)

Seasonal plot: Closing price per da
P 9P P d Seasonal subseries plot: Closing price per day

|
| I
[y
Season

6. Auto correlation

Autocorrelation function of closing price per day

7. Forecasting of mean, random walk

Closing price per day

Closing Price

300-
Forecast
00- -~ Mean
Naive
Random Walk Drifted
" seasonal Naive
100-
o
2014 2016 2018 2020
Day

8. Multiplicative decomposition

Classical multiplicative decomposition
of closing price per day

9. Fit Auto ARIMA in training data set and getting results

© fit_arima_auto
method
model
level
mean
lower
upper
X
SEries
fitted

residuals

list [10] (53: forecast)

character [1]

list [18] (53: ARIMA, forecast_AR|

double [2]
double [30] (53: ts)

double [30 x 2] (53: mits, ts, matri:
double [30 x 2] (53: mts, ts, matr:
double [1961] (53: ts)

character [1]

double [1961] (53: ts)
double [1961] (53: ts)

List of length 10
'ARIMA(31,3)

List of length 18

8095

e N7118 118118119,

111.0 107.2 105.9 103.9 101.5 100.9 107.5 101.9 99.5 96.4 92.991.5 ...

124127130 132134 136 128 132137 140 142 146 ..,
245245240240 249249 ...

wl_d_train’

24.524.524.524.0 24.0 249 ...

2.45e-02 -1.05e-06 -4.98e-01 1.18e-02 9.02e-01 -3.72e-02 ...

10. Calculating the absolute value=true value- estimated value

result$V1 = days

colnames(result) = c("days" , "true_value","Estimated_value™)

result$absolut_valu = abs(result$true_value-result$Estimated_value)

11. Results:

Filter
“ days true_value

1 2019-06-07 118.51
2 2019.06-08 114.87
3 20190609 128.83
4 2019.06-10 136.08
5 2019-06-11 136.16
6 2019-06-12 130.86
7 2019-06-13 13271
8 2019-06-14 138.35
9 2019-06-15 136.95
10 2019-06-16 13419
11 2019-06-17 135,13
12 2019-06-1% 136,83
13 2013-06-19 135.78
14 2013-06-20 138.07
15 2019-06-21 14177
16 2019-06-22 136,83
17 2019-06-23 135.40
18 2019-06-24 135,51
19 2019-06-25 130.52
20 20150626 114,24
21 20180627 115.46
22 20180628 133.44
23 20180629 122.16
24 20180630 122,67
25 20190701 118.68
26 20150702 121.97
27 20150703 118.67
28 20150704 118.53
29 20190705 118.31
30 2013-07-06 118.33
31 2013-07-07 118.51

Estimated_value
117.7545
117.0436
118,0432
118,0582
117.5360
118.5376
118.0579
117.9139
118.7278
117.9732
118.2424
18,7114
117.9233
1185131
118,5680
1179597
118,6967
118.3727
118,0843
118.7713
1181921
118.2661
118.7367
118,0762
118.4579
18,6164
118,0504
18,6124
118.4512
18,1132
117.7545

absolut_valu
075548298
217560261
1178676716
1802183751
18.62403386
12.32241163
14.65210656
20.43606179
18.22224744
16.21681399
16.88758908
1311863089
1785666314
2055686745
23.20197767
1887032515
1670332207
1713734984
1243574627
453129420
1,26789024
1517391150
342326893
459375677
022208608
335357409
161958690
008241652
014120842
021679104
075548298

LSTM

CONFIRGURATION MANUAL OF LSTM:
1. Install and import libraries

library(readr)
library(tseries)
library(tidyverse)
library(keras)
require(lubridate)
require(caTools)

2. Loading and reading the data in csv format
data= read_csv("data set.csv")

3. Data needs to be formatted
4. Data set is split into 60% train and 40% test.

sample = sample.split(dataSdate, SplitRatio =0.6)
train = subset(data, sample == TRUE)
test =subset(data, sample == FALSE)

5. Plotting of closing price

Close Price with time

o
g d
ks -
£ 8-
% _
o
o 8 }JJ}J
o — N —
T T T T 1
0 500 1000 1500 2000
Index

6. Testing the stationarity of data set, so doing the kpss test of stationarity.

#stationary

kpss.test(datasclose)

diffed_close = diff(data$close, differences = 1)
kpss.test(diffed_close)

KPSS Test for Level Stationarity

data: data$close
KPSS Level = 9.5589, Truncation lag parameter = 8, p-value = 0.01

7. Alag variable has been created because LSTM requires data in supervised learning.
This basically, differences in closing prices and look back =1.

x-1 DF
1 0.00 0.00
2 0.00 -0.51
3 | -0.51 -0.01
4 -0.07 0.94

5 094 -0.04
6 -0.04 -0.62
7 -0.b2 1.21
8
9

1.21 -2.45
-2.49 -0.70
10 -0.70 -1.25
11 17c 124

8. The order of observation is important for time series data, the supervised closed data
is split into 0.6 test and 0.4 train.

N_close = nrow(supervised_close)

n_close = round(N_close *0.6, digits = 0)

train_close = supervised_close[1:n_close,]

test_close = supervised_close[(n_close+1):N_close,]

9. As with any neural network model we scale the X input data into activation function
range. To normalize the data range, we used the feature range parameter, and selected
the default value (0, 1) which is typical for data with low dispersion.

10. The default activation function for LSTM is the sigmoid function, the range of which
is (-1, 1)

Show Attributes

Name Type Value

| © Scaled_close list [3] List of length 3
scaled_train list [1194 x 2] (53: data.frame) A data.frame with 1194 rows and 2 columns
scaled_test list [796 x 2] (S3: data.frame) A data.frame with 796 rows and 2 columns
scaler double [2] -7.737.18

11. Inverted scaling
invert_scaling = function(Scaled, scaler, feature_range = c(0, 1)){
min = scaler[1]
max = scaler[2]
t = length(Scaled)
mins = feature_range[1]
maxs = feature_range[2]
inverted_dfs = numeric(t)

for(iin 1:t){
X = (Scaled[i]- mins)/(maxs - mins)
rawValues = X *(max - min) + min
inverted_dfs][i] <- rawValues

}

return(inverted_dfs)

}

12. LSTM Model:
H#LSTM
class(x_train_close)
#x_train_close <- array(data = x_train_close, dim = c(nrow(x_train_close),1,
look_back))

dim(x_train_close) <- c(length(x_train_close), 1, 1)
head(x_train_close)

X_shape2_close = dim(x_train_close)[2]
X_shape3_close = dim(x_train_close)[3]
batch_size =1

units=1

#LSTM

>

class(x_train_close)

[1] "numeric”

>
>

dim(x_train_close) <- c(length(x_train_close), 1, 1)
head(x_train_close)

[1] ©.03688799 0.03688799 -0.03152247 0.03554661 0.16297787 0.03152247

>
>
>
>
>
>
+
X
+

X_shape2 close = dim(x_train_close)[2]
X_shape3 close = dim(x_train_close)[3]
batch size =1
units =1
model close <- keras_model_sequential()
model close%>%
layer_lstm(units, batch_input_shape = c(batch_size, X shape2 close,

_shape3_close), stateful= TRUE)%>%

layer_dense(units = 1)

13. Network loop: -

The network loop is created which iterates through every window in batch creating
the batch states as all zeros. The model is structured to remember its learning at
every iteration by defining the stateful as true.

model_close <- keras_model_sequential()
model_close%>%

layer_Istm(units, batch_input_shape = c(batch_size, X _ shape2 close,
X_shape3_close), stateful= TRUE)%>%

layer_dense(units = 1)

14. Defining the loss: -
In this the mean square error function is used for the loss to minimize the errors.
model_close %>% compile(
loss ='mean_squared_error’,
optimizer = optimizer_adam(Ir=0.02, decay = 1e-6),
metrics = c(‘accuracy')

)

15. The network is trained with 25 number of epochs which we had initialized, and then
observe the change in our loss through time. The current loss decreases with the
increase in the epochs as observed, increasing our model accuracy in predicting the
Litecoin prices.

16. Model Summary:

Model: "sequential”

Layer (type) Output Shape Param #
lstm (LSTM) (1, 1) 12
dense (Dense) (1, 1) 2

Total params: 14
Trainable params: 14
Non-trainable params: @

17. 25 iterations is made on train data which is 1194 observations.

1194/1194 [==============================] - 4s 3ms/sample - loss: 0.0049 - acc: 8.3752e
i?34f1194 [==============================] - 4s 3ms/sample - loss: ©.8051 - acc: 8.3752e
i?gdlllgd [==============================] - 45 3ms/sample - loss: ©.0049 - acc: 8.3752e
i?34/1194 [==============================] - 45 3ms/sample - loss: 0.0049 - acc: 8.3752e
i?34f1194 [==============================] - 45 3ms/sample - loss: 0.0049 - acc: 8.3752e
i?gdlllgd [==============================] - 45 3ms/sample - loss: ©.8851 - acc: 8.3752e
-84

10

18. Modelling on 796 observations
A. Input =1

L_close = length(x_test_close)
scaler_close = Scaled_close$scaler
predictions_closel = numeric(L_close)
for(iin 1:L_close){
X_close = x_test_close[i]
dim(X_close) = ¢(1,1,1)
yhat = model_close %>% predict(X_close, batch_size=batch_size)
invert scaling
yhat_close = invert_scaling(yhat, scaler_close, c(-1, 1))
invert differencing
yhat_close =yhat close + data$close[(n_close+i-1)]
store

predictions_closel[i] <- yhat_close

yvhat num [1, 1] @.8748

11

B. Input =2
L_close = length(x_train_close)
scaler_close = Scaled_close$scaler
predictions_close2 = numeric(L_close)
for(i in 2:L_close){
X_close = x_train_close[i]
dim(X_close) = ¢(1,1,1)
yhat = model_close %>% predict(X_close, batch_size=batch_size)
invert scaling
yhat_close = invert_scaling(yhat, scaler_close, c(-1, 1))
invert differencing
yhat_close =yhat close + data$close[(i-1)]
store

predictions_close2[i] <- yhat_close

I —

yhat_close 15.91232897861931

19. Plotting the predictions for all the 1991 observations:

12

Close Price with time

350
]

250
1

Close Price

4
L
j/
E\il

0 200 400 600 800

20. Creating the data.final for recording the absolute values which is the difference true
value and estimated value as shown in the tabulated figure below.

datefinal=seq(from = as.Date("2019-06-07"),to = as.Date("2019-07-07"),by =
lldayll)

datafinal=data.frame(date=datefinal, true_value=dataSclose[(1991-30):1991],
estimate_value=predictions_close[(1991-30):1991])

datafinalSabsol_est=abs(datafinalStrue_value-datafinalSestimate_value)

write.table(datafinal, "LSTM.csv", row.names=FALSE, sep=";",dec=".", na="")

13

10

11

12

13

14

15

16

17

18

19

il

date

2019-06-07

2019-06-05

2019-06-09

2019-06-10

2019-06-11

2019-06-12

2019-06-13

2019-06-14

2019-06-15

2019-06-16

2019-06-17

2019-06-15

2019-06-19

2019-06-20

2019-06-21

2019-06-22

2019-06-23

2019-06-24

2019-06-25

N1ANE_2 R

true_value
117.08
118.51
114.87
129.83
136.08
136.16
130.86
132.71
13835
136.95
134.19
135.13
136.83
135.78
139.07
14177
136.83
13540

135.51

120 07

estimate_value
104.1310
111.6910
117.3610
119.7405
115.1510
130.1110
1363610
139.4525
131.1410
132.9910
138.6374
137.5507
134.4710
1354110
1371116
136.0610
139.3510
144.5269

137.4061

120 £21M

14

absol_est

12.9490163
68190168
24909832
100895237
209290168
60490168
55009832
67424517
7.2090168
39590168
44474430
24207465
23590168
0.3690168
19584208
57090168
25209832
9.1268958

1.896059%

CAsnoe2 7

