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ABSTRACT

For over a decade now, Amazon Web Services
(AWS) has offered its spare capacity at a discoun-
ted price in the form of EC2 spot instances. This
discount comes at the price of variable pricing
and sudden instance termination. In this paper,
we present a machine-learning solution to one of
the challenges when using AWS Spot Instances,
namely the termination of the instance on short
notice. Our system, Spot Instance Management
System (SimS), can effectively manage spot in-
stances and keep up the availability at the de-
sired level using 100-tree Random Forest Regres-
sion model. By using a risk assessment mechan-
ism and proactive actions, SimS assures a three-
nines SLA using AWS spot instances with lower
running costs on workloads for a major European
financial institution.

INTRODUCTION

AWS EC2 spot instances have offered a
significant discount–up to 90% according to
AWS–compared to their dedicated and on-
demand/reserved models for over a decade. One
of the base assumptions behind spot instances is
that price is dynamic and can change anytime
based on available capacity and current demand
for the type of instance. Consequently, the at-
tractive pricing comes with the trade-offs related
to the availability of the spare capacity on a given
region at a given period in time.

The use of spot instances requires customers
to set a maximum instance price (per hour) they
wish to pay and also to understand the risk, e.g.
if the price of a given instance changes above
the maximum price, the instance could be sud-
denly terminated and all data lost if not saved
elsewhere. Until 2015, the instance termination
was executed without prior notification to the
customer. Since then, a different type of ter-
mination behaviours is offered, ranging from de-
fault termination through stopping the instance

to hibernation of the instance. Nonetheless, the
usage of spot instances, even if cost-effective, is
normally circumscribed to applications that are
either non-critical or designed for interruptions.

This paper presents the Spot Instance Man-
agement System (SimS) whose main goal is to
counteract the sudden/unexpected termination of
cloud services running on top of EC2 spot in-
stances. SimS employs a parallelised Random
Forest Regression [5], [6] model for continuous
response with 100 trees to predict price fluctu-
ations. In this case, rather the regression model
allows systems to swiftly detect when price would
change and calculate the risk of the instance ter-
mination, and then consider the appropriate ac-
tions to maintain a 99.9% (a.k.a three nines) Ser-
vice Level Agreement (SLA).

The actions could be live migration to another
availability zone or redeployment of spot instance
with a higher maximum bid. It is worth to notice
that all actions are done proactively, while the
risky instance is still running, therefore minim-
ising the potential downtime of any service using
EC2 spot instances.

RELATED WORK

Spot Price Prediction (SPP) has been a topic
of research since the introduction of AWS spot
instances in 2009. Yehuda et al. [1] predict the
spot price by deconstruction and reverse engin-
eering of a hypothetical spot instance algorithm
that, despite common assumptions on spot prices,
does not necessarily lead to supply- and demand-
driven fluctuations but alternatively where prices
are randomly generated from dynamic hidden re-
serve pricing. To confirm their hypothesis, they
analyse the spot market and divided it into three
pricing epochs with each epoch change at the sig-
nificant change of SPP pricing models. They ac-
knowledge that there is a market element in the
price, but prices are still driven from the hidden
reserved price.

In contrast, Singh and Dutta [13] seem not
to fully concur with Yehuda et al.’s conclusion
given that their model for dynamic price pre-
diction is accounting for global market trends
and local seasonality. The dynamic price predic-
tion model is presenting two types of predictions:
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short-term (hourly based) and long-term (a week
ahead) based on analysis of 9 months of histor-
ical data for the top ten most used spot instances.
They present the prediction result with an aver-
age 9.4% prediction error in short-term prediction
and 20% in long-term (five days and more) price
prediction.

Accurate price prediction for cloud instances
typically relies on assertive workload quantifica-
tion, which is related to the application type, e.g.
HPC [11], [12] or to extrinsic factors such as sea-
sonality or social-demographic factors [14].

Consequently, AWS spot price prediction has
been previously modelled using a moving simula-
tion model to create an artificial neural network-
based algorithm for price prediction [16]. It em-
ploys historical data available for only medium
size instances in a period of 7 months to train the
MLP model, resulting in 4% prediction error in
short-term prediction (hourly prediction) on av-
erage for medium size spot instances. This leads
to the conclusion that neural network models are
well suited for the prediction of price changes of
spot instances. Zhao et al. [17] follow a differ-
ent prediction approach by using a time-based
series forecasting method, ARIMA Model (Auto-
Regressive Integrated Moving Average) that is
lighter compared to machine learning techniques
like neural networking. Other approaches [13]
have added a seasonal component to their AR-
IMA model effectively changing it to the SAR-
IMA model. SARIMA has been used to analyse
five months of historical data and create a predic-
tion that is close to the average price for a period
of 48 hours.

Random forest regression using historic AWS
traces has been recently reported in the liter-
ature [8]. Similar approaches have previously
used Support Vector Poly Kernel Regression
(SMOReg), Gaussian Process and Linear Re-
gression [3], and multiple discrete-time model-
ling [7]. All these models have been trained for
the month with 12 months of historical data for
the three most used types of instances. Their pre-
dictions have been typically generated for short
(next hour), medium (half day) and Long (next
day) periods. Per the conclusion, the neural
network-based algorithms are performing better
than others for medium (half day predictions)
where SMOReg is better suited for predictions
with highly variable months, and random forest
regressions seem to deal better with workload
variability.

From the above analysis, we can see that there
are different heuristic approaches to prediction of
spot instance pricing, ranging from reverse en-
gineering and understanding what principles are
behind the price level, through the classical stat-
istical approach to the most modern use of artifi-

cial intelligence and machine learning techniques.
For this research, we want to prove that ML
Models, specifically Random Forest Regression,
in combination with business-driven automation
can achieve a 99.9% SLA whilst accurately pre-
dicting price and potential price variation. Our
approach has been successfully evaluated to sup-
port mission-critical cloud workloads from a ma-
jor European financial institution.

*

AWS Spot bidding strategies overview

Previous research has attempted to find the
best strategy to find a golden bid to assure spot
instance availability. Andrzejak et al. [2], ques-
tion how bidding may be conducted with strict
target dates or SLAs, focusing their research on
bidding strategies with that goal. Li et al. [10],
classify common bidding approaches into three
types:
• White box approach where bidding strategies
are taking into account interactions between dif-
ferent market participants and effectively bidding
can influence a spot price.
• Grey box approach has more individual biding
strategies wherein, contrary to the white-box ap-
proach, market interactions are not taken into ac-
count, but strategies are focusing mostly on work-
load, cost and availability of the resources.
• Black box approach, consisting of the most
common strategies which derives bidding from
historical spot pricing data and do not focus so
much on workload, cost and availability, nor on
interactions between market participants.

The five most classic strategies in the black box
approach have been discussed by Li et al. [10] and
by Voorsluys and Buyya [15]:
1. The minimum price, where the bid is based on
historical minimum spot price
2. Mean, the bid price is set as the mean of all
values of the historical spot price
3. High, the bid price on the maximum price ob-
served in historical data
4. Current, the bid price is set as the value of
current spot price
5. On-demand is the bid price equal to the on-
demand price of the instance.

The above five strategies have also been incor-
porated to the solution for reliable provisioning
of spot instances by Voorsluys and Buyya [15],
combining all five strategies with fault tolerance
techniques like migration to assure the most reli-
able solution for the limitations of spot instances.
A survey on spot pricing by Kumar et al. [9]
presents four bidding strategies: bidding on near
to reserve price; bidding on above the average
price calculated from the historical data; bidding
close to the on-demand price; and, bidding over
the on-demand price. Each of the aforementioned



LOW MEDIUM HIGH

Availability D
Integrity D

Confidentiality D
TABLE I: Business Application Critically Mat-
rix

techniques has its own benefits particularly for
the final consumer, but also its costs in terms of
the actual deployment and the business interest
of the cloud provider.

In contrast to other attempts to use machine
learning for AWS spot price prediction [4], the au-
thors researched the possibility of maintaining the
agreed service level of 99.9% that is common for
a business-critical application while savings costs
by running those applications on EC2 Instances.
The aim was to test how EC2 spot instances can
be used to reliably host mission-critical applica-
tions. Underpinned by a parallel Random Forest
Regression model, we have employed a real applic-
ation scenario borrowed from a major European
Financial Institution to validate our findings.

METHODOLOGY

• Availability: impact if information availability
is affected.
• Integrity: impact if information integrity is af-
fected.
• Confidentiality: information confidentiality
level.

The assumption is a scenario where the IT
Service Provider is responsible for providing
business-critical batch processing and ERP ap-
plication for a European Financial Institution
with agreed Availability of the service on the
level of 99.9%. The IT Service Provider and
the European Financial Institution have agreed
upon a project to run the batch processing ap-
plication using only AWS Spot Instances for the
cost-effectiveness. The criticality matrix shown
in Table I determines the application criticality
level of Availability, Integrity, and Confidential-
ity.

As seen above, the application is highly critical
to the core business of the European Financial
Institution. If the availability of the system and,
therefore, the application is compromised, the in-
stitution’s ability to operate properly is degraded,
potentially leading to significant profit loss and
reputational damage. Compromise of informa-
tion integrity may lead to substantial profit losses
as well as posing a risk to confidentiality.

Since the system holds sizeable amounts of
confidential information subject to General Data

Protection Regulation (GDPR), in case of a con-
fidentiality breach, the Institution could face legal
actions based on GDPR provisions as well as
widespread loss of customer trust, negatively im-
pacting the ability to conduct business.

Based on the criticality matrix, the following
service level requirements are presented:

• Application Criticality: High
• AWS Region: eu-central-1
• Cumulative Downtime including maintenance
3.65 days per year
• Mean Time to Respond: 2 minutes
• Mean Time to Resolve: 15 minutes

Based on the above, in the Service Level Agree-
ment (SLA), the service level has been agreed at
three nines (99.9%). The service Level has been
measured via the monitoring system site24x7 1,
which calculates system availability using HTTP
response codes and general host response.

We have deployed a Python data analysis mod-
ule based on random forest regression model us-
ing 100 trees, parallelised using 4 instances at
a time. To save computing time and costs as-
sociated with it, we have decided to limit data
analysis to only the EU-CENTRAL-1 region and
three selected types of instances c5.xlarge,

t3.micro and t3.medium.
The Spot Instance Management System

(SiMS) has been developed composed of four
main modules:

• The Data Collection Module: responsible for
downloading and aggregating historical data for
EC2 Spot prices.
• The Data Pump Module: responsible for mov-
ing collected data from S3 Landing zone Bucket
to S3 Staging Zone bucket after data collection,
where later this data is used by Data Analysis
Module for training the machine learning al-
gorithm.
• The Data Analysis Module: responsible for
analysing historical data gathered by the data
collection module and then is responsible for ap-
plying the machine learning model based on ran-
dom forest regression. Execution is started via
Amazon Lambda function that is responsible for
starting the AWS Fargate Task(Figure 1).
• The Risk Assessment and Automation module:
responsible for risk analysis of the instance inter-
ruption in each of availability zones in the con-
figured region and next for taking the appropriate
actions concerning the level of the risk(Figure 2).

The prime idea behind the system is to have
automated mechanism that with use of machine
learning, can predict the price of the spot instance
in the next hour and act accordingly by migrating
the affected spot instance to the next availability
zone. In case when all availability zones would

1https://www.site24x7.com

https://www.site24x7.com


Fig. 1: The Data Analysis Module

Fig. 2: The Risk Automation Module

Fig. 3: Instance Migration Process



be labelled as High Risk, the system will redeploy
the spot instance with a new bid price increased
by 20%.

In the worst-case scenario, where there would
be no spare capacity to spin the machine, the
system would run the on-demand machine only
when capacity is unavailable.

The risk engine is the part of the risk and auto-
mation module responsible for the calculation of
the risk of instance interruption in each of the
availability zones. The risk is calculated based on
the maximum bid price, current price, predicted
price and the threshold for each of the risks level
Low Lr, Medium Mr, and High Hr.

The risk is calculated for each of the availability
zones in a given region with the following formu-
lae using Current price (Cp), Maximum bid price
(Mb), and Prediction price(Pp) :

Lr = Cp <

(
55

100
x Mb

)
AND (Pp < Mb)

Mr = Cp >

(
55

100
x Mb

)
AND Cp <

(
8

10
x Mb

)
AND (Pp < Mb)

Hr = Cp >

(
8

10
x Mb

)
AND (Pp < Mb)

In case prediction price (Pp) is larger than the
maximum bid price, risk is calculated as High.

If current risk is Medium and there is at least
one availability zone with low-risk assessment
than migration operation is starting to that zone.
If there is no low zone, there is no action taken. If
current risk is high and low or medium zones are
available, then the migration process will move
the instance to the lowest risk zone. If the risk is
high in all availability zones, the machine is re-
deployed by the automation engine to the same
availability zone but with a 20% higher maximum
bid price. The migration process is shown in Fig-
ure 3.

EVALUATION

For simulation purposes, a Python script has
been developed to execute the following steps:
• Change the predicted price for the next full
hour to one of the values selected randomly
on every execution (on-demand price, predicted
price, maximum bid price, current price, mean of
all above).
• Execute Risk Recalculation.

After risk is recalculated, we would relay on
the automation module to evaluate and execute
necessary actions against the SimS Managed in-
stance. For the instance that is not managed (the

Fig. 4: Root Cause Analysis Report from Mon-
itoring System

Fig. 5: Outage reports of control system

control instance), the script will execute the fol-
lowing steps: evaluate if the maximum bid price
is lower than the predicted price and If the pre-
dicted price is higher, terminate the instance after
2 minutes. The authors have also included a sim-
ulation of an engineer acting on a given incident
created by the monitoring system. A manual in-
tervention required to bring the system back on-
line has been calculated to take approximately
four minutes and forty five seconds.

The data collection bucket contains landing
zone, staging store and triggers, where trigger
files at the end of the execution of data collec-
tion and data pump are stored.

To gather availability data, it was necessary to
find a monitoring system that would be independ-
ent of the solution and would provide SLA-type
reports and SLA configuration. The authors op-
ted for the Site24x7 SaaS offering and configured
it for website monitoring, checking connectivity
to HTTP ports of defined targets, response times,
DNS response time and general availability by
ping, in one minute intervals.

During the migration execution, the following
outputs are generated:

• New Temporary Amazon Image (AMI) created
based on the current instance
• New Instance deployed to target availability
zone based on the created image



Fig. 6: Cloud Watch Log representing No Ac-
tions

Fig. 7: Redeployment of Instance with new Bid
Price

• Old Instance Data removal from DynamoDB
Instances Table.

As part of the interruption of Control System,
we have the following:

• Scenario: Classic Termination of EC2 Spot In-
stance
• Actors: Simulator
• Desired Outcome: System Terminated and re-
stored

The simulation script to terminate EC2 in-
stances operates with 2 minute delays, simulat-
ing the Amazon Notification grace period. It
also later simulates the system engineer’s input
by restoring the service.

The control system during the experiment has
been terminated a number of times causing re-
ported outage (Figure 5) and unavailability of the
application.

SimS Automated Actions low Risk

• Scenario: risk Level low low low
• Actors: SimS System
• Desired Outcome: no migration initiated

Expected behaviour, if all availability zones are
low risk, then no action is taken (Figure6). As
presented above, the automation module evalu-
ated the risk and did not perform any actions.

Fig. 8: Response time monitoring of the System

Fig. 9: No outage reported by the system. Mon-
itoring system did not report system outage, the
only indication of migration is a short spike in
response time.

SimS Automated Actions High Risk

• Scenario: Risk Level high high high
• Actors: SimS System
• Desired Outcome: instance redeployed with
higher bid price, no system downtime reported
by monitoring system

During the execution, the Automation Module
will evaluate risk in all availability zone and based
on the result will move the instance to another
availability zone or redeploy to current with the
higher bid price.

In this scenario, The Sims System detected
that all availability zones in the region are high
risk. In this situation, the system is designed to
redeploy the instance with a higher bid price to
mitigate the high risk of interruption and there-
fore to maintain desired availability level by set-
ting up (migrating new instance) and reassigning
the elastic IP from Risky instance to newly de-
ployed one, therefore allowing traffic to reach the
system without any issue.

5-Day SLA Monitoring

• Scenario: 5-Day SLA Monitoring
• Desired Outcome: SLA Level of 99.9%

A simulation script has been scheduled and
running in four hour intervals affecting the classic
EC2 Spot instance as well as risk analysis data for
the SimS System. Due to random price selection,
the exact time and date of the next interruption
were not known.

Results show that usage of a proactive system
managing spot instances can prove to be valuable
if our main goals are low costs and availability of
the system using the spot instances.

We can see that if automation is designed to act
while a risky instance is still running, automated
switch-over is almost seamless but at the price



Fig. 10: 5-Day SLA Report for Control System

Fig. 11: 5-Day availability report for Control
System

Fig. 12: 5-Day SLA Report for SiMS Managed
System

of a drop in performance during the migration of
the instance.

For applications that are very response time-
sensitive this could be still the issue, as well as
for the application where data is written continu-
ously as during the migration the checkpoint (im-
age) of the machine is created and any data writ-
ten in the time between image creation and switch
over of the traffic to the newly deployed machine
would be lost.

The question in here would be the trade-off, in
case of classic spot instance the customer can face

Fig. 13: 5-Day availability report for SimS Man-
aged System

unexpected termination and if they do not have
any solution that would periodically save the data
from that instance while running they could face
complete data loss in comparing to few seconds
of loss in case of SimS Managed System, there-
fore automated system as one presented in this
research can significantly expand possibilities of
the application of spot instances as well as can
help with reduction of operational costs.

The Spot Instance Management system for its
risk analysis is using Random Forest regression-
based machine learning model, while this model
during our research proved sufficient, the model
itself was not a part of in-depth testing and there-
fore could not be as accurate as it could be
hoped. Necessary comparison testing showed us
that price predicted are the same as current prices
or difference in price is minimal.

Our prediction machine learning model re-
quires a lot of computing power, to calculate price
predictions for 150 types of EC2 spot instances
for every availability zone in EU region would re-
quire over 26 hours running in 4CPU docker con-
tainers provided by AWS. Even with those lim-



itations, it has been proved that smart, proact-
ive system that can move around spot instances
based on the predicted price and therefore risk
calculated from it, can be effective in achieving
not only 99.9% availability but even 100%

The authors’ research question poses how can
we assure SLA Level of 99.9% for service running
on EC2 Spot instance, as mentioned above and
shown in the evidence, the SimS System is able
to effectively manage spot instances and keep up
the availability on the desired level and achieve
required three nines SLA thanks to its Risk as-
sessment mechanism and proactive actions before
any terminate can happen.

With automatic bid rise in case of high risk
in all availability zone at the current stage, this
could lead to higher than desired bid price and
therefore not always attain cost-effectiveness.

CONCLUSIONS

The research question poses how a service level
of 99.9% can be assured. In the paper, the au-
thors show that, in principle, Spot instance Man-
agement system (SimS) can effectively manage
spot instances to keep an availability level of
99.9%

For a system like SimS to be effective and ac-
curate, there is a requirement for a reliable ma-
chine learning module to predict spot price in the
next hour. In hourly five-day tests, we have sim-
ulated a number of interruptions of classic EC2
spot instances, and we combined this with the
change of the risk level in availability zones to
force the SimS system to act and migrate affected
machine if are located in a high risk availability
zone. Migration is using image creation (check-
pointing).

Currently, due to the limitation in computing
power and the aim to run the system as serverless
as possible, the support for more than just a sub-
set of instances is limited by the computational
power of AWS Fargate docker containers.

Future researchers could take this solution a
step further by selecting more sophisticated ma-
chine learning models that would take into ac-
count not only the historical data but also sea-
sonality, allowing support for a more significant
number of instances and availability zones.

In our research, we have presented the theoret-
ical application of the SiMS system in the finan-
cial sector to run important CRM application. As
an overall conclusion, the authors posit that with
the minor adjustments mentioned in this chapter,
the solution could be of commercial value in a
variety of sectors where service availability, as
well as low cost, play a pivotal role.
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auto-scaling. In PDP 2018, pages 186–195, Cam-
bridge, Mar. 2018. IEEE Computer Society.

[15] W. Voorsluys and R. Buyya. Reliable provisioning
of spot instances for compute-intensive applications.
In AINA 2012, pages 542–549, Fukuoka, Mar. 2012.
IEEE.

[16] R. M. Wallace et al. Applications of neural-based
spot market prediction for cloud computing. In ID-
AACS ’13, volume 2, pages 710–716, Berlin, Sept.
2013. IEEE.

[17] H. Zhao, M. Pan, X. Liu, X. Li, and Y. Fang. Ex-
ploring fine-grained resource rental planning in cloud
computing. IEEE Transactions on Cloud Comput-
ing, 3(3):304–317, 2015.




