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Abstract

Schizophrenia is a severe psychiatric disorder associated with both structural and

functional brain abnormalities. In the past few years, there has been growing interest

in the application of machine learning techniques to neuroimaging data for the diag-

nostic and prognostic assessment of this disorder. However, the vast majority of

studies published so far have used either structural or functional neuroimaging data,

without accounting for the multimodal nature of the disorder. Structural MRI and

resting-state functional MRI data were acquired from a total of 295 patients with

schizophrenia and 452 healthy controls at five research centers. We extracted fea-

tures from the data including gray matter volume, white matter volume, amplitude of

low-frequency fluctuation, regional homogeneity and two connectome-wide based

metrics: structural covariance matrices and functional connectivity matrices. A sup-

port vector machine classifier was trained on each dataset separately to distinguish

the subjects at individual level using each of the single feature as well as their combi-

nation, and 10-fold cross-validation was used to assess the performance of the

model. Functional data allow higher accuracy of classification than structural data

Received: 15 May 2019 Revised: 23 October 2019 Accepted: 31 October 2019

DOI: 10.1002/hbm.24863

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.

Hum Brain Mapp. 2020;41:1119–1135. wileyonlinelibrary.com/journal/hbm 1119

https://orcid.org/0000-0003-3739-1087
https://orcid.org/0000-0002-5912-4871
mailto:qiyonggong@hmrrc.org.cn
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/hbm
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fhbm.24863&domain=pdf&date_stamp=2019-11-18


(mean 82.75% vs. 75.84%). Within each modality, the combination of images and

matrices improves performance, resulting in mean accuracies of 81.63% for structural

data and 87.59% for functional data. The use of all combined structural and func-

tional measures allows the highest accuracy of classification (90.83%). We conclude

that combining multimodal measures within a single model is a promising direction

for developing biologically informed diagnostic tools in schizophrenia.
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1 | INTRODUCTION

Schizophrenia is a severe psychiatric disorder, characterized by

delusions, hallucinations and disorganized thinking (Hu et al., 2016),

which affects about 1% of the world's population (Dhindsa &

Goldstein, 2016; Lieberman, Scott Stroup, & Perkins, 2006; Nowak,

Sabariego, Switaj, & Anczewska, 2016; Rajji, Miranda, & Mulsant,

2014). Its etiology and neuropathology are not well understood, even

though neuroimaging studies have revealed distributed structural and

functional brain abnormalities (Karlsgodt, Sun, & Cannon, 2010; Oh

et al., 2015; Oh et al., 2017). Schizophrenia is usually diagnosed by a

clinical examination carried out by psychiatrists. However, accurate

diagnosis can take up to 2 years due to its heterogeneous and fluctu-

ating presentation. Given the importance of providing the right treat-

ment to patients in the early stages of the illness, there is an urgent

clinical need for an objective diagnostic test that could be used to

detect the illness and reduce the risk of misdiagnosis without the

need for a long follow-up.

Within the field of biological psychiatry, there is growing interest in

the application of machine learning (ML) techniques to neuroimaging

data for the diagnosis of psychiatric illness (Arbabshirani, Castro, &

Calhoun, 2014; Kim, Calhoun, Shim, & Lee, 2016; Orru, Pettersson-

Yeo, Marquand, Sartori, & Mechelli, 2012), and the prediction of dis-

ease transition in individuals at clinical high risk (Chung et al., 2018;

Koutsouleris et al., 2009; Pettersson-Yeo et al., 2013). Over the past

decade, psychiatric disorders such as schizophrenia have been the

focus of much research on automatic diagnosis by the integration of

ML and neuroimaging (Squarcina et al., 2017; Valli et al., 2016;

Zarogianni, Moorhead, & Lawrie, 2013). The vast majority of the exis-

ting studies have applied ML techniques to a single neuroimaging

modality including structural magnetic resonance imaging (sMRI)

(Borgwardt et al., 2013; Koutsouleris et al., 2015; Schnack et al., 2014),

resting-state functional magnetic resonance imaging (fMRI) (Chyzhyk,

Grana, Ongur, & Shinn, 2015; S. Wang et al., 2016) or task-related fMRI

(Bendfeldt et al., 2015; Costafreda et al., 2011). Taken collectively, the

accuracies reported in these studies tend to be in the 60–80% range.

While a small number of studies have reported higher accuracies using

sMRI (96%; Pardo et al., 2006) and resting-state fMRI (100%; Fekete

et al., 2013), these tended to include a small number of subjects

(e.g., 18 subjects in total in Pardo et al., 2006 and 28 subjects in total in

Fekete et al., 2013) and therefore the reliability of the findings is

unclear. Considering that patients with schizophrenia show both struc-

tural and functional abnormalities (Fitzsimmons, Kubicki, & Shenton,

2013; Karlsgodt et al., 2010), accuracy might be improved by combining

different neuroimaging modalities using a multimodal ML framework.

So far, a total of four studies have attempted to do this with the aim of

detecting schizophrenia at the level of the individual patient (Du et al.,

2012; Ota et al., 2013; Qureshi, Oh, Cho, Jo, & Lee, 2017; Sui et al.,

2013). However, the results of these multimodal studies have been

inconsistent with accuracies ranging 93–98% (Du et al., 2012), 72–88%

(Ota et al., 2013), 99.29% (Qureshi et al., 2017), and 79% (Sui et al.,

2013) possibly because of the use of small samples (range: 25–72) and

different recruitment criteria, possible because of the use of small

samples (range: 25–72) and different recruitment criteria. Therefore, it

is unclear to what extent multimodal integration can boost the accuracy

of classification of schizophrenia.

In this study, we aimed to classify patients with schizophrenia and

healthy controls by combining structural (sMRI) and resting-state func-

tional (rs-fMRI) data. For sMRI, gray matter and white matter volume were

extracted and used as input for classification, whereas for rs-fMRI we used

two most widely used resting-state metrics, amplitude of low-frequency

fluctuation (ALFF) and regional homogeneity (ReHo). ALFF captures fluctu-

ations in spontaneous, low-frequency oscillations; in contract ReHo

reflects the temporal homogeneity of regional BOLD signals regardless of

their intensities. Consequently, these two measures can be used to extract

different types of information from the BOLD signal during the resting

state. In addition, in light of current neurobiological models of schizophre-

nia as a dysconnectivity syndrome (Lynall et al., 2010; van den Heuvel,

Mandl, Stam, Kahn, & Hulshoff Pol, 2010; Yu et al., 2011) and recent

advances in the application of graph-based theoretical approaches to the

human brain (E. Bullmore & Sporns, 2009; E. T. Bullmore & Bassett, 2011),

we extracted connectome-wide based metrics from the sMRI (H. Wang,

Jin, Zhang, & Wang, 2016) and rs-fMRI data (J. Wang, Zuo, & He, 2010)

and used these as additional inputs for classification.

In order to assess the reliability of the findings, we used five inde-

pendent datasets resulting in a total sample of 295 patients with

schizophrenia and 452 healthy controls. Each dataset comprised high-

resolution T1-weighted images and rs-fMRI, allowing us to examine
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classification accuracy for each modality as well as their integration.

Because schizophrenia is considered to involve structural as well as

functional brain abnormalities (Karlsgodt et al., 2010; Oh et al., 2015; Oh

et al., 2017), we hypothesized that (a) both structural and functional data

would allow single-subject classification with statistically significant

accuracy. In addition, given the existing evidence for both regional

and network-level alterations in schizophrenia (Y. Liu et al., 2008;

Micheloyannis et al., 2006; Shen, Wang, Liu, & Hu, 2010), we

hypothesized that, within each modality, (b) the combination of

voxel-wise images and connectome-wide based matrices would be

superior to the use of either voxel-wise images or connectome-wide

based matrices by themselves. Finally, based on (a) and (b), we

hypothesized that combining all structural and functional measures

within a multimodal, multimeasure model would lead to the highest

accuracy of classification.

2 | MATERIALS AND METHODS

2.1 | Participants

We used five datasets, each including patients with a diagnosis of

schizophrenia and healthy controls. The combination of the five

datasets yielded a total sample size of 747, including 295 patients

with schizophrenia and 452 healthy controls. The demographic and

clinical characteristics of the two groups for each dataset are pres-

ented in Table 1.

Dataset 1 was obtained from the Neuroimaging Informatics Tools

and Resources Clearinghouse (NITRC) website and was provided by

the Centers of Biomedical Research Excellence (COBRE; http://fcon_

1000.projects.nitrc.org/indi/retro/cobre.html). In this dataset, a diag-

nosis of schizophrenia was made using the Structured Clinical Inter-

view for DSM Disorders (SCID; Diagnostic and Statistical Manual of

Mental Disorders, DSM-IV) (M. B First et al., 2012). Exclusion criteria

included confirmed or suspected pregnancy, any history of neurologi-

cal disorders and a history of intellectual disability. Written informed

consent was obtained from participants according to institutional

guidelines at the University of New Mexico.

Dataset 2, acquired as part of the UCLA Consortium for Neuro-

psychiatric Phenomics LA5c Study, was obtained from the OpenfMRI

database (accession number: ds000030). All patients underwent a

semistructured assessment with the Structured Clinical Interview for

the Diagnostic and Statistical Manual of Mental Disorders, Fourth

Edition (DSM-IV) (Michael B First, Frances, & Pincus, 2004). Exclu-

sion criteria included left-handedness, pregnancy, history of head

injury with loss of consciousness or cognitive sequelae, or other

contraindications to scanning (Poldrack et al., 2016). After receiv-

ing a verbal explanation of the study, participants gave written

informed consent following procedures approved by the Institu-

tional Review Boards at UCLA and the Los Angeles County Depart-

ment of Mental Health.

Dataset 3 was acquired at Maastricht University, The Nether-

lands. Patients were recruited through clinicians working in selected

representative geographic areas in the Netherlands and Belgium.

Diagnosis of schizophrenia was based on DSM-IV criteria (American

Psychiatric Association, 2000), assessed with the Comprehensive

Assessment of Symptoms and History (CASH) interview (Andreasen,

Flaum, & Arndt, 1992). Exclusion criteria included confirmed or

suspected pregnancy, any history of neurological disorders, a history

of intellectual disability and/or a history of substance abuse/depen-

dence within the last 12 months. The ethics committee of Maastricht

University approved the study, and all the participants gave written

informed consent in accordance with the committee's guidelines and

the Declaration of Helsinki.

Dataset 4 was acquired in Dublin and scanned at the Trinity

College Institute of Neuroscience as part of a Science Foundation

Ireland-funded neuroimaging genetics study (“A structural and func-

tional MRI investigation of genetics, cognition and emotion in schizo-

phrenia”). Patients with confirmed DSM-IV diagnosis of schizophrenia

were recruited through local clinical services. Exclusion criteria

included confirmed or suspected pregnancy, any history of neurologi-

cal disorders or intellectual disability and substance misuse in the pre-

ceding 3 months. Participants provided written, informed consent in

accordance with local ethics committee guidelines.

Dataset 5 was acquired at the West China Hospital of Sichuan

University, Chengdu, China. An initial diagnosis of schizophrenia and

duration of illness were determined by consensus between two experi-

enced psychiatrists, using the Structured Clinical Interview for DSM-IV

(SCID)-Patient Version (American Psychiatric Association, 2000). In addi-

tion, diagnosis of schizophrenia was confirmed for all the patients at

1-year follow-up. Exclusion criteria were the existence of a neurological

disorder or other psychiatric disorders, alcohol or drug abuse (DSM-IV),

pregnancy, and any chronic physical illness such as a brain tumor, hepati-

tis, or epilepsy, as assessed by clinical evaluations and medical records.

The study was approved by the ethics committee of West China Hospi-

tal, and written informed consent was obtained from all participants.

2.2 | MRI data acquisition

At each site, the high-resolution three-dimensional T1-weighted

images and rs-fMRI images were acquired. Dataset 1 was acquired

using a 3T Siemens scanner. The sequence parameters were as fol-

lows: repetition time/echo time (TR/TE) = 2530/1.64 ms, flip angle

(FA) = 7�, 256 axial slices with slice, thickness = 1 mm, field of view

(FOV) = 25.6 × 25.6 cm2 and data matrix = 256 × 256, voxel

size = 1 × 1× 1 mm3. Dataset 2 was acquired using a 3 T Siemens

scanner. The sequence parameters were as follows: repetition time/

echo time/inversion time (TR/TE/TI) = 2530/3.31/1100 ms, flip angle

(FA) = 7�, 256 axial slices with slice, thickness = 1 mm, field of view

(FOV) = 25.6 × 25.6 cm2 and data matrix = 256 × 256, voxel

size = 1 × 1× 1 mm3. Dataset 3 was acquired using a 3 T Siemens

Magnetom Allegra head scanner. The sequence parameters were as fol-

lows: repetition time/echo time/inversion time (TR/TE/TI) = 2250/

2.6/900 ms, flip angle (FA)=8�, 192axial sliceswith slice, thickness=1 mm,

field of view (FOV) = 25.6 × 25.6 cm2 and data matrix = 256 × 256, voxel
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size = 1 × 1× 1 mm3. Dataset 4 was acquired using a 3T Philips Intera

Achieva scanner. The sequence parameters were as follows: repetition

time/echo time (TR/TE) = 8.4/3.8 ms, flip angle (FA) = 8�, 180 axial slices

with slice, thickness = 0.9 mm, field of view (FOV) = 23 × 23 cm2 and data

matrix = 256 × 256, voxel size = 0.9 × 0.9 × 0.9 mm3. Dataset 5 was

acquired using a 3T GE scanner (EXCITE; General Electric, Milwaukee,

Wisconsin). The sequence parameters were as follows: repetition time/

echo time (TR/TE) = 8.5/3.4 ms, flip angle (FA) = 12�, 156 axial slices with

slice, thickness = 1 mm, field of view (FOV) = 24 × 24 cm2 and data

matrix = 256 × 256. The final matrix of T1-weighted imageswas automati-

cally interpolated in plane to 512 × 512, which yields an in-plane resolu-

tion of 0.47 × 0.47 mm2.

At each site, the same scanner used to collect the high-resolution

three-dimensional T1-weighted images was also employed to acquire

the rs-fMRI images. Dataset 1was acquired by repetition time/echo time

(TR/TE) = 2000/30 ms; flip angle = 90�; 33 axial slices per volume; voxel

size = 3.75 × 3.75 × 4.55 mm3; number of volumes = 150. Dataset

2 was acquired by repetition time/echo time (TR/TE) = 2000/30 ms; flip

angle = 90�; 34 axial slices per volume; voxel size = 3 × 3 × 4 mm3; num-

ber of volumes = 152. Dataset 3 was acquired by repetition time/echo

time (TR/TE) = 1500/30 ms; flip angle = 90�; 27 axial slices per volume;

voxel size = 3.5 × 3.5 × 5.2 mm3; number of volumes = 200. Dataset

4 was acquired by repetition time/echo time (TR/TE) = 2000/30 ms; flip

angle = 90�; 35 axial slices per volume; voxel size = 3.5 × 3.5 × 3.5 mm3;

number of volumes = 180. Dataset 5 was acquired by repetition time/

echo time (TR/TE) = 2000/30 ms; flip angle = 90�; 30 axial slices per vol-

ume; voxel size = 3.75 × 3.5 × 5 mm3; number of volumes = 200.

2.3 | MRI data analysis

Six individual measures were analyzed using support vector

machine, including structural covariance matrix, gray matter and

white matter volume, which are extracted from sMRI data, and func-

tional connectivity matrix, ALFF and ReHo, which were extracted

from rs-fMRI data (Figure 1).

2.3.1 | Extraction of voxel-wise measures from
structural data

Structural images were processed using Statistical Parametric Map-

ping software (SPM8; http://www.fil.ion.ucl.ac.uk/spm). In brief, indi-

vidual structural images were first segmented into gray matter

(GM) and white matter (WM) using the unified segmentation model

(Ashburner & Friston, 2005). The resulting GM and WM maps were

then normalized to the Montreal Neurological Institute (MNI) space

using a high-dimensional “DARTEL” approach and subjected to

nonlinear modulation to compensate for spatial normalization effects.

Finally, the GM and WM data were resampled to 1.5 mm3 voxels and

spatially smoothed (Gaussian kernel with a full width at half maximum

of 6 mm). The preprocessed GM and WM volume images would then

be used as features for theML analyses.

2.3.2 | Extraction of covariance matrix from
structural data

Following the preprocessing of the structural data, we constructed

large-scale morphological brain networks for each participant based

on their GM volume images. First, to define the network nodes, we

parcellated the brain into different regions of interests (ROIs) in terms

of automated anatomical labeling (AAL) 90 atlas. Next, to estimate

internodal network edges, we utilized a Kullback–Leibler divergence-

based (Kullback & Leibler, 1951) similarity measure to quantify mor-

phological connectivity between two regions (Kong et al., 2014),

which generated a 90 × 90 morphological brain networks matrix for

each individual (H. Wang, Jin, et al., 2016).

2.3.3 | Functional data preprocessing

Image preprocessing was performed using SPM8 and DPARSF soft-

ware (http://restfmri.net/forum/dparsf_v2_2) (Chao-Gan & Yu-Feng,

2010). The first 10 time points were discarded to minimize the

impact of the instability in the initial MRI signal. The remaining

images were corrected for intravolume acquisition time delay. To

minimize the potential impact of head motion artifacts—a recognized

challenge in rs-fMRI analyses (Power, Barnes, Snyder, Schlaggar, &

Petersen, 2012; Satterthwaite et al., 2013), we applied Friston

24-parameter correction (Yan, Craddock, He, & Milham, 2013) and

the “head motion scrubbing” method proposed by Power and col-

leagues (Power et al., 2014) to ensure that motion artifacts were not

contributing to the group differences we observed. For each partici-

pant, volumes with framewise displacement (FD) greater than

0.5 mm were identified and excluded. After these corrections, the

images were spatially normalized to a 3 × 3 × 3 mm3 MNI 152 tem-

plate and then linearly detrended and temporally bandpass filtered

(0.01–0.08 Hz) to remove low-frequency drift and high-frequency

physiological noise. Finally, the global signal, the white matter signal,

the cerebrospinal fluid (CSF) signal and the motion parameters (1.5

translational and 1.5 rotational parameters) were regressed out (Fox,

Zhang, Snyder, & Raichle, 2009). None of the subjects included in

the present investigation showed excessive head motion during

scanning (defined as translational movement >1.5 mm and/or rota-

tion >1.5�).

2.3.4 | Extraction of voxel-wise measures from
functional data

ReHo maps were extracted from the preprocessed images using

DPARSF software. After removing linear trends in the unsmoothed

images and applying a bandpass filter (0.01 < f < 0.08 Hz) to the data

to reduce low-frequency drift and high-frequency respiratory and car-

diac noise, ReHo maps were generated by calculating the concor-

dance of Kendall's coefficient (with values ranging from 0 to 1) of the

time series of a given voxel with those of its 26 nearest neighbors.
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The ReHo value of each voxel was then standardized by dividing this

value by the global (within the brain) mean ReHo value.

The ALFF was also calculated using DPARSF software. After

application of a band-pass filter (0.01–0.08 Hz) and removal of linear

trends, the time series were transformed to the frequency domain

using fast Fourier transforms (FFTs). The square root of the power

spectrum was calculated and was then averaged across 0.01–0.08 Hz

for each voxel. This averaged square root was referred to as ALFF.

Finally, the ALFF of each voxel was standardized by dividing it by the

global (within the brain) mean ALFF value for further statistical

analysis.

2.3.5 | Extraction of functional connectivity
matrices from functional data

The graph theoretical network analysis was performed using GRETNA

software (http://www.nitrc.org/projects/gretna/) (J. Wang et al.,

2015). First, the whole brain was divided into 90 cortical and subcorti-

cal ROI—each representing a network node—using the AAL atlas.

Next, to define the edges of the network, we extracted the mean time

series of each region and calculated Pearson's correlations of the

mean time series between all pairs of nodes. This process resulted in a

90 × 90 weighted correlation matrix for each subject.

2.4 | Support vector machine

We performed all machining learning analyses using Python program-

ming language, and made the scripts publicly available on https://

github.com/Warvito/integrating-multi-modal-neuroimaging. For each

dataset, we used support vector machine (SVM) (Cortes & Vapnik,

1995) to perform single-subject classification. SVM maps the input

vectors to a feature space using a set of mathematical functions

known as kernels. In this feature space, the model finds the optimum

separation surface that can maximize the margin between different

classes within a training dataset. Once the separation surface is deter-

mined, it can be used to predict the class of new observations using

an independent testing dataset. Here a linear kernel was preferred to

a nonlinear one to minimize the risk of overfitting. The model was

based on LIBSVM (Chang & Lin, 2011) and implemented by the Scikit-

Learn library (Pedregosa et al., 2012).

During the multiple measure analysis, we combined the SVM predic-

tions of single measures using a weighted averaging method (i.e., soft

voting), as a previous study had reported that this method appeared to

be slightly more effective than either sum of kernels or multikernel learn-

ing (MKL) (Pettersson-Yeo et al., 2014). In this approach, we first trained

each SVM using a single measure; this allowed us to estimate the likeli-

hood of an individual belonging to the patient or control group (the likeli-

hood was calculated using Scikit-Learn library default method). Then, we

calculated the weighted probabilities of each specific measure by multi-

plying its predicted probabilities by a coefficient (see Section 2.4.1 for

how this was optimized). Finally, we calculated the average of the

predicted weighted probabilities, and the group with the highest score

was defined as the predicted class for a given subject.

2.4.1 | Evaluation of the support vector machines

For each SVM model, we used an independent set of individuals to

perform a nonbiased assessment the performance. Specifically, a

10-fold stratified cross-validation scheme was used to separate the

original samples (of each dataset) in 10 nonoverlapping partitions. In

each iteration of the scheme, one partition was considered as the

independent test set (where the performance metric is calculated),

and the remaining subjects were defined as the training sample.

Within each training set, we performed an internal cross-

validation (i.e., 10-fold stratified nested cross-validation) to select the

optimal set of hyperparameters of the ML models. The linear SVM has

only one hyperparameter (the soft margin parameter C) that controls

the trade-off between reducing training errors and having a larger

separation margin. This parameter was optimized performing a grid

search in the following range of values: C = 10−3, 10−2, 10−1, 1, 101,

102, 103, 104. At the end of this internal cross-validation, we had the

optimum C value for each input measure.

When we performed a multiple measure analysis, after the grid

searches for the C parameter, a second nested cross-validation was

performed to optimize the coefficient of each specific measure for the

soft voting. Each coefficient was evaluated using a grid search with a

coefficient search space assuming an integer value between 1 and 10.

This second nested cross-validation was also performed using a

scheme of 10-fold stratified cross-validation. In both nested cross-val-

idation, the highest mean balanced accuracy of the model was used to

find the best hyperparameter value.

After these nested cross-validation steps, an SVM model with

the optimal set of values of the hyperparameters was trained using

the whole training set. Its performance was assessed on the test set

in terms of balanced accuracy, specificity, and sensitivity. The

reported balanced accuracy, specificity, and sensitivity are the mean

values of the metrics calculated on each partition of the cross-

validation scheme. Statistical significance was estimated using

permutation testing (1,000 permutations). The whole training pro-

cess was performed 1,000 times with the subject labels permuted.

The p-values were then obtained by dividing the number of times

that the permuted version was better than the original performance

by the number of permutations.

2.4.2 | Controlling for age and sex effects

For each measure of brain function (i.e., whole brain images,

connectome-wide matrices or graph-based metrics) in each dataset,

we build a regression model that represented how the measure varied

with age and sex, and subtracted age- and gender-related variance

from the actual measures. This was done using the Gaussian process

regression method and kernel function that were used in a previous
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investigation (Kostro et al., 2014), with the regression model based on

control subjects only. The resulting residuals would then be used as

features for the ML analyses.

2.4.3 | Using different datasets for training and
testing

In this study, the five datasets were acquired using different scanners

and different scanning parameters. Because site-related differences

TABLE 2 Single-subject classification of patients with
schizophrenia and healthy controls across different measures

Measures

BAC

(%)

SENa

(%)

SPECa

(%) P valueb

Struct M Dataset 1 77.26 61.67 92.86 <.001

Dataset 2 60.88 34.67 87.09 <.001

Dataset 3 81.50 63.00 100.00 <.001

Dataset 4 81.25 65.00 97.50 <.001

Dataset 5 74.65 61.11 88.18 <.001

Average 75.11 57.09 93.13

Pooled 55.94 45.73 66.14 =.02

Stratified 56.74 44.79 68.70 <.001

GM Dataset 1 83.45 68.33 98.57 <.001

Dataset 2 67.26 40.67 93.85 <.001

Dataset 3 81.17 64.00 98.33 <.001

Dataset 4 84.17 68.33 100.00 <.001

Dataset 5 76.38 56.67 96.09 <.001

Average 78.49 59.60 97.37

Pooled 59.11 41.43 76.79 <.001

Stratified 58.84 43.26 74.42 <.001

WM Dataset 1 73.36 52.62 94.64 <.001

Dataset 2 61.59 29.33 93.85 <.001

Dataset 3 77.04 55.50 98.57 <.001

Dataset 4 77.71 56.67 98.75 <.001

Dataset 5 79.92 66.67 93.18 <.001

Average 73.92 52.16 95.80

Pooled 56.31 40.85 71.76 =.003

Stratified 55.68 40.05 71.31 =.004

Struct M +

GM + WM

Dataset 1 87.59 82.14 93.04 <.001

Dataset 2 64.40 35.67 93.13 <.001

Dataset 3 86.92 80.50 93.33 <.001

Dataset 4 86.94 75.00 98.89 <.001

Dataset 5 82.32 80.00 84.64 <.001

Average 81.63 70.66 92.61

Pooled 58.39 51.67 65.11 <.001

Stratified 58.17 50.67 65.66 <.001

Func M Dataset 1 88.21 79.29 97.14 <.001

Dataset 2 76.35 55.00 97.69 <.001

Dataset 3 85.25 70.50 100.00 <.001

Dataset 4 81.87 65.00 98.75 <.001

Dataset 5 83.65 71.11 96.18 <.001

Average 83.07 68.18 97.952

Pooled 58.58 45.15 72.01 <.001

Stratified 58.00 45.86 70.15 <.001

ReHo Dataset 1 84.07 68.14 100.00 <.001

Dataset 2 79.46 62.00 96.92 <.001

Dataset 3 83.25 66.50 100.00 <.001

Dataset 4 82.36 65.83 98.89 <.001

(Continues)

TABLE 2 (Continued)

Measures

BAC

(%)

SENa

(%)

SPECa

(%) P valueb

Dataset 5 81.78 65.56 98.00 <.001

Average 82.18 65.61 98.76

Pooled 54.42 35.50 73.34 =.039

Stratified 54.25 35.7 72.8 <.001

ALFF Dataset 1 86.90 73.81 100.00 <.001

Dataset 2 78.62 63.33 93.90 <.001

Dataset 3 82.92 67.50 98.33 <.001

Dataset 4 86.25 72.50 100.00 <.001

Dataset 5 80.32 65.56 95.09 <.001

Average 83.00 68.54 97.46

Pooled 57.49 39.52 75.47 <.001

Stratified 56.75 38.98 74.52 <.001

Func M +

ReHo + ALFF

Dataset 1 92.14 88.57 95.71 <.001

Dataset 2 78.93 64.67 93.19 <.001

Dataset 3 87.64 81.00 94.29 <.001

Dataset 4 90.28 84.17 96.39 <.001

Dataset 5 88.97 86.67 91.27 <.001

Average 87.59 81.02 94.17

Pooled 57.73 52.66 62.40 <.001

Stratified 57.96 52.44 63.49 <.001

Struct M + GM +

WM + Func M +

ReHo + ALFF

Dataset 1 95.71 94.29 97.14 <.001

Dataset 2 79.74 63.33 96.15 <.001

Dataset 3 94.29 90.00 98.57 <.001

Dataset 4 92.92 85.83 100.00 <.001

Dataset 5 91.50 90.00 93.00 <.001

Average 90.83 84.69 96.97

Pooled 59.38 52.38 66.39 <.001

Stratified 58.27 52.33 64.21 <.001

Abbreviations: ALFF, amplitude of low-frequency fluctuation; BAC,

balanced accuracy; Func M, functional connectivity matrix; GM, gray

matter; Pooled, pooled the five datasets; ReHo, regional homogeneity; SEN,

sensitivity; SPEC, specificity; Stratified, site-stratified cross-validation;

Struct M, structural covariance matrix; WM, white matter.
aSensitivity and specificity were computed considering the patient group

as the positive class.
bStatistical significance was estimated using the permutation method

(1,000 permutations).
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are likely to be larger than differences between patients and controls,

we did not expect it would be feasible to use subjects from one site

as training sample and subjects from another site as testing sample.

Nevertheless, we explored the feasibility of this by using different

datasets as training and testing data, and 10-fold cross-validation was

used to assess the performance of the model.

2.4.4 | Which brain regions provided the greatest
contribution to single-subject classification?

In order to explore which brain regions contributed to single-

subject classification, we computed the mean absolute value of the

weights of the multimodal and multimeasure model, which yielded

the highest balanced accuracy across the five datasets. For matrix-

based measures (i.e., structural covariance and functional connec-

tivity), we computed the mean absolute value of the weights for

each brain region with the remaining 89 regions across the differ-

ent folds of the cross-validation. In contrast, for voxel-wise mea-

sures (GM, WM, ReHo, and ALFF), we computed the mean

absolute values of the weights of the model across the different

folds of the cross-validation, and then we used a template mask

based on the AAL atlas to extract the value of weight for each

brain regions. The 10 brain regions with the highest mean values,

computed by averaging the weights across the five datasets, are

going to be reported.

3 | RESULTS

3.1 | Classification performance

Individual measures. Seven hundred and forty-seven participants

(295 patients with schizophrenia; 452 healthy controls) from five different

research sites were included in the analysis. The balanced accuracies, sensi-

tivities, specificities, and p-values for the single-subject classification of

patients and healthy controls are reported in Table 2. It can be seen that the

balanced accuracy reached statistical significance for each of our six mea-

sures of interest, namely GM, WM, structural covariance matrix, ReHo,

ALFF, and functional connectivity matrix. This finding was replicated across

eachof the five independent datasets.When the results for the fivedatasets

were averaged, the mean balanced accuracy was 75.11% for structural

covariance matrix, 78.49% for GM, 73.92% for WM, 83.07% for functional

connectivity matrix, 82.18% for ReHo, and 83% for ALFF. This pattern of

results suggests that, overall, functional data allow higher accuracy of classi-

fication than structural data (mean 82.75%vs. 75.84%).

3.1.1 | Multimeasure integration within a single
modality

When combining the three measures extracted from structural images,

namely GM, WM, structural covariance matrix, the balanced accuracy

reached statistical significance for each of the five datasets (Table 2). Here

the mean balanced accuracy of the five datasets was 81.63%. Likewise,

when combining the three measures extracted from functional images,

namely ReHo, ALFF and functional connectivity matrix, the balanced

accuracy reached statistical significance for each of the five datasets.

Here the mean balanced accuracy of the five datasets was 87.59%. This

pattern of results suggests that, within structural or functional modalities,

the combination of connectome-wide based matrices and voxel-wise

images allows a marginally higher accuracy of classification than the use

of either connectome-wide based matrices or voxel-wise images alone.

3.1.2 | Multimodal and multimeasure integration

When combining all measures across structural and functional modali-

ties, balanced accuracies reached statistical significance for each of

the five datasets (Table 2). Here the averaging of the results across

the five datasets resulted in the highest accuracy of classification

(90.83%). Therefore, multimodal integration resulted in higher accu-

racy of classification than the use of single modalities, either structural

(90.83% vs. 81.63%) or functional (90.83% vs. 87.59%).

3.1.3 | Using different datasets for training
and testing

The results are reported in Table 3; it can be seen that, as we

expected, an algorithm developed using one dataset does not perform

F IGURE 1 Overview of the employed classification approach.
Overview of the classification approach employed to estimate the
diagnostic value of fMRI and rs-fMRI data. ALFF, amplitude of low-
frequency fluctuation; Func M, functional connectivity matrix; GM,

gray matter; ReHo, regional homogeneity; rs-fMRI, resting-state
functional MRI; sMRI, structural MRI; Struct M, structural covariance
matrix; WM, white matter
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TABLE 3 Single-subject classification of patients with schizophrenia and healthy controls using different training dataset across different
measures

Measures Training dataset Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

Struct M Dataset 1 57.60 56.8 63.69 55.95

Dataset 2 56.05 57.71 56.36 54.41

Dataset 3 60.58 54.90 54.91 52.71

Dataset 4 57.48 52.71 54.54 55.75

Dataset 5 51.76 54.38 57.03 64.78

GM Dataset 1 62.26 64.74 63.82 56.31

Dataset 2 52.98 53.06 54.69 50.62

Dataset 3 61.07 55.49 52.88 52.19

Dataset 4 53.76 51.79 56.12 52.22

Dataset 5 51.55 57.66 56.12 57.21

WM Dataset 1 52.19 63.27 64.06 53.04

Dataset 2 55.88 57.14 55.65 55.62

Dataset 3 53.68 53.19 51.32 50.62

Dataset 4 58.25 50.51 58.16 52.78

Dataset 5 50.78 56.01 55.10 50.00

Struct M + GM + WM Dataset 1 65.48 67.46 69.22 59.12

Dataset 2 50.78 52.04 54.69 51.11

Dataset 3 68.46 56.03 63.57 53.76

Dataset 4 57.43 52.68 58.16 52.78

Dataset 5 52.29 58.17 58.16 51.68

Func M Dataset 1 61.63 63.27 57.57 50.62

Dataset 2 54.41 54.08 59.38 52.22

Dataset 3 54.45 53.22 59.73 56.11

Dataset 4 59.56 55.25 55.10 52.22

Dataset 5 56.62 57.55 52.27 52.25

ReHo Dataset 1 56.30 62.93 61.30 51.67

Dataset 2 50.74 51.02 54.69 50.56

Dataset 3 56.62 56.01 59.38 51.73

Dataset 4 57.35 58.17 53.06 50.56

Dataset 5 52.21 54.73 50.23 53.12

ALFF Dataset 1 67.48 62.47 65.14 57.25

Dataset 2 56.62 52.04 58.17 52.29

Dataset 3 62.50 57.41 72.10 53.79

Dataset 4 50.00 54.46 50.00 50.56

Dataset 5 52.21 54.98 50.00 49.76

Func M + ReHo + ALFF Dataset 1 69.45 77.44 65.61 56.5

Dataset 2 58.09 51.02 59.38 51.18

Dataset 3 66.22 66.37 66.94 53.53

Dataset 4 55.15 58.55 53.06 52.22

Dataset 5 57.35 58.58 50.45 50.72

Struct M + GM + WM + Func M + ReHo + ALFF Dataset 1 64.45 72.11 65.14 55.26

Dataset 2 51.47 50.00 53.12 51.11

Dataset 3 64.01 58.69 62.26 50.00

Dataset 4 57.35 52.68 53.06 51.67

Dataset 5 51.47 56.25 54.08 50.96

Abbreviations: ALFF, amplitude of low-frequency fluctuation; Func M, functional connectivity matrix; GM, gray matter; ReHo, regional homogeneity;

Struct M, structural covariance matrix; WM, white matter.
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TABLE 4 Ten brain regions making the greatest contribution to single-subject classification across the different measures

Struct M Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Mean

Median cingulate and paracingulate gyri L 0.0191 0.0383 0.0488 0.0516 0.0184 0.0352

Paracentral lobule L 0.0171 0.0503 0.0453 0.0308 0.0264 0.0340

Heschl gyrus R 0.0197 0.0448 0.0490 0.0323 0.0193 0.0330

Heschl gyrus L 0.0142 0.0496 0.0342 0.0430 0.0239 0.0330

Calcarine L 0.0200 0.0615 0.0348 0.0258 0.0211 0.0326

Median cingulate and paracingulate gyri R 0.0133 0.0507 0.0349 0.0388 0.0240 0.0323

Angular gyrus R 0.0243 0.0470 0.0354 0.0345 0.0196 0.0322

Middle frontal gyrus R 0.0099 0.0722 0.0284 0.0222 0.0264 0.0318

Angular gyrus L 0.0174 0.0596 0.0343 0.0202 0.0208 0.0305

Temporal pole: Middle temporal gyrus R 0.0137 0.0531 0.0348 0.0276 0.0226 0.0304

GM Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Mean

Superior occipital gyrus R 0.0123 0.0285 0.0279 0.0134 0.0148 0.0194

Calcarine L 0.0069 0.0385 0.0131 0.0129 0.0146 0.0172

Inferior temporal gyrus L 0.0144 0.0157 0.0115 0.0159 0.0131 0.0141

Inferior temporal gyrus R 0.0177 0.0115 0.0129 0.0137 0.0105 0.0132

Middle temporal gyrus L 0.0084 0.0095 0.0127 0.0141 0.0166 0.0123

Inferior parietal L 0.0124 0.0085 0.0090 0.0103 0.0135 0.0108

Anterior cingulate and paracingulate gyri R 0.0226 0.0066 0.0058 0.0078 0.0065 0.0099

Caudate L 0.0011 0.0170 0.0086 0.0121 0.0091 0.0096

Inferior frontal gyrus, triangular part L 0.0212 0.0042 0.0095 0.0101 0.0003 0.0091

Anterior cingulate and paracingulate gyri L 0.0085 0.0043 0.0181 0.0052 0.0033 0.0079

WM Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Mean

Inferior temporal gyrus R 0.0108 0.0224 0.0250 0.0263 0.0013 0.0171

Temporal pole: Middle temporal gyrus R 0.0023 0.0430 0.0134 0.0059 0.0102 0.0150

Inferior temporal gyrus L 0.0007 0.0154 0.0208 0.0186 0.0135 0.0138

Temporal pole: Middle temporal gyrus L 0.0105 0.0369 0.0118 0.0056 0.0007 0.0131

Superior occipital gyrus R 0.0015 0.0369 0.0147 0.0040 0.0072 0.0129

Middle temporal gyrus L 0.0094 0.0116 0.0143 0.0128 0.0064 0.0109

Inferior frontal gyrus, opercular part R 0.0131 0.0035 0.0188 0.0125 0.0066 0.0109

Middle temporal gyrus R 0.0123 0.0017 0.0086 0.0191 0.0124 0.0108

Inferior parietal R 0.0099 0.0059 0.0121 0.0157 0.0078 0.0102

Supplementary motor area R 0.0228 0.0145 0.0023 0.0054 0.0012 0.0093

Func M Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Mean

Thalamus L 0.0109 0.0128 0.0115 0.0083 0.0145 0.0116

Thalamus R 0.0114 0.0117 0.0096 0.0086 0.0144 0.0112

Inferior temporal gyrus L 0.0113 0.0101 0.0099 0.0089 0.0151 0.0111

Middle temporal gyrus L 0.0096 0.0130 0.0102 0.0066 0.0151 0.0109

Temporal pole: Middle temporal gyrus 0.0118 0.0115 0.0092 0.0087 0.0131 0.0109

Middle temporal gyrus R 0.0117 0.0122 0.0074 0.0071 0.0151 0.0107

Cuneus R 0.0099 0.0090 0.0115 0.0091 0.0137 0.0106

Temporal pole: Superior temporal gyrus L 0.0094 0.0125 0.0100 0.0071 0.0138 0.0106

Precentral gyrus L 0.0091 0.0107 0.0099 0.0084 0.0131 0.0102

Inferior frontal gyrus, orbital part L 0.0092 0.0116 0.0094 0.0065 0.0145 0.0102

ReHo Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Mean

Thalamus L 0.1273 0.1553 0.0634 0.1094 0.0871 0.1085

Thalamus R 0.0600 0.1052 0.0581 0.1256 0.0549 0.0808

(Continues)
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well when applied to other datasets. Therefore, in our manuscript, we

have opted to analyze and report the five datasets separately; this

allowed us to detect reliable effects that were expressed across the

different datasets.

3.1.4 | Brain regions providing the greatest
contribution to single-subject classification

The 10 brain regions with the highest mean values across the five

datasets are reported in Table 4 and represented graphically in

Figure 2. It can be seen that, within the structural modality, the brain

regions contributing to single-subject classification varied across our

three measures of interest. Only the inferior temporal gyrus and

middle temporal gyrus were detected consistently across GM and

WM measures. In contrast, within the functional modality, the thala-

mus featured consistently across our three measures of interest.

In addition, the inferior temporal gyrus (functional matrices and

ReHo), middle temporal gyrus (functional matrices and ALFF) and

putamen (ReHo and ALFF) were detected in two of our three

measures of interest. Taken collectively, these results suggest that

the pattern of regions contributing to single-subject classification is

dependent on the specific structural or functional measure being

employed.

4 | DISCUSSION

In the present article, we aimed to classify patients with schizophrenia

and healthy controls by combining sMRI and rs-fMRI data. In order to

assess the reliability of the findings, we used five independent datasets.

Consistent with our first hypothesis, all measures extracted from

structural or functional data allowed single-subject classification with

statistically significant accuracy (range: 73.92–83.07%). The finding

that both structural and functional measures allow detection of

schizophrenia at the level of the individual is consistent with previous

studies that used either type of data on its own (J. Liu et al., 2017;

Rish & Cecchi, 2017; Schnack et al., 2014; Takayanagi et al., 2011;

Venkataraman, Whitford, Westin, Golland, & Kubicki, 2012).

However, our investigation extends the results of these previous

studies by showing for the first time that functional data allow a

higher accuracy of classification than structural data. Interestingly, the

single measure that achieved the highest performance of classification

was functional connectivity matrix (83.07%). This is consistent with

the notion that schizophrenia cannot be explained in terms of local-

ized dysfunction within specific brain areas and is better understood

as a disruption of network-level functional properties (Rish & Cecchi,

2017). In their examination of the relationship between functional and

structural brain networks, Wang and colleagues have reported that

functional connectivity profiles are largely shaped but not fully

TABLE 4 (Continued)

ReHo Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Mean

Gyrus rectus R 0.0545 0.0670 0.0499 0.1184 0.0941 0.0768

Superior temporal gyrus L 0.0693 0.0849 0.0824 0.1046 0.0359 0.0754

Superior parietal gyrus L 0.0470 0.0814 0.0596 0.0776 0.0851 0.0701

Putamen R 0.0122 0.0737 0.0256 0.0439 0.1440 0.0599

Superior frontal gyrus, medial orbital R 0.0542 0.0668 0.0522 0.0400 0.0435 0.0513

Inferior temporal gyrus L 0.0906 0.0371 0.0327 0.0337 0.0456 0.0479

Middle temporal gyrus R 0.0013 0.0321 0.0425 0.0247 0.0560 0.0313

Putamen L 0.0237 0.0148 0.0298 0.0202 0.0428 0.0263

ALFF Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Mean

Calcarine L 0.0103 0.0270 0.0102 0.0102 0.0225 0.0160

Superior parietal gyrus L 0.0126 0.0150 0.0125 0.0158 0.0159 0.0144

Putamen R 0.0084 0.0124 0.0100 0.0076 0.0292 0.0135

Calcarine R 0.0103 0.0234 0.0096 0.0067 0.0076 0.0115

Caudate R 0.0116 0.0058 0.0133 0.0061 0.0196 0.0113

Putamen L 0.0009 0.0119 0.0063 0.0027 0.0270 0.0098

Lingual gyrus R 0.0123 0.0034 0.0128 0.0078 0.0068 0.0086

Thalamus L 0.0104 0.0049 0.0036 0.0059 0.0126 0.0075

Caudate L 0.0108 0.0058 0.0096 0.0056 0.0048 0.0073

Precuneus L 0.0107 0.0124 0.0007 0.0060 0.0006 0.0061

Note: All brain regions are identified using AAL (automated anatomical labeling). For matrix-based measures (i.e., Struct M and Func M), the vectors are

absolute values of the weights for the connectivity between each brain region and the remaining 89 regions across the different folds of the cross-

validation. For voxel-wise measures (i.e., GM, WM, ReHo, and ALFF), the vectors are computed using a template mask based on the AAL atlas to extract

the absolute value of weight for each brain regions across the different folds of the cross-validation.

Abbreviations: ALFF, amplitude of low-frequency fluctuation; Func M, functional connectivity matrix; GM, gray matter; L, left hemisphere; R, right

hemisphere; ReHo, regional homogeneity; Struct M, structural covariance matrix; WM, white matter.
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determined by structural pathways (Z. Wang, Dai, Gong, Zhou, & He,

2015). This suggests that measures of structural connectivity may be

complementary to measures of functional connectivity in the classifi-

cation of individual patients (Cabral et al., 2016; Mitra et al., 2016). In

the present investigation, the use of structural covariance matrix

resulted in a mean balanced accuracy of 75.11%. This may confirmed

the promising results of previous studies that had investigated this

measure in individuals at familial risk for schizophrenia (Tijms et al.,

2015) and patients with Alzheimer's disease (Tijms, Moller et al.,

2013; Tijms, Wink et al., 2013; Tijms et al., 2014; Tijms et al., 2016).

Consistent with our second hypothesis, within each modality the

combination of voxel-wise images and connectome-wide based matri-

ces marginally improved performance. Specifically, combining voxel-

wise images and connectome-wide based matrices within the structural

modality improved accuracy to 81.63%, whereas combining voxel-wise

images and connectome-wide based matrices within the functional

modality improved accuracy to 87.59%. To our knowledge, no previous

studies have combined voxel-wise images and connectome-wide based

matrices to detect psychiatric or neurological disorders at the level of

the individual. However, we know that the vast majority of psychiatric

and neurological illnesses are associated with a combination of the

regional and network-level brain (Fornito & Bullmore, 2015; Worbe,

2015). The results of our investigation, therefore, raise the possibility

that the integration of these two types of information might also

improve detection in other psychiatric and neurological illnesses.

Different neuroimaging modalities may capture different aspects

of neuropathology and therefore may provide complementary infor-

mation for detecting schizophrenia at the level of the individual

patient. Recent studies had shown the advantages of using a multi-

modal approach for classifying Alzheimer's disease (Dai et al., 2012;

D. Zhang, Wang, Zhou, Yuan, & Shen, 2011), Parkinson's disease

(Long et al., 2012), PTSD (Q. Zhang et al., 2016) and schizophrenia

(Qureshi et al., 2017). Consistent with our third hypothesis, we found

that the highest accuracy (90.83%) of classification was achieved

when combining all structural and functional measures within a multi-

modal, multimeasure model. Therefore, combining multimodal mea-

sures within a single model appears to be a promising direction for

improving classification of individual patients with schizophrenia.

However, we note that the higher accuracy of classification resulting

from multimodal integration does not necessarily imply clinical utility

in real-world clinical practice. The clinical utility of a clinical test

depends on several aspects such as the ability to generate a “diver-

gent prediction” and inform subsequent interventions (Mechelli, Prata,

Kefford, & Kapur, 2015). The eventual development of tools for

detecting schizophrenia at the level of the individual, therefore, will

ultimately require higher levels of diagnostic and prognostic

F IGURE 2 Regions providing the greatest contribution to single-subject classification. Ten brain regions making the greatest contribution to
single-subject classification for each of our six measures of interest. The nodes were mapped onto the cortical surfaces by using the BrainNet
Viewer package (http://www.nitrc.org/projects/bnv). ACG, anterior cingulate and paracingulate gyri; ALFF, amplitude of low-frequency
fluctuation; ANG, angular gyrus; CAL, calcarine; CAU, caudate nucleus; CUN, cuneus; DCG, median cingulate and paracingulate gyri; Func M,
functional connectivity matrix; GM, gray matter; HES, Heschl gyrus; IFGoperc, inferior frontal gyrus, opercular part; IFGtriang, inferior frontal
gyrus, triangular part; IPL, inferior parietal gyrus; ITG, inferior temporal gyrus; L, left hemisphere; LING, lingual gyrus; MFG, middle frontal gyrus;
MTG, middle temporal gyrus; ORBinf, inferior frontal gyrus, orbital part; ORBsupmed, superior frontal gyrus, medial orbital part; PCL, paracentral
lobule; PCUN, precuneus; PreCG, Precental gyrus; PUT, putamen; R, right hemisphere; REC, gyrus rectus; ReHo, regional homogeneity; SMA,
supplementary motor area; SOG, superior occipital gyrus; SPG, superior parietal gyrus; STG, superior temporal gyrus; Struct M, structural
covariance matrix; THA, thalamus; TPOmid, temporal pole: middle temporal gyrus; TPOsup, temporal pole: superior temporal gyrus; WM, white
matter
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accuracies than those reported in the existing literature. This could be

achieved, for example, by combining neuroimaging measures with

other types of data using a multivariate supervised ML framework.

In addition, we explored which regions provide the greatest con-

tribution to single-subject classification. Within the structural modal-

ity, the brain regions providing the greatest contribution varied across

our three measures (i.e., GM, WM, and structural covariance matrix).

In contrast, within the functional modality, we found that the thala-

mus was among the areas providing the greatest contribution to clas-

sification based all three functional measures (i.e., ReHo, ALFF, and

functional connectivity matrix). Alterations in thalamic functional con-

nectivity are a key feature of psychotic disorders (Woodward &

Heckers, 2016) and include both reduced prefrontal-thalamic connec-

tivity and increased sensorimotor-thalamic connectivity (Woodward,

Karbasforoushan, & Heckers, 2012). These alterations are also evident

in individuals at clinical high risk for schizophrenia, especially those

who later go on to convert to psychosis (Anticevic et al., 2015), and

therefore are thought to represent a marker of future risk. In addition

to the thalamus, the inferior temporal gyrus and middle temporal gyrus

contributed to classification in most of our functional measures of inter-

ested. The middle temporal gyrus and inferior temporal gyrus subserve

a range of cognitive functions, including language processing, semantic

memory, and multimodal sensory integration, that are impaired in

patients with schizophrenia relative to healthy controls (Kuroki et al.,

2006; Onitsuka et al., 2004). Interpretation of these findings must take

the multivariate nature of our analytical method into account. While

standard mass univariate techniques consider each voxel as a spatially

independent unit, multivariate methods such as support vector machine

may be additionally based on inter-regional correlations. An individual

region may therefore display high discriminative power due to two pos-

sible regions: (a) a difference in volume between groups in that region;

(b) a difference in the correlation between that region and other areas

between groups. Thus, discriminative networks should be interpreted

as a spatially distributed pattern rather than as individual regions. Taken

collectively, these findings confirm that both subcortical and cortical

networks are implicated in the neuropathology of schizophrenia at the

individual level—consistent with current neurobiological models of the

disease (Howes & Murray, 2014).

In the present study, when we pooled the five datasets, use site-

stratified cross-validation and used leave-one-dataset-out cross-vali-

dation, the performance was very poor. This can be explained by the

fact that the five datasets were acquired using different scanners and

different scanning parameters, resulting in site-related differences

larger than the differences between patients and controls. This aspect

of our findings indicates that intersite differences remain a critical

challenge in the development of imaging-based clinical tools and their

translational implementation in real-world psychiatry. Future multisite

imaging studies might benefit from the use of novel methods for

removing site-related differences, such as feature harmonization (Xia

et al., 2019; Yamashita et al., 2019).

The present study has several limitations. First, our data were

acquired at five different sites using different scanners and acquisition

parameters; on the other hand, the use of independent datasets

allowed us to demonstrate the replicability of our findings. Second,

the graph theoretical analysis of sMRI data was implemented using

so-called spatial similarity methods (Kong et al., 2014; H. Wang, Jin,

et al., 2016); however, there are alternative graph analytic methods

based on intracortical similarity (Tijms, Series, Willshaw, & Lawrie,

2012) that could be used in the future to confirm our findings. In addi-

tion, our graphic theoretical analyses were based on the use of

Pearson's correlations. Again, there are alternative approaches, such

as partial correlation matrices and binary topology metrics, that could

be considered in future studies. Third, since our investigation included

both structural and functional data, we performed node selection

using the AAL atlas, which can be applied to both modalities. Future

studies could use alternative approaches such as newly developed

functional parcellation (Gordon et al., 2016) to assess the reliability of

our findings. Fourth, antipsychotics medication may lead to changes in

brain structure (Ho, Andreasen, Ziebell, Pierson, & Magnotta, 2011)

and function (Vogel et al., 2016). However, our results were consis-

tent across the five datasets including Dataset 5 in which all patients

were medication-naive; this suggests that our findings are unlikely to

be explained by the effects of antipsychotic medication. Finally, a

major challenge in the application of ML to high-dimensional neuroim-

aging data is the risk of overfitting that is, the learning of irrelevant

fluctuations within a dataset that limits generalizability to other

datasets. Here we minimized such risk through the use of region-level

features, which are associated with less noise and lower risk of over-

fitting, rather than voxel-level data, which are associated with more

noise and higher risk of overfitting (Vieira, Pinaya, & Mechelli, 2017).

In addition, the fact that our results were replicated in five indepen-

dent samples, with the use of 10-fold cross-validation in each dataset,

provides some reassurance about the reliability of the findings.

In conclusion, the present study demonstrates that functional mea-

sures allow classification of schizophrenia at the individual level with

greater accuracy than structural measures, and that multimodal integra-

tion of voxel-wise images and connectome-wide based matrices

improves accuracy relative to single-modality classification. These find-

ings are consistent across five datasets with a multimodal model of the

disease that includes structural and functional alterations that are

expressed at regional and network-level. We propose that combining

multimodal measures within a single model appears to be a promising

direction for improving classification of individual patients with schizo-

phrenia. However, the eventual development of clinical tools for

detecting schizophrenia and informing treatment will ultimately require

higher levels of accuracies than those reported in the present investiga-

tion. This might be achieved by combining neuroimaging measures with

other types of data within a multivariate supervised ML framework.
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