

Configuration Manual

MSc Academic Internship

MSc CYBERSECURITY

Oluwaseun Odunibosi

Student ID: X18123970

School of Computing

National College of Ireland

Supervisor: Mr VIKAS SAHNI

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

OLUWASEUN ODUNIBOSI

Student ID:

X18123970

Programme:

Msc CYBERSECURITY

Year:

2019

Module:

ACADEMIC INTERNSHIP

Lecturer:

VIKAS SAHNI

Submission Due
Date:

12/12/2019

Project Title:

CLASSIFICATION OF EMAIL HEADERS USING RANDOM FOREST
ALGORITHM TO DETECT EMAIL SPOOFING

Word Count:

1951 Page Count: 19

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

……

Date:

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Forename Surname

Student ID:

1 SYSTEM CONFIGURATION
The system configuration of the system used is Windows 10, 64bits Operating System,

ICORE 5 with 8BIT RAM and 500 GIG hard drive.

2 INSTALLING REQUIRED SOFTWARE
The various software to be used in the research will be installed as shown below,

2.1 DOWNLOAD PYTHON 3.8.0

Python version 3.8.0 must be downloaded on user system following the steps below.

Download Python version 3.8.0 from this site.1

• Select “Latest python 3 Release – Python 3.8.0”, Scroll down to Files and click on

“Windows X86-64 executables installer” as shown below

FIG. 1: shows download page of Python.

• Once downloaded, go to the location the file is saved and click on the installer.

1 https://www.python.org/downloads/windows/

https://www.python.org/downloads/windows/

2

• Select “Install launcher for all users (recommended)” and Select ‘Install Now’ which

include installation of IDLE, pip and documentation and creates shortcuts and file

associations as shown in the Fig. 2.

FIG. 2: Shows the installation process

• If “Add python 3.8.0 is selected”, then then the installation directory will be added to your PATH.

• You will see a screen showing the installation process, when installation is finished, a screen showing
as shown below in Fig. 3 will appear on the screen.

FIG.3: Installation Successful

Running Python Application

• Click close and navigate to the windows command prompt.

• Once the command prompt is opened, execute this command to check if python is

working and version installed as shown below.

3

FIG. 4: Shows Python application is working and the Version

User may encounter an alert during installation that instruct user to “Remove the

MAX_PATH Limitation” before installation can continue. This is because Windows has path

length of 260 characters and any paths longer than 260 would result in error. If encountered;

In latest version of Windows, this limitation, user can expand this limitation using like 32,000

characters. Activate the “enable Win32 long paths” group policy. This can also be resolved

by setting the registry key value

(HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem@LongPaths

Enabled) to 1.

2.2 DOWNLOAD PYCHARM VERSION 2019.3

• Download the PyCharm Version 2019.3 from this site2

• Click Download Now.

• Click on the Download Button under the Community Edition. Only free trial of

Professional edition will be available if you select that except you want to purchase.

FIG. 5: PyCharm Installation

• Double click on the Downloaded PyCharm, a pop up will appear on the screen as shown below. Click

next

2 https://www.jetbrains.com/pycharm/

https://www.jetbrains.com/pycharm/

4

• Choose the location where installation will be saved, I recommend choosing the

suggested location. Click next when done.

FIG. 7: Location to Save

• Select the first and the third options as shown in the diagram below and click next.

The first option will create a desktop shortcut where user can easily navigate to

PyCharm. The third option will create association so that when Python file is opened,

it will automatically open in PyCharm.

5

FIG. 8: Installation process

• Select the start menu folder and click Install, I recommend leaving the default on the

screen “JetBrains”

FIG. 9: Selecting Start Menu Folder

FIG. 9: Shows Installation Process

6

• Once installation is done, a message that PyCharm is installed is shown. Click

“Finish”. If you want to run the PyCharm application immediately, click “Run

PyCharm Community Edition” first before you click “Finish”

FIG. 10: PyCharm Installation finished.

Running PyCharm Application

• User will get a message box asking about import settings when you run the PyCharm

application for the first time. Select “Do not Import Settings” and click Ok.

FIG. 11: PyCharm Import Setting

• Some initial configuration will have to be performed when running the PyCharm for

the first time as shown below. Select the Customization menu that suit you (Dracula

or Light) and click next featured plugins. I recommend skipping remaining setup and

Set all as Default shown on the bottom left of the screen.

7

FIG. 12: Configuration Setting

• A intro screen will appear on the screen for PyCharm. Click on “Create New Project”

FIG. 13: New Project Screen

• Select location where the project created will be saved, change the name of the

“Untitled” to “MyProject” and on the “Project Interpreter: New Virtualenv

environment” dropdown and select “Inherit global site-packages” and “Make

available to all projects”. PyCharm would have found the Python interpreter installed

earlier in section 1 and this must appear in the base interpreter. If nothing is showing

in the base interpreter field, then it must be resolved before you click “Create”.

8

FIG. 14: New Project Creation.

• The PyCharm environment is shown once the “Create” button is selected, close the

tips menu so you can have access to the PyCharm main environment.

FIG. 15: PyCharm Environment

• To create and run the Email_Spoofing_Classifier_final of this research, navigate

“File” menu and select “New” and select “Python File”.

9

FIG. 16: Creating a program

• A menu will appear where you will need to type in the python file name then click

“Python file” as seen below

FIG. 17: Python File name Creation

• This brings the user to the new created Python file named

“Email_Spoofing_Classifier_final”. This menu is where user will start building the

code for the research.

10

FIG. 18: The Python Menu for coding

3 CODE FOR THE RESEARCH WORK
The code below will be pasted on the Email_Spoofing_Classifier_final python menu. The

code must be as specified below except the FROM_EMAIL and FROM_PWD field which

must be changed to user own Gmail username and Password. Note that some of this code are

general convention of using the module imported so they are not change. More information

can be found in the code reference or in this site.3

3.1 Email_Spoofing_Classifier_final python

import smtplib

import time

import imaplib

import email

import csv

from datetime import datetime

import randforest as rf

import argparse

GMail login

Tittle: How to Read Email From Gmail Using Python, 2017. . Code Handbook.

Author: JAY

Date: 2017

#Availability:https://codehandbook.org/how-to-read-email-from-gmail-using-

python/#comment-4217804161

--

3https://codehandbook.org/how-to-read-email-from-gmail-using-python/#comment-4217804161

https://codehandbook.org/how-to-read-email-from-gmail-using-python/#comment-4217804161

11

SMTP_SERVER = "imap.gmail.com"

SMTP_PORT = 993

FROM_EMAIL = "cainersteph@gmail.com"

FROM_PWD = "Stephen-1901"

Save message to CSV file

--

def save_output(filename, row):

 with open(filename, 'a') as f:

 writer = csv.writer(f)

 writer.writerow(row)

Read mails from GMAIL Inbox

--

def read_mails(filename, email_counts):

 # Handle connection exception

 try:

 # connect to smtp server

 mail = imaplib.IMAP4_SSL(SMTP_SERVER)

 # Login

 mail.login(FROM_EMAIL, FROM_PWD)

 mail.select('inbox')

 # Search for emails

 type, data = mail.search(None, 'ALL')

 mail_ids = data[0]

 # Process emails

Tittle:How to Read Email From Gmail Using Python, 2017. . Code Handbook.

Author: JAY

Date: 2017

#Availability:https://codehandbook.org/how-to-read-email-from-gmail-using-

python/#comment-4217804161

--

 id_list = mail_ids.split()

 first_email_id = int(id_list[0])

 latest_email_id = int(id_list[-1])

12

 # Fetch emails from latest to old

 for i in range(latest_email_id, first_email_id, -1):

 typ, data = mail.fetch(str(i), '(RFC822)')

 if (email_counts > 0):

 for response_part in data:

 if isinstance(response_part, tuple):

 # Decode message from response string

 msg = email.message_from_string(response_part[1].decode('utf-

8').strip())

 # Prepare output to CSV file

 email_subject = msg['subject']

 email_from = msg['from']

 email_to = msg['to']

 msg_id = msg['message-id']

 date = msg['date']

 # Message

 csv_content = [email_from, email_to, email_subject, msg_id, date]

 print("Reading and storing messages in " + filename)

 # Save message to CSV file

 save_output(filename, csv_content)

 # Progress report

 print()

 print("Successfully written to " + filename + ": " + str(csv_content))

 else:

 break

 email_counts = email_counts - 1;

 except Exception as e:

 print(str(e))

 return filename

def main():

 # initiate the parser

 parser = argparse.ArgumentParser()

 parser.add_argument("-e", "--emails", help="Input the number of emails to read")

 parser.add_argument("-d", "--dump", help="Provide an exist email header dump

file")

 # Execute command line arguments

 args = parser.parse_args()

13

 if (args.emails):

 email_counts = int(args.emails)

 else:

 # Default email counts

 email_counts = 1000

 if (args.dump):

 # Read emails for local file

 filename = args.dump

 print("Email header file to classify: {}".format(filename))

 else:

 # Read emails from gmail

 # Create csv file

 filename = "csvfile_{}.csv".format(datetime.now().strftime("%H-%M-%S"))

 # CSV Fields

 fields = ['From', 'To', 'Subject', 'Message-ID', 'Date']

 save_output(filename, fields)

 filename = read_mails(filename, email_counts)

 # New line

 print()

 # Prompt the user to decide on data classification

 confirm = input("Do you want to classify the data as well? (Yes or No) ");

 confirm = confirm.lower()

 if ("yes".find(confirm) != -1): # classifly data if yes

 rf.random_forest_algo(filename)

if __name__ == "__main__":

 main()

3.2 Creating the Random Forest Algorithm

Following the procedure used in creating Email_Spoofing_Classifier_final above.

• Repeat procedures carried out in Fig. 16

• Follow procedure on Fig. 17 but change the name of the new python file to be created

to “randomforest” as shown below

14

FIG. 19: Creation of randomforest python file

• Put in this code below
import warnings
from sklearn.exceptions import DataConversionWarning
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.metrics import classification_report, confusion_matrix,
accuracy_score

#turn off warning error
warnings.simplefilter("ignore")

def random_forest_algo(filename):
 df = pd.read_csv(filename)
 df.head()

 with pd.option_context('display.max_rows', 1000):
 print (df)
#Spliting data to test and training set
 X, y = make_classification(n_samples=1000, n_features=2,
n_informative=2, n_redundant=0, random_state=5)
 X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.3)
 X_train
 X_test
 classifier = RandomForestClassifier(n_estimators=20, random_state=5)
 classifier
 classifier.fit(X, y)
 print(classifier.feature_importances_)

 y_prediction = classifier.predict(X_test)
 y_prediction

15

 # Accuracy
 print(metrics.accuracy_score(y_test, y_prediction))
 classifier.apply(X)
 classifier.get_params(deep=True)
 classifier.predict_log_proba(X)
 classifier.predict_proba(X)
 classifier.score(X, y)

 # Confusion Matrix
 print(confusion_matrix(y_test,y_prediction))
 print(classification_report(y_test,y_prediction))
 print(accuracy_score(y_test, y_prediction))

4 SECURE LESS APPLICATION ON GMAIL

ACCOUNT.
User must be log in to Gmail account before carrying out the following process.

• Login to Gmail account from the browser.

• Sign in with Username and Password.

• Once the inbox of Gmail is opened, navigate to “Google Account” on the upper right

of the gmail menu and click “Manage your Google Account”

• A new screen is opened showing Personal info, Data and personalization etc. Select

“Security” and scroll down to “Less secure app access”. Click on “Turn on” and go

back to inbox. It is important to turn on less secure application for our code to capture

user received mail.

5 RUN THE Email_Spoofing_Classifier_final CODE.

The final stage is to go back to the opened Email_Spoofing_Classifier_final code in PyCharm

• Highlight the “Email_Spoofing_Classifier_final” and right click on it and on the

dropdown menu, click “Run Email_Spoofing_Classifier_final”.

16

FIG. 22: Executing the code

• The result of executing the Email_Spoofing_Classifier_final code will be shown at

the bottom on the “Run Terminal”.

FIG. 23: Results Of code Execution

• In the course of execution of the code User is prompted on the Run terminal if

classification of mails should be carried out. User should write Yes and click enter.

17

FIG. 24: Confirmation of Classification

• The extracted email saved in CSV can also be viewed as below.

FIG. 25: CSV format email

