

CLASSIFICATION OF EMAIL

HEADERS USING RANDOM FOREST

ALGORITHM TO DETECT EMAIL

SPOOFING

MSc Academic Internship

CYBERSECURITY

 OLUWASEUN ODUNIBOSI

Student ID: X18123970

School of Computing

National College of Ireland

Supervisor: Mr VIKAS SAHNI

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

OLUWASEUN ODUNIBOSI

Student ID:

X18123970

Programme:

MSC CYBERSECURITY

Year:

2019

Module:

ACADEMIC INTERNSHIP

Supervisor:

VIKAS SAHNI

Submission Due
Date:

12/12/2019

Project Title:

CLASSIFICATION OF EMAIL HEADERS USING RANDOM FOREST
ALGORITHM TO DETECT EMAIL SPOOFING

Word Count:

5429 Page Count: 17

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

……

Date:

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

CLASSIFICATION OF EMAIL HEADERS USING

RANDOM FOREST ALGORITHM TO DETECT

EMAIL SPOOFING.

OLUWAEUN ODUNIBOSI

X18123970

Abstract

Email has become a tool for communication in and around the world in general. The use of email as
medium of communication has increased despite the availability of other means of communication

like social media and electronic messages. Email has come to stay and so also the threats which come

with the use of emails. With the increase in emails, threats like email spoofing, phishing and
spamming are on the rise. Researchers have proposed various method for management of email

threats which involves classification and filtering of email to deal with the problem.

The motivation of this research is that it that email header contains very important information which

can be used in the detection of email spoofing. This paper successfully extracts email header from
user inbox using python script, saves the email header in CSV format and successfully classifies user

inbox messages using random forest algorithm to detect spoofed or legitimate mail. It also looks at the

performance of the script on overhead of the resources it is executed on.

1 Introduction
Email is an essential form of communication in terms of information exchange globally. A

typical user receives 20-40 email messages in a day. For business and larger organizations,

more email is received and sent out. This has increased the working times in processing these

mails. As popularity increases, there has also been an increase in mails consisting of

irrelevant, spoofed and phishing mail, hence a good classification method is needed to

identify these mails. Sean Micheal Kerner (2019)1 said email users continue to be one of the

easiest marks for cybercrime according to latest cybersecurity research.

Email header is a snippet in an email document which holds information such as recipient,

sender, routing information and some authentication protocols.2 An email header has fields

that are mandatory like FROM, TO, DATE while the others are not compulsory and widely

used like CC and SUBJECT. With this information at hand, an attacker can spoof email

header to trick user into thinking the mail is coming from a legitimate source. The method

mostly used in this act is email spoofing. Email Spoofing is said to be the forgery of email

header by an attacker tricking the user of the mail into thinking the mail is from another

source. A user may be tricked into believing a mail is coming from a legitimate source and

click on the link or attachment which may redirect user to another site or download malicious

content on user computer system. This can be used for fraudulent ways by the attacker

through some other attack like phishing, spear phishing attack and spamming. Therefore,

many researches have been carried out in order to detect spoofing in mails using method like

1 https://www.esecurityplanet.com/threats/email-major-attack-vector-security-research.html
2 https://whatismyipaddress.com/email-header

https://www.esecurityplanet.com/threats/email-major-attack-vector-security-research.html
https://whatismyipaddress.com/email-header

2

volatile memory forensics, creation of Sender Policy Framework (SPF) record for all IP

address within the organization domain and authenticating the IP address with SPF record of

your organization domain and creating a DKIM key and policy which messages can be

signed with3. This has to an extent helped in detection of email spoofing, but issues still arise

like what if system shutdown in the course of acquisition of email header from the memory or

user deletes evidence of spoofed mail and shutdown the system before investigation can

occur, and are the techniques for spoofing email adequate to tackle this issue?

This research uses a script written in python language to acquire the email header of received

mails from user inbox, save in a CSV file and use random forest algorithm for classification

of email spoofing.

Random forest algorithm which is an ensembled algorithm is based on the construction of

many decision trees in the process of training data and final decision is made using decision

of the majority tree. Random forest algorithm can also be called a supervised learning where

you have a lot of data and this data are split into training and test set. It reduces overfitting

(i.e. time of training data is short) and accuracy is high hence the use of the algorithm in our

research.

RESEARCH QUESTION

This paper solves the problem that arise from previous research work where user system must

be powered on through the entire process of acquisition of memory and classification of

spoofed email. The methodology checks the performance of random forest algorithm in the

classification of email spoofing extracted from received mails in user Gmail base on accuracy

and to further ascertain the accuracy; confusion matrix will be analyzed. It also checks the

performance of the python script on overhead of the system resources used.

This paper is organized as follows, Section II guides us through the related works, Section III

put us through the methodology, Section IV takes us through Implementation, Section V

takes us through the Design Specification, Section VI includes Evaluation, Section VII takes

us through Discussion of our findings and Section VIII guides us through Conclusion and

future work.

Figure 1: Shows a typical Email Header content.

(SOURCE: https://ieeexplore.ieee.org/document/7435764)

3 https://ironscales.com/blog/machine-learning-email-spoofing-ceo-fraud/

https://ieeexplore.ieee.org/document/7435764
https://ironscales.com/blog/machine-learning-email-spoofing-ceo-fraud/

3

2 Related Work

Some significant work has been done in the past as it relates to email spoofing and email

header classification and are discussed below in the subsections below.

2.1 MEMORY FORENSICS

Several researches have been carried out as it pertains to email spoofing attack, recently;

memory forensics approach have been used in acquiring evidence from volatile (RAM)

memory of user machine during cyber investigation. (Mishra et al., 2012) proposed a method

which uses an investigative algorithm to check for spoofed addresses in an email by carrying

out analysis on email header features. This research was carried out by using dataset (spoofed

and legitimate) email from there lab. Four email header field was taken into consideration for

their research and are DMARC, DKIM signature and received SPF fields, the proposed

algorithm looked for valid value of the field and any invalid value is categorized as

unauthorized mail. The algorithm was able to find address spoofed email. The limitation of

this research is that not all network traffic can be captured in the network. Additionally,

(Jayan and Dija, 2015) proposed different kinds of methods in the identification of spoofing

and this was done by analyzing email header. This work focused on email forensics which

comes under network forensics. One method proposed was analysis of date and time stamp

inside the email header, the proposed method calculate time taken for mail to be received

from the sender and compare it with time taken to receive a mail from sending machine. Any

deviation from the norm may denote spoofing. Another method proposed was checking

domain names inside the received field of email header, a DNS lookup and reverse DNS

lookup was done to detect evidence of email spoofing, received field of email address

contains IP address that relates to the domain name and if there is any mismatch in the IP

address information relating to the domain name, then the mail is categorize as been spoofed.

This technique was seen to provide good solution to identification of email spoofing.

Subsequently, (Iyer et al., 2017) proposed a method that extract critical evidence from

volatile memory of a machine. This method acquires client volatile memory of client machine

on a scheduled bases using a forensic tool called Memoryze Mandiant and captured memory

dump is scrutinized to detect spoofing attack. The captured memory is first converted to

ASCII using Stringtools and then analyzed for evidence of spoofed mail. Spoofed mail was

detected and saved in a log file for cyber investigators use. This method guarantees non

repudiation. User cannot deny receiving or replying a spoofed email. There result showed

that the scheme took 12 minutes to accurately detect spoofed email while preventing false

positive and there was no interruption in the functioning of the computer system used. The

main limitation of employing this method proposed is that there is no guarantee that system

will not power off in the course of capture of volatile memory. This proposed method also

skipped some emails when this method was used to process relatively great number of newly

received emails in a single execution.

2.2 MACHINE LEARNING ALGORITHM

Machine learning as evolved in resent time and has been used in the classification of email.

(Washha et al., 2012) proposed a powerful email header features by using publicly available

datasets and applied several machine learning classifiers on header features extracted, this

result of this research was evaluated based on performance of the classifiers used. Random

forest, Decision tree, voting feature Interval, Random tree, REPTree, Bayesian Network and

4

Naïve Bayes was used. The result of the proposed method shows that Random forest

classifier performed best with accuracy, precision, recall, F-measure of 99.27%,

99.40%.99.50%. Subsequently, (Mishra and Thakur, 2013) proposed a method for

classification of Spam and legitimate mail. The paper used dataset which consist of 9324

records and 500 attributes to train and test the model. The research used three machine

leaning algorithm (naïve Bayes, random forest and random tree) on the dataset. The

conclusion from the simulation result shows that random forest classifier has more efficiency

of 96.389% more than naïve Bayes with 91.664%. Additionally, (Dada and Joseph, 2018)

proposed the use of random forest algorithm for classification of email in 2018. Their

research was to create a spam filter with better prediction accuracy with a smaller number of

features. Dataset from Enron which contains 5180 emails consisting of ham, Spam and

normal emails was extracted and random forest algorithm was applied on them using WEKA

data mining and simulation, data was normalized and unwanted value or fields was removed

before putting data into WEKA, dataset was then split into training set and test set before

using the random forest algorithm to classify data. The performance of the random forest

algorithm resulted in an accuracy of 99.2%, a false positive of 0.01 which is relatively low,

true positive if 0.999 which is high. With the above performance of the algorithm used in

their research, it was concluded that random forest can be used in both mail server or mail

client to reduce Spam and spoofing.

Below shows a table of related works, task performed and how the propose methodology will

better the previous works done.

Table 1: SHOWS RELATED WORK DONE AND PROPOSED WORK

WORK TASK EXTRACTION
OF EMAIL
HEADER

CLASSIFICATION
OF EMAIL

Surekha. Gupta;

Emmanuel S.

Pilli (2014)

Algorithm to check Email header
in DMARC, SPF and DKM for
invalid values.

YES NO

Apeona Jayan;

Dija S (2014)

Analysed email header based on
date and time stamp and
performed DNS lookup

YES NO

R. Padmavathi

Iyer; Manoj

Mistra (2017)

Acquired memory dump of
system, convert to ASCII and
analyzed for evidence

YES NO

Dada E; Joseph

S (2018)

Use of random forest algorithm
to create a better classification for
email

NO YES

Proposed

Method

Extract Email header from User
received mail, store in csv format
and use random forest algorithm
for classification

YES YES

5

3 Research Methodology
The methodology this propose research will be using is divided into phases as described

below.

Figure 2: Shows process flow of the proposed methodology.

1. USER LOGIN WITH EMAIL ADDRESS

A user must login to email address on the target machine of the target machine before

extraction of Gmail Inbox. The script for extraction of inbox only works for Gmail

and not any other email provider. After login in the user must, user will click on the

‘Manage your Google Account’ on the Gmail interface, select security on the menu

by the left and scroll down to Less Secure App Access, this must be turned on for the

extraction process to be successful. A user must login in order to find email

information after live capture in the volatile memory. The Gmail email provider is

selected for this research because it is widely accepted and mostly used according to

statistics by Gmail Statistic and Trend (2019)4.

2. SCRIPT FOR EXTRACTION OF GMAIL INBOX: the script written in Python

language will be used in extraction of Gmail inox messages, Python 3.6 64 bit will be

downloaded on the system for this purpose5. Python module will have to be imported

for this script for work and are Imaplib which put into effect a client for

communicating with IMAP servers I version 4. The email library which manages the

email messages, the CSV library which put into effect the classes to read and write

data in tabular format. The datetime library which uses a strftime () format string.

The argparse library which will be used to parse command line arguments and the

smtplib which handles sending email between mail servers.6

3. CLASSIFICATION USING RANDOM FOREST ALGORITHM: The random forest

algorithm is written in python language and will be run on the PyCharm platform. The

PyCharm can be downloaded from7, The free open source is downloaded for this

4 https://techjury.net/stats-about/gmail-statistics/

5 https://www.python.org/downloads/release/python-360/
6 https://docs.python.org/3/library/
7 https://www.jetbrains.com/pycharm/download/#section=windows.

 TARGET USER LOG
INTO GMAIL BOX

PREPARATION OF
SCRIPT TO EXTRACT
USER INBOX MESSAGES

CLASSIFICATION USING
RANDOM FOREST
ALGORITHM

RESULT AND EVALUATION

https://techjury.net/stats-about/gmail-statistics/
https://www.python.org/downloads/release/python-360/
https://docs.python.org/3/library/
https://www.jetbrains.com/pycharm/download/#section=windows.

6

research. For our random forest algorithm written in python language to function well

on PyCharm, we must import libraries and the libraries to be use are Pandas,

RandomForestClassifier, make_classification, train_test_split, metrics, classification

report, confusion matrix and accuracy_score. Pandas stand for Python Data Analysis

library and it will help us to structuring our data, changes our CSV file to a python

object rows and column called dataframe. RandomForestClassifier will be use for

classification of our dataset. Make_classification will be used to generate a random n-

class classification for our dataset. Train_test_split will split our dataset into training

test and test set, Metric library is used to evaluate the performance of our random

forest algorithm. Classification report library is used to compare our classification

model visually and Accuracy_score will be used to check the accuracy of our result.

4. EVALUATION OF RESULT: The following performance metrics used by Washha

(2017) will be use in classifying our algorithm. Below are the equations to use for the

performance metrics:

Accuracy = TP + TN

 TP + TN + FP + FN

Recall = TP

 TP + FN

Precision = TP

 TP + FP

 False Positive = FP

 FP + TN

 False Negative = FN

 FN + TP

 F- Measure = 2* Precision* Recall

 Precision + Recall

Where:

TP (True Positive): number of Spoofed mails correctly classified.

FP (False Positive): number of Spoofed mails incorrectly classified.

FN (False Negative): number of legitimate mails incorrectly classified.

TN (True Negative): number of legitimate mails that are correctly classified.

Accuracy: Is the fraction of all messages classified by the classifier.

Recall: If the number of actual spoofed mail and actual legitimate mails is correctly

classified, what is the percentage of the spoofed, legitimate mail?

Precision: Probability that a legitimate, spoofed mail is misclassified.

4 Design Specification
The design of the python script for extraction of email header and classification using random

forest algorithm is described below. The full script for the extraction and classification of email

header can be found in the configuration manual. Some of the code use in this research follow

7

general convention of using the module download and therefore no change was done on them.

More information on this codes can be found on this site.8

Various libraries as explained in the methodology are imported into our code, Figure 3 shows the

various libraries used in the program
import smtplib
import time
import imaplib
import email
import csv
from datetime import datetime
import randforest as rf
import argparse

Figure 3: shows various libraries imported for the script.

The user will need to provide login details of the Gmail in the correct format in the configuration

section as shown in Figure 4 below;
#GMail login

#Tittle:How to Read Email From Gmail Using Python, 2017. . Code Handbook.
#Author: JAY
#Date: 2017
#Availability: https://codehandbook.org/how-to-read-email-from-gmail-using-
python/#comment-4217804161

SMTP_SERVER = "imap.gmail.com"
SMTP_PORT = 993
FROM_EMAIL = "cainersteph@gmail.com"
FROM_PWD = "Analogue-1234"

Figure 4: shows login details for Gmail, port and Server

Line 30-44 specify the filename the extracted email is been sent to, number of emails to send and

how error is handled in the course of extracting email from user inbox. Figure 5 shows the line of

code that handles that reading of the mail from inbox and error handling.

Read mails from GMAIL Inbox

--
def read_mails(filename, email_counts):

 #Handle connection exception
 try:
 #connect to smtp server
 mail = imaplib.IMAP4_SSL(SMTP_SERVER)

 #Login
 mail.login(FROM_EMAIL,FROM_PWD)
 mail.select('inbox')

Figure 5: shows Reading of mail and Error Handling

Line 51-57 shows how the mail will be extracted, it divide the received mail into two arrays

namely first_email_id = int(id_list[0]) and latestes_email_id = int(id_list[-1]) and fetching this

mail from the array is by fetching the latest mail first follow by the first mail. The FOR-loop

8 https://codehandbook.org/how-to-read-email-from-gmail-using-python/#comment-4217804161

https://codehandbook.org/how-to-read-email-from-gmail-using-python/#comment-4217804161

8

statement means that if number of emails to extract is greater than 0, then read, if not; do not read

from the inbox. Figure 6 show the code that handles that
#Process emails

#Tittle:How to Read Email From Gmail Using Python, 2017. . Code Handbook.
#Author: JAY
#Date: 2017
#Availability: https://codehandbook.org/how-to-read-email-from-gmail-using-
python/#comment-4217804161

id_list = mail_ids.split()

first_email_id = int(id_list[0])
latest_email_id = int(id_list[-1])

#Fetch emails from latest to old
for i in range(latest_email_id,first_email_id, -1):
 typ, data = mail.fetch(str(i), '(RFC822)')

 if (email_counts > 0):
 for response_part in data:
 if isinstance(response_part, tuple):

Figure 6: Processing of mail and Fetching of Mails.

Line 68 to 81 shows the preparation of our email to output file, as seen in the code, the messages

to be stored in the csv file is email subject, email from, email to, message and date field, more

fields can be added depending on users need. The content is then print out and saved in the output

file. Figure 7 show the line of code that deals with that.
#Prepare output to CSV file
email_subject = msg['subject']
email_from = msg['from']
email_to = msg['to']
msg_id = msg['message-id']
date = msg['date']

#Message
csv_content = [email_from, email_to, email_subject, msg_id, date]

print("Reading and storing messages in " + filename)

#Save message to CSV file
save_output(filename, csv_content)

Figure 7: Saving of Output

Line 23-26 shows the function that define where the mail will be saved and how, the ‘a’ in quote

means append and this do not allow us to erase existing file while writing to the csv file, the

writer.writerow(row) will write each mail in separate row so existing row wouldn’t be deleted or

overwritten. Figure 8 shows the function that write saved mail to csv
def save_output(filename, row):
 with open(filename, 'a') as f:
 writer = csv.writer(f)
 writer.writerow(row)

Figure 8: Writing of Mail to CSV

Some argument was parsed into the python script using the python argument parser argparse, the

first function is to read mail from the Gmail inbox online, the second function is to read email

9

from extracted dump. This is needful because investigator may want to read mail that have been

earlier extracted and saved without login in to Gmail account, Line 100-104 shows the argument

passed to the code as seen below
def main():
 # initiate the parser
 parser = argparse.ArgumentParser()
 parser.add_argument("-e", "--emails", help="Input the number of emails to
read")
 parser.add_argument("-d", "--dump", help="Provide an exist email header dump
file")

Figure 9: Parser argument in use

Execution of the argparser above can be seen below, if default email count is not specified, only

1,000 mail in user inbox will be read, this can either be read from already created dump email file

or directly from Gmail and result is saved in csv file.
Execute command line arguments
args = parser.parse_args()

if (args.emails):
 email_counts = int(args.emails)
else:
 #Default email counts
 email_counts = 1000

if (args.dump):
 #Read emails for local file
 filename = args.dump
 print("Email header file to classify: {}".format(filename))
else:
 #Read emails from gmail
 #Create csv file
 filename = "csvfile_{}.csv".format(datetime.now().strftime("%H-%M-%S"))

 #CSV Fields
 fields = ['From', 'To', 'Subject', 'Message-ID', 'Date']
 save_output(filename, fields)

 filename = read_mails(filename, email_counts)

Figure 10: Execution of argparse

 The Random forest code is included in the Email_Spoofing_Classifier_final code and it prompt

the user to decide if the user want to classify data or not, if yes, the

Email_Spoofing_Classifier_final code automatically classify the mail using the random forest

algorithm. Figure 11 shows the line of code below
confirm = input("Do you want to classify the data as well? (Yes or No) ");
confirm = confirm.lower()

if ("yes".find(confirm) != -1): #classify data if yes
 rf.random_forest_algo(filename)

Figure 11: Classification of mail using randomforest.py

For the classification using random forest algorithm, the email, Python libraries as explained in

the methodology section is imported to help in classification of our extracted email header. Figure

12 below shows the libraries used.

10

Figure 12: Libraries for classification

Line 14-16 shows the start of the classification algorithm, it also reads the csv file generated by

the python script (Email_Spoofing_Classifier_final). This is represented in the code below.
def random_forest_algo(filename):
 df = pd.read_csv(filename)
 df.head()
Figure 13: Read CSV file

Line 18-19 print out the dataframe of the generated CSV file as shown in Figure 14 below
with pd.option_context('display.max_rows', 1000):
 print (df)
Figure 14: printout 1,000 mails in rows

Line 21-28 split the dataset into training and test set, n_samples= 1,000 is the number of samples

classified by the random forest algorithm. The n_features=2 comprises of n_informative which is

the covariance of our sample and n_redundant features of 0 drawn at random. n_estimator = 20

which specifies the number of trees in the forest. A test_size =-0.3 which represent the number of

datasets to include in the test split, random_state = 5 is chosen in order to get a fixed accuracy

result.

X, y = make_classification(n_samples=1000, n_features=2, n_informative=2,
n_redundant=0, random_state=5)
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
 X_train
 X_test
classifier = RandomForestClassifier(n_estimators=20, random_state=5)
classifier
classifier.fit(X, y)
print(classifier.feature_importances_)

Figure 15: Code to split data into training and test data.

Line 34-35 get parameters for the classification and print the accuracy of the classification. Result

of the accuracy is seen in the evaluation section of this project.
Accuracy
print(metrics.accuracy_score(y_test, y_prediction))
classifier.apply(X)
classifier.get_params(deep=True)
classifier.predict_log_proba(X)
classifier.predict_proba(X)
classifier.score(X, y)

Figure 16: Calculate Accuracy of the Classifier.

11

Line 42- 45 compute the confusion matrix which tells us understand the performance of the

random forest classification model. Figure 17 shows the implementation of the confusion matrix.

Confusion Matrix
print(confusion_matrix(y_test,y_prediction))
print(classification_report(y_test,y_prediction))
print(accuracy_score(y_test, y_prediction))

Figure 17: Confusion Matrix Implementation.

5 Implementation

The research is performed on a Windows 10 64bits Operating system, ICORE 5, 500GB with

8GIG RAM. The Gmail application is opened from the browser, login credential is provided.

Navigate to Gmail settings. Click on security and scroll to Allow less Secure Apps, once

done a mail is sent to the inbox prompting user of a less secure app access to Gmail. Click

yes and open the PyCharm application. Navigate to the file where the code is stored. The

email_analyzer.py is opened. Gmail login information is provided on the code itself as seen

in FIG. 2. Connection to SMTP server is done and error that may occur during reading of

emails from user Gmail is handled using the code shown in Fig.3. Email fetched from Gmail

inbox are split into an array (Latest_email_id and First_email_id). This is done so the latest

email can be fetched first followed by the last. The FOR-loop statement in the code means

that any mail greater than zero will be fetched, if not, the code stops reading mails as shown

in Fig. 4. The output of the code to be written to CSV file are listed and saved in CSV format

as shown in Fig. 5. After the extraction and saving of email header to CSV file, User is asked

if data should be classified or not. If YES is selected, the code classified the extracted emails

saved in CSV file using the randomforest.py code.

For classification using random forest algorithm, Python libraries are imported as explained

in the methodology section. The dataframe of the extracted email is printed out in rows and

column which gives us a better view of our dataset. Dataset of 1,000 mail is split into training

and test set. 30% of the mail is used as test set while the rest is used as training set. Accuracy

of the classifier is calculated and to further know how the random forest classifier performed

by performing a confusion matrix.

6 Evaluation
In order to ascertain the success of this research, performance of extraction process and

performance of the random forest algorithm is compared with previous research done by R.

Padmavathi Iyer; Manoj Mistra (2017). Section 6.1 and section 6.2 below discuss the

evaluation of the methodology used.

6.1 Experiment / Case Study 1

Comparing the extraction process of email shows that the methodology used in extraction of

user email header from Gmail outperformed the one used by R. Padmavathi Iyer; Manoj

Mistra (2017) in which email header are extracted from volatile memory of the system, the

propose system was able to extract 1,000 user inbox mail and perform classification in less

12

than 9:20 (mm:ss) as compared to previous research which was completed in 12.10 (mm:ss).

The performance of the script as it relates to the computer system is shows that the Script use

0.77MB of memory compared to previous research which used 3.4 MB of memory, the

python script of propose system also use 0.1% of disk space compared to previous research

which used 25.7%. Figure 18 below shows a tabular view of our result. This shows that the

propose method took lesser time to execute while requiring minimum overhead on system

resources.

Figure 18: shows performance of previous research and propose research on the system used.

6.2 Experiment / Case Study 2

To further check the performance of our research against previous research done in the area

of spoofing, the accuracy of the random forest is check for email spoofing accuracy and from

result as seen below shows that Accuracy of previous research by R. Padmavathi Iyer; Manoj

Mistra (2017) achieved an accuracy of 0.93% while the accuracy of the propose methodology

using python script was 0.99%. Figure 19 show the result from previous research and propose

research.

Figure 19: Accuracy result for previous research and proposed research.

The result using python script shows the following below;

TP (True Positive): number of Spoofed messages correctly classified as 155.

FP (False Positive): number of legitimate mails are that misclassified as 0.

FN (False Negative): number of Spoofed messages that are misclassified as 1.

TN (True Negative): number of legitimate messages that are correctly classified as 144 and

Accuracy: Is the fraction of all messages classified by the classifier of 0.99 (99%).

13

6.3 Experiment / Case Study 3

To further ascertain the accuracy of the result given by above for propose method, we

calculate the confusion matrix based on recall and precision. The method using python script

produce the following result as shown in Figure 20.

Figure 20: result of confusion matrix to ascertain accuracy of our propose method

The result using python script shows the following below;

Recall: performance of recognised Spoofed email of 1.00%.

Precision: Probability that a legitimate mail is misclassified of 0.99.

F1-Score: the weighted average for precision and recall is 1.00%.

Weighted average: sum of all email after multiplying their respective email proportion is

1.00%.

Macro Average: Is the mean of all email classified which is 1.00%.

6.4 Discussion

The proposed research was implemented, and it successfully classified spoofed email from

extracted email header from user Gmail (received mail). The output of the volatile memory

forensics for detecting email spoofing proposed by R. Padmavathi Iyer; Manoj Mistra (2017)

proved that when handling memory dump of large size, the algorithm skipped some email.

The time taken also to complete overall process in methodology is also relatively high and

accuracy for extraction and detection of spoofed mail in Gmail is lower compared to one used

in this research. Using the python script; result proved that the number of mails to extract

from user Gmail can be specified. The time taken to calculate overall process is low

compared to previous research. The python script also achieved an accuracy of 0.99

compared to previous research which took 0.93. The result on overhead of system also shows

that the python script didn’t have much effect on general working of the system. Though

CPU usage varies in the python script, this is due to the python script processing many mails

at the same time. This experiment can be performed on a system with higher configuration to

see the performance of the python script. The random forest algorithm also shows signs of

imbalances in the classification of email (where classes are not represented equally), this can

be improved upon by using dataset available in pubic domain and lastly user approval to use

credentials in the extraction of user Gmail.

14

7 Conclusion and Future Work

This methodology was able to check the performance and effectiveness of random forest

algorithm in the classification of email spoofing extracted from received mails in user Gmail.

It also checks the time of execution, accuracy and performance on overhead of the system

resources used. The research executed in 9.20 (mm: ss) and achieved an accuracy of 0.99. It

also has little effect on overhead of the resources used in execution. The research solves the

problems that arises from keeping the system on during live capture of memory as used in

previous research, it eliminates skipping of emails when large size of memory dump is

involved.

Future work for this research could be in extending the python script to work with other email

provider to check the versatility and performance of the script.

References

Dada, E., Joseph, S., 2018. Random Forests Machine Learning Technique for Email Spam

Filtering.

Gupta, S., Pilli, E.S., Mishra, P., Pundir, S., Joshi, R.C., 2014. Forensic analysis of E-mail

address spoofing, in: 2014 5th International Conference - Confluence The Next Generation

Information Technology Summit (Confluence). Presented at the 2014 5th International

Conference - Confluence The Next Generation Information Technology Summit

(Confluence), pp. 898–904. https://doi.org/10.1109/CONFLUENCE.2014.6949302

Iyer, R.P., Atrey, P.K., Varshney, G., Misra, M., 2017. Email spoofing detection using

volatile memory forensics, in: 2017 IEEE Conference on Communications and Network

Security (CNS). Presented at the 2017 IEEE Conference on Communications and Network

Security (CNS), pp. 619–625. https://doi.org/10.1109/CNS.2017.8228692

Jayan, A., Dija, S., 2015a. Detection of spoofed mails, in: 2015 IEEE International

Conference on Computational Intelligence and Computing Research (ICCIC). Presented at

the 2015 IEEE International Conference on Computational Intelligence and Computing

Research (ICCIC), pp. 1–4. https://doi.org/10.1109/ICCIC.2015.7435764

Mishra, R., Thakur, R.S., 2013. Analysis of Random Forest and Naïve Bayes for Spam Mail

using Feature Selection Catagorization. https://doi.org/10.5120/13844-1670

Nizamani, S., Memon, N., Glasdam, M., Nguyen, D.D., 2014. Detection of fraudulent emails

by employing advanced feature abundance. Egyptian Informatics Journal 15, 169–174.

https://doi.org/10.1016/j.eij.2014.07.002

(PDF) Email Classification Research Trends: Review and Open Issues [WWW Document],

n.d. URL

https://www.researchgate.net/publication/316903018_Email_Classification_Research_Trends

_Review_and_Open_Issues (accessed 10.28.19).

https://doi.org/10.1109/CONFLUENCE.2014.6949302
https://doi.org/10.1109/CNS.2017.8228692
https://doi.org/10.1109/ICCIC.2015.7435764
https://doi.org/10.5120/13844-1670
https://doi.org/10.1016/j.eij.2014.07.002
https://www.researchgate.net/publication/316903018_Email_Classification_Research_Trends_Review_and_Open_Issues
https://www.researchgate.net/publication/316903018_Email_Classification_Research_Trends_Review_and_Open_Issues

15

Rajput, A.S., Sohal, J.S., Athavale, V., 2019. Email Header Feature Extraction using

Adaptive and Collaborative approach for Email Classification 8, 7.

Washha, M., Khater, I., Qaroush, A., 2012. Identifying Spam E-mail Based-on Statistical

Header Features and Sender Behavior. Presented at the ACM International Conference

Proceeding Series. https://doi.org/10.1145/2381716.2381863

https://doi.org/10.1145/2381716.2381863
https://doi.org/10.1145/2381716.2381863

