===

)
National
Collegeof

[reland

Configuration Manual

MSc Internship
Cybersecurity

Manoj Kumar Murugesan
Student ID: x18129668

School of Computing
National College of Ireland

Supervisor: Christos Grecos

‘-—
National College of Ireland \ National

MSc Project Submission Sheet Collegeof
c Project Submission Shee I
reland

School of Computing

Student Name: Manoj Kumar Murugesan

Student ID: x18129668

Programme: MSc. Cybersecurity Year: 2019

Module: Internship

Supervisor: Prof. Christos Grecos

Submission-Due 12/12/2019

Date:

Project Title: Comparative Analysis of Machine learning Algorithms using NLP
Techniques in Automatic Detection Fake News on Social Media
Platforms

Word Count: 1892 Page Count 22

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on NORMA the
National College of Ireland’s Institutional Repository for consultation.

Y L T 1= 1 o T -SSR

Date: 12.12.2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | ©
copies)
Attach a Moodle submission receipt of the online project | o
submission, to each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed into
the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Comparative Analysis of Machine learning
Algorithms using NLP Techniques in Automatic
Fake News Detection on Social Media Platforms.

Manoj Kumar Murugesan
X18129668

1 Introduction

Configuration manual demonstrates step by step instruction to implement the research topic
"Comparative Analysis of Machine learning Algorithms using NLP Techniques in
Automatic Fake News Detection on Social Media Platforms." The software and hardware
requirement for the implementation are specified in the following sections. Required
programming code, corresponding aim, and output results are displayed in sequence. The
primary objective of the research is to design an APl model that accurately classifies fake news
with a low latency rate and evaluates fake rates out of the text. Machine learning algorithms
such as LightGBM, XGBoost, AdaBoost, random-forest, and decision-tree were used along
with NLP techniques. The following are the description of various technologies our achieve
our results.

2 System Requirements

This section describes the system requirements to implement the project without hassles, and
always the knowledge on the system specification is an advantage before computing
experiments.

2.1 Hardware Requirements

The research was conducted both on the local system and on google cloud platform called
"Colab.”™ We used a local server to host API. Therefore, a part of the project was implemented
using the local system.

2.1.1 Following are the specification used on the local system

1. Hard-Disk Memory — 1TB(HDD)

2.Processor — Intel® Core™ i5-6200U CPU @ 2.30GHz 2.40 GHz
3. RAM -8GB
4.System OS — 64-bit Windows 10 OS.

2.1.2 Following are the specification cloud platform google ‘Colab’

1. Memory Space — 358 BG

2. RAM - 25GB

3. Runtime Type — Python 3

4. Hardware Accelerator - GPU

2.2 Software Requirements

1. Python 3 - Python was used throughout the implementation process from cleaning the
dataset till deploying the final API.

2. MicrosoftOffice365 Excel — was used to import and export datasets. A few cleaning
processes were performed with coding through developer option in excel sheet. Datasets were
used .CSV file format.

3. Jupyter Notebook — [2] Python code was programmed and executed in the Jupyter
Notebook IDE platform. It is an open-source web application that allows users to code, execute,
visualize, and share documents. Jupyter Notebook version 6.0.1 was used to code with Python
3.7.2

4. Google Colab —[1] The major part of the project, which is the evaluation of the classification
model, was carried out in the google cloud platform called colab. It is a collaboration of jupyter
environment on the google cloud environment. The platform is exclusively designed for data
researchers to code, analyze data, visualize, and evaluate machine learning models. Google
account is enough to get a session allocated with colab.

3 Data Pre-Processing and Evaluation

3.1 Step-by-Step Instruction — Google Colab

1. Sign-in to the google account

2. Open https://colab.research.google.com/notebooks/welcome.ipynb.

3. Choose File -> Python 3->Connect notebook for working environment.
4. Choose runtime->Change runtime type->choose GPU for fast execution.
5. Rename the default file name and saved it in google drive.

3.2 Installing Packages and Importing raw Data
2

https://colab.research.google.com/notebooks/welcome.ipynb

Base Dataset was acquired from https://www.kaggle.com/c/fake-news/data. Datasets for
upsampling 1s (fake news) was obtained from https://www.kaggle.com/jruvika/fake-news-
detection and Os (real news) from https://www.kaggle.com/snapcrack/all-the-
news#articlesl.csv. All three datasets are downloaded from the respective sources and saved
in local drive in .csv format. Packages should be installed before importing and pre-processing
of data.

import os

import re

import sys

import numpy as np

from scipy.sparse import hstack

import time

import pandas as pd

from nltk.stem.snowball import SnowballStemmer
from sklearn.preprocessing import LabelEncoder
import wordbatch

from wordbatch.extractors import WordBag, WordHash
from nltk.corpus import .stopwords

import pickle as pkl

import gzip

from wordcloud import WordCloud, STOPWORDS

3.3 Importing Datasets

Required datasets are uploaded in google drive and imported from there .Panda library
imported as pd is used to import data.

[1 from google.colab import drive
drive.mount(’/content/drive’)

[» Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client 1d=047318989203-6bnégk8qdgfindg3pfeetd9lhcebredi. apps.googleusercontent. coméredire

Enter your authorization code:

Mounted at /content/drive

train_dataset = pd.read_csv('G:/spam-thesis/Kaggle-tueetsets/fakenewstraindatal.csv',encoding="150-8859-1")
train_fake_dataset = pd.read_csv('G:/spam-thesis/Kaggle-tweetsets/fakedataldddl.csv')

train_real_dataset = pd.read_csv('Documents/realnewsadd.csv')

test_dataset = deread_csv('G:fspan-tkesisfKagg;e—tweetsetsffakereustestdatai.csv')

Variable Description:

Train_dataset and test_dataset are the base dataset, train_fake_dataset is the 1s fake news
dataset, and train_real dataset is Os real news dataset.

3.4 Data Merging and cleaning

The base dataset and other two datasets for upsampling are imported and merged as follows.

https://www.kaggle.com/c/fake-news/data
https://www.kaggle.com/jruvika/fake-news-detection
https://www.kaggle.com/jruvika/fake-news-detection
https://www.kaggle.com/snapcrack/all-the-news#articles1.csv
https://www.kaggle.com/snapcrack/all-the-news#articles1.csv

if __name__ == "__main__":
print("Lcading Da)
train_dataset = pa.read_csv('G:/sp
train_fake_dataset = pa.read_cs
train_real_dataset = pa.read_csv(

fakenewstraindatal.csv
5/ fakedatanddl

sencoding="IS0-8859-1")

train_fake_dataset = train_fake_dataset[train_fake_dataset[language'] == 'english']
print(“Fill Missing Data")

train_fake_dataset['author®].fillna('No auhtor’, inplace=True)
train_fake_dataset['title'].fillna('No title', inplace=True}
train_fake_dataset['text'].fillna({ No tweets', inplace=True}
train_fake_dataset.drop(['thread_title', 'main_img_url', 'domain_rank'], axis=1, inplace=True)
train_fake_dataset['label'] = 1

train_dataset_final = train_fake_dataset[['title', "author', 'text', 'label']
train_dataset.drop('id', axis=1, inplace=True}

print{"Merge both datasets"}

dataset_df = train_dataset.append(train_dataset_final)

print{"merged")

print{"saving final Dataset")}
dataset_df.to_csv('G:/spam-thesis/Kaggle-tweetsets/final_Datasetfakel.csv', index=False)

print({"Done")

Loading Datasets
Fill M™issing Data
Merge both datasets
merged

Saving final Dataset
o

Description: First Base dataset and 1s fake dataset is filled to remove empty records, drop
uncommon columns other than 'author’, 'text’, 'title', 'label'. Fake news dataset is added with a
new column called label and filled in with 1s. Finally merged dataset is exported.

train_real_dataset = pa.read_csv{'Docum
dataset_fake = pa.read_csv{"G:/spam-th

Datasetfakes.csv',encoding="I50-8859-1")

train_real_dataset['label'] = @
train_real_dataset.drop(['id’', 'publication', "date", 'wvear', 'month'], axis=1, inplace=True)
train_real_dataset_final - train_real dataset[["title", 'text', 'author', 'label']]

print{"Filling the spaces")

& Fi

trﬁin_" 1 _dataset_final['author'].fillna('Mo author", inplace=True)
train_real_dataset_final['title'].fillna('No title', inplace=True}
train_real_dataset_final['text'].fillna{"No news', inplace=True)

print({"Merging with Fake and train dataset™)

dataset_final = dataset_fake.append(train_real dataset final)
dataset_final.dropna{inplace=True)

print{"saving final Dataset")}
dataset_final.te_csv('G:/spam-thesis/Kaggle-tweetsets/final_Datasetva.csv', index=False)
print("Dene")

Filling the spaces
Merging with Fake and train dataset

Description: In the second step, the previously exported dataset is merged with Os real news.
The real news dataset is added with label column 0Os, and the final merged dataset is exported.

3.5 Removing Noises

Unwanted symbols and characters are removed to reduce space complexity and the efficiency
of the algorithm. This is done using developer option in excel and following code.

Function Eemove (Str As String) As Strind
Dim xChars A=s 5tring
Dim I As Long
xChars = "/."", 0123456789 ¥53@! () ~*@hs™Z

For I = 1 To Len(xChars)

Scr = Replaces (5tr, Mids (xChars, I,
Hext
Eemove = 5tr

End Function

chfmgcfioprmid]c Dueisen

l:lr ””:I

Description: In the above code, special character which are to be removed are blacklisted and

removed.

3.6 Data Pre-processing
3.6.1 Variable Encoding

The following code encoded the author column.

[1 print("encoded")
train['author'].fillna('no auth', inplace=True)
lab = LabelEncoder()
train["author_category'] = lab.fit_transform(train['author'])
train.head()

[» encoded
author label text
0 Daniel J. Flynn 0 Ever get the feeling your life circles the rou...
1 Daniel Nussbaum 0 In these trying times Jackie Mason is the Voic...
2 Alissa J. Rubin 0 PARIS O France chose an idealistic traditio...
3 Megan Twohey and Scott Shane 0 Aweek before Michael T Flynn resigned as nati...
4 Aaron Klein 0 QOrganizing for Action the activist group that ...

title
FLYNN: Hillary Clinton Big Woman on Campus - B...
Jackie Mason: Hollywood Would Love Trump if He...
Beno®t Hamon Wins French Socialist Partys Pres...
A Back-Channel Plan for Ukraine and Russia Cou...

Obamas Organizing for Action Partners with Sor...

author_category
862

869

182

2383

65

3.6.2 Stemming, Normalization, Removal of empty cells and stopwords

Empty cells are filled in with the code below.

[1 print{"Fill wp™}

[Fill up

data_append['author’].fillna(' no auth', inplace=Trus)
data_append['title'].fillna('no tit', inplace=True)
data_append['text'].fillna{'no txt', inplace=True)

Texts were stemmed to extract root words from its branches using the following code.

[1 print("stemming starts"})
data_append['title_stemmed'] = data_append['title’].map(lambda x: " '.join{[stemmer.stem(y) for y in x.split(' ")]))

print("stemming_text")

data_append["text_stemmed'] = data_append['text'].map(lambda x: ' '.join([stemmer.stem(y) for y in x.split(" ')1))

[» stemming starts
stemming_text

Texts were normalized, and stopwords were removed with the following code.

stemmer = SnowballStemmer(“english™)

Define helpers for text normalization
stopwords = {x: 1 for x in stopwords.words(english')}
non_alphanums = re.compile(u’'["A-Z a-z 8-2]+')

def normalize text(text):
return u” ".join(
[x for x in [y for y in non_alphanums.sub(" ', text).lower(}.strip().split(™ ")}] \
if len(x) » 1 and x not in stopwords])

3.7 Evaluation of LightGBM and XGBoost Classification Models.

3.7.1 Bag of Words — Document-Term Matrix

Train Dataset size is calculated and stored in train_size variable and label column that has 0s
and 1s are stored in variable ‘y’ as shown below.

train_size = train.shape[&]
y = train["label’]

test ids = test['id"]

test size = test.shape[8]
print({train.shape)

[» (35952, 4)

Description: Once labels are stored in variable ‘y’, column label is dropped to reduce space
complexity.

train.drop(['label'], axis=1, inplace=True)
test.drop(['id"'], axis=1, inplace=True)
test.shape

train.shape

Description: Data is transformed using WordBatch library and from which WordBag
function is imported to assign a weight to each word and generate features. The dataset is
then normalized using Normalize_text function, which calls above mentioned function and
does the pre-processing process. Finally, the transformed dataset is sparsed horizontally using
hstack.

wb.dictionary freeze = True

[] X title = wb.transform{data_append['title stemmed'])
X_text = wb.transform(data_append["text stemmed'])
X_author = data_append["author_category'].values
X_author = X _author.reshapes(-1, 1)
sparse_data = hstack((X_title, X_text, X_author)).tocsr()

[» MNormalize text
Extract wordbags
Normalize text
Extract wordbags

[1 wb = wordbatch.WordBatch(normalize_text, extractor=(WordBag, {"hash_ngrams”: 2, "hash_ngrams_weights™: [©.5, -1.8], "hash_size": 2 ** 23, "norm": '12°,

g

3.7.2 LightGBM

Dataset split is done to train and validated with the remaining portion of the dataset, as shown
below. Earl stopping round is given to stop when validation results go too weak.

[] X = sparse_data[:train_size]
X_test = sparse_data[train_size:]

train_X, valid_X, train_y, valid_y = train_test_split(X, y, test_size=6.85, random_state=188)

d_train = lgb.Dataset(train X, label=train_y)
d_valid = lgb.Dataset(valid X, label=valid_y)
watchlist = [d_train, d_valid]

params = {

‘metric’: ‘binary_logloss®,

model = lgb.train(params, train_set=d_train, wvalid_sets=watchlist,

early stopping_rounds=288, verbose_eval=1)

The Classification model is evaluated with metric imported from sklearn, as shown below.

e |
[1 lgbpreds = model.predict(valid _X)
1gh _accuracy_before_tuning = accuracy_score(valid vy, np.round(lgbpreds))
1gh f1_before_tuning = f1_score(valid_y, np.round{lgbpreds))
1gb recall before_tuning= recall_score(valid_y, np.round{lgbpreds))
1gb precision_before_tuning= precision_score(valid_y, np.round{lgbpreds))
1gh auc_before tuning = metrics.roc_auc_score(valid y, lgbpreds)
print{"LGE dev fl1l score:", f1_score(valid y, np.round{lgbpreds)))

print{"LGE dev accuracy_score:", accuracy_score(valid y, np.round(lgbpreds)})
print("LGE dev recall score:", recall_score(valid_y, np.round(lgbpreds)))
print("LGE dev precision_score:", precision_score{valid vy, np.round(lgbpreds)))
print("Area under the curve : %f' % (metrics.roc_auc_score(valid_y, lgbpreds)))

[+ LGE dev fl_score: @.9267488577136517
LGB dev accuracy_score: 8.9205358945454954
LGE dev recall_score: 8.9887551248568549
LGB dev precision_score: ©.9542857142857143
Area under the curve : B.962887

The randomized search function is used to find the best combination of parameters for tuning,
as shown below.

B Mumber of trees in random forest
n_estimators = [int(x} for x in np.linspace{start = 288, stop = 268@, num 12}]
B Maximum number of levels In tree
= [int{x) for x in np.linspace(18, 118, num = 11}]
th.append{None }
m_leaves = [int(x) for x in np.linspace(ld, 118, num = 11}]
Minimum number of samples required [o split a node
min_samples =plit = [2, 5, 18]
§ Minimum number of samples required at each leaf node
min_samples leaf = [1, 2, 4]
bagging_fraction = [if1@.8 for 1 in range(5,8)
bagging_ frequency= range(l, 9, 1)
subsample= [i/188.8 for 1 in range(78,98,5)]
colsample bytree = [if188.8 for e(38,98,5)
min_split_gain= [Lif i in 511
learning_rate= [8.8 e.1, 8 1
reg_alpha = [1le-5, 1e - il
I Create the random grid
randos_grid = {'r : n_estimators,
D omax_depth,
: num_leaves,
t': min_samples_split,
f°: min_samples_leaf,
ing_fraction,
Int{randon_grid)
lg = LoBMClassifier(n_jobs=-1})
1g randem = RandomizedSearchCV(estimator = lg, param_distributions = random_grid, n_iter = 18, cv = 1, verbose=2, random_state=4
I Fit the odel
lg_random.fit{train_X, train_y)
t (lg_random.best_params_)

The best parameters, as chosen by a randomized search, is displayed below.

» Dane 26 out of 20 | elapsed: 40.1min finished
2 alpha': 8.81, 'num_leaves': &8, 'n_estimators': 2888, 'min_split_gain': .3, 'min_samples_split': 19, 'min_samples_leaf': 4, 'max_depth': 28, 'lesrning_rate': 8.83, 'colsample byt

Parallel(n_j

"subsample': 8,85,

The model was executed with given best parameters from the hyper-tuning technique.

params = {
"subsample’': ©.85, 'metric’: 'binary_logloss’, 'reg_alpha’: ©.01, 'num_leaves': 60, 'n_estimators’: 2000, 'min_split_gain': 8.3, 'min_=c

}

modelt = lgb.train(params, train_set=d_train, valid_sets=watchlist, early stopping rounds=200,

verbose_eval=1)

3.7.3 XGBoost

XGBoost model was built with bag of words data transformation technique, and data splits
were did as shown below.

° X = sparse_data[:train_size]
X_test = sparse_data[train_size:]

train_X, valid X, train_y, valid y = train_test split(X, y, test size=0.3, random_state=5)

print(’train_X")
print(train_X.shape)
print(¥_test)
print{valid_X.shape)

XGBoost built with default parameters.

[1 from xgboost.sklearn import XGBClassifier
xgbmodelt= XGBClassifier()
print(xgbmodelt.get_xgb_params())

[» {'base_score’': @.5, 'booster’: 'gbtree’, 'colsample_bylevel': 1, ‘colsample_bynode’: 1, ‘colsample_bytree’': 1, 'gamma’: @, 'learning_rate’: 0.1,

XGBoost algorithm was tuned using a randomized search technique, and the best
combination can be found with code given below.

from sklearn.model selection import RandomizedSearchCV, GridSearchCV
import xgboost

classifier=xgboost.XGBClassifier()

params={
“learning_rate” [0.85, ©.10, 0.15, ©.28, ©.25, ©.30] ,
"max_depth” : [3, 4, 5, 6],
"min_child weight" : [1, 3, 5, 7],
“gamma™ [@.8, 8.1, 8.2 , , 0.4 1],
"colsample bytree"” : [©.3, 8.4, 8.5 , 1

}
random_search=RandomizedSearchCV(classifier,param_distributicns=params,n_iter=3,scoring="roc_auc',n_jobs=-1,cv=2,verbose=3)

from datetime import datetime
Here we go

random_search.fit(train_X,train_y)

Hyper-parameter tuning gave the best parameters, as shown below.

random_search.best_params_

[{'colsample_bytres': 8.7,
‘gamma': ©.2,
"learning_rate': 8.1,

‘max_depth’': 5,
‘min_child_weight': 5}

XGBoost model with tuning parameters.

from xgboost.sklearn import XGBClassifier

xgbmodel= XGBClassifier(colsample_bytree= 0.7,
gamma=@.2,
learning_rate= 8.1,
max_depth= 5,
min_child_weight= 5)

print(xgbmodel.get_xgb_params())

[» {'base_score’: 8.5, 'booster’: 'gbtree’, 'colsample bylevel': 1, 'colsample bynode': 1, "colsample bytree’: @.7, 'gamma’: 8.2, 'learning rate’:

3.8 Evaluation Decision tree, Random-forest and AdaBoost Algorithms
3.8.1 TF-IDF — Document-Term Matrix
Ensemble-based machine learning algorithms are efficient with the TF-IDF transformation

technique than Bag of words. Texts are vectorized and given n_gram of range from 1 to 3.
Algorithms choose the best feature for the best accuracy rate.

° from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer

test=test_en.fillna(" ')

train=train_en.fillna(" ")

test_en['total’']=test_en['title stemmed']+" ‘+test_en[author’J+test _en['text stemmed’]
train_en["total']=train_en['title stemmed']+' ‘"+train_en['author']+train_en["text stemmed"]

#tfidf

transformer = TfidfTransformer(smooth_idf=False)
count_vectorizer = CountVectorizer(ngram_range=(1, 3))

counts = count_vectorizer.fit transform(train_en[total’].values)
tfidf = transformer.fit_transform(counts)

Test and Train data is split into 30% and 70%. Label values are stored in the target variable
for validation.

10

targets =train_en[label’'].values
test_counts = count_vectorizer.transform(test_en[total’].values)
test_tfidf = transformer.fit_transform(test_counts)

#split in samples
from sklearn.model_selection import train_test_split
X_train, X_test, y train, y test = train_test_split(tfidf, targets,test_size=08.3, random_state=4)

3.8.2 AdaBoost

The AdaBoost algorithm was fed with the dataset and ran with default parameters. The code

is given below.

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreellassifier

Adab= AdaBoostClassifier(DecisionTreeClassifier())
Adab.fit(X_train, y_train)

-

adpred = Adab.predict(X_ test)

print('confusion matrix’)

print(metrics.confusion_matrix(y_test, adpred))
print('classification report’)
print(metrics.classification_report(y_test, adpred))
ad_accuracy_before tuning = (metrics.accuracy score(y_test, adpred))
ad_flscore_before tuning = metrics.fl_score(y_test, adpred)
ad_recall before_tuning = metrics.recall score(y_ test, adpred)
ad_roc_before_tuning = metrics.roc_auc_score(y test, adpred)
print{'Accuracy : %f" % (metrics.accuracy_score(y_test, adpred)))
print('Area under the curve : %f' % (metrics.roc_auc_score(y_test, adpred)))

AdaBoost was fine-tuned with the hyper-parameter tuning technique. Randomized search

technique was used to find the best combination of parameters, and code is as given below.

from sklearn.ensemble import AdaBoostClassifier

import time

from sklearn.metrics import accuracy_score

from sklearn.metrics import roc_auc_score

from sklearn.metrics import confusion_matrix

from scipy.stats import randint as sp_randint

from scipy.stats import uniform as sp_uniform

from sklearn.model_selection impert train_test_split
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from sklearn.model_selectieon impert RandomizedSearchCV
from scipy.stats import randint

base_est = [DecisionTreeClassifier(max_depth = i) for i in [10,13,16,19]]
params = {'base_estimator': base_est
, 'n_estimators’: np.logspace(2,3.2, 5).astype(int) #array([100, 199, 398, 794, 1584])
, 'learning_rate': [@.01, ©.83, 8.1, 8.3, 1]
H

adac = AdaBoostClassifier()
grid = RandomizedSearchCV(estimator = adac, param distributions = params, n_iter =2, n_jobs = -1, cv = 2, scoring = 'accuracy', verbose

grid.fit(X_train, y_train)

2)

11

The best parameters chosen for better results.

grid.best_params_

> {'base_estimator’: DecisionTreeClassifier(class_weight=Nons, criterion="gini’', max_depth=16,

max_features=None, max_leaf_nodes=None,
min_impurity_decrease=8.8, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.8, presort=False,
random_state=None, splitter='best'),

"learning_rate’: 8.83,

‘n_estimators’: 188}

The AdaBoost algorithm was optimized with the best parameters given by the hyper-
parameter tuning technique, as shown below.

from sklearn.tree import DecisionTreeClassifier

Adabt= AdaBoostClassifier(DecisionTreeClassifier(class_weight=None, criterion="gini', max_depth=16,
max_features=HNons, max_leaf_nodes=lone,
min_impurity_decrease=8.8, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=08.0, presort=False,
random_state=Hone, splitter='best'),
learning_rate = 0.03,
n_estimators = 18@)

Adabt.fit(X_train, y_train)

e
#F

adtpred = Adabt.predict(X_test)

ad_accuracy_after_tuning = (metrics.accuracy_score(y_test, adtpred))
ad_flscore_after_tuning = metrics.fl_score(y_test, adtpred)
ad_recall_after_tuning = metrics.recall_score(y_test, adtpred)
ad_roc_after_tuning = metrics.roc_auc_score(y_test, adtpred)
print(’confusion matrix")

print(metrics.confusion_matrix(y_test, adtpred))
print('classification report')
print(metrics.classification_report(y_test, adtpred))

3.8.3 Random-Forest Algorithm

The random-forest algorithm with default parameters is as given below. The performance
was not good without tuning and hence tuned later.

12

from sklearn.ensemble import RandomForestClassifier

from sklearn import metrics

from sklearn.metrics import f1_score, accuracy_sceore , recall score , precision_score
Rand= RandomForestClassifier()

Rand.fit(X_train, y_train)

rfpred = Rand.predict(X_test)

print(’'confusion matrix without tuning’)
print(metrics.confusion_matrix(y_test, rfpred))
print('classification report’)

rf_accuracy_before_tuning = metrics.accuracy_score(y_test, rfpred)
rf_flscore_before_tuning = metrics.fl_score(y_test, rfpred)
rf_precison_before_tuning = metrics.precision_score(y_test, rfpred)
rf_recall_before_tuning = metrics.recall_score(y_test, rfpred)
rf_auc_before_tuning = metrics.roc_auc_score(y_test, rfpred)
print(metrics.classification_report(y_test, rfpred))
print('Accuracy : %f' % (metrics.accuracy_score(y_test, rfpred)))
print('Area under the curve : %f' % (metrics.roc_auc_score(y_test, rfpred)))

Hyper-parameter tuning with a randomized search technique is used to find the best
combination of parameters to boost up a random forest algorithm from the impoverished
state. The code is as given below

[1 from sklearn.model_selection import Randomizedsearchcv
from sklearn.ensemble import RandomForestClassifier

Number of trees in random forest

n_estimators = [1e, 28, 10@, 200, 488, &oe]

Number of features to consider at every split
max_features = ['auto’, t']

Maximum number of levels in tree

max_depth = [18, 118]

max_depth.append (None)

Minimum number of samples required to split a node
min_samples_split = [2, 5, 1@]

Minimum number of samples required at each leaf node
min_samples_leaf = [1, 2, 4]
Method of selecting samples for training each tree
bootstrap = [True, False]
Create the randem grid

: n_estimators,
1 max_features,
: max_depth,
split': min_samples_split,
: min_samples_leaf,
: bootstrap}

rf = RandomForestClassifier()}

Random search of parameters, using 3 fold cross validation,

search across 1ee different combinations, and use all available cores

rf_random = RandcmizedSearchcv(estimator = rf, param_distributions = random_grid, n_iter - 18, cv = 2, verbose=2, random_state=42, n_jobs = -1}
Fit the random search model

rf_random.fit(¥_train, y_train}

The best combination of parameters given by the hyper-parameters technique is as given
below.

13

rf_random.best_params_

> {'bootstrap’: False,
‘max_depth": 1ia,
‘'max_features': ‘auto’,
'min_samples_leaf': 1,
‘min_samples_split": 1&,
‘n_estimators': 488}

The random-forest algorithm reacted very well with tuning parameters and got boosted up to
10%. The code is as follows.

from sklearn.ensemble import RandomForestClassifier

from sklearn import metrics

from sklearn.metrics import f1_score, accuracy_score , recall score , precision_sc
Rand= RandemForestClassifier{bootstrap = False,

max_depth= 118,

max_features = "auto’,

min_samples_leaf = 1,

min_samples_split = 18,

n_estimators = 488)

Rand.fit{X_train, y_train)

predrf = Rand.predict{X_test)

rf_accuracy_after_tuning = metrics.accuracy_score(y_test, predrf)
rf_fiscore_afier_tuning = metrics.f1_score(y_test, predrf)
rf_precison_after_tuning = metrics.precision_score(y_test, predrf)
rf_recall_after_tuning = metrics.recall_score(y_test, predrt)
rf_auc_aftter_tuning = metrics.roc_auc_score(y_test, predrf)
print{‘'confusion matrix with tuning"}
print{metrics.confusion_matrix(y_test, predrf))
print('classification report"}

print(metrics.classification_report(y_test, predrf))

print{'Accuracy Ef' X (metrics.accuracy_score{y_test, predrf)))
print{‘Area under the curve : EFf' X (metrics.roc_auc_score(y_test, predrt)))

3.8.4 Decision Tree Algorithm

The decision tree algorithm with default parameters has given excellent performance, and
code is as given below.

14

om sklearn.tree import DecisionTreeClassifier
from sklearn import metrics
from sklearn.metrics import f1_score, accuracy_score , recall_score , precision_score

clf = DecisionTreeClassifier()

Traim Decision Tree Classifer
clf = clf.fit(¥_train,y_train)

#Predict the response for test dataset

#
dpred = clf.predict{X_test)

('confusion matrix')

print{)
print{metrics.confusion_matrix(y_test, dtpred))
print('classification report"}
print{metrics.classification_report{y_test, dpred})
dcc_accuracy_before_tuning = metrics.accuracy_score(y_test, dpred)
dcc_flscore_before_tuning = metrics.f1_score(y_test, dpred)
dcc_recall_before_tuning = metrics.recall score(y_test, dpred)
dcc_roc_before_tunimg = metrics.roc_auc_score(y_test, dpred)
orint(" -

(‘Accuracy : &F" % (metrics.accuracy_score{y_test, dpred)))

45T

print(‘Area under the curve : &' ¥ (metrics.roc_auc_score(y_test, dpred})})

Hyper-Parameter tuning was used to find the best combination of parameters. The result and
the code is as shown below.

om sklearn.model_selection import RandomizedsearchCw
from sklearn.tree import DecisionTreeClassifier
om scipy.stats Import ramdint

param_dist = {"max

depth™ : [3, Nonel,
les_leaf™: randint{1,9),
["gini", "entropy™ 1}

tree = DecisionTreeClassifier()
tree_cv = RandomizedsearchcCv{tree, param_dist, cw=3)

tree_cv.fit(x_train, y_train)
print("Tuned Decision Tree parameters:

T
print("Best SCore is {}".forma

[+ Tuned Decision Tree parameters: {'criterion’: ‘gini®, ‘max_depth': Mone, ‘min_samples_leaf': 8}
Best SCore is @.8781338888483581

Decision Tree with tuning parameters has shown a small improvement, and the code is as
given below.

15

‘, from sklearn.tree import DecisionTreeClassifier
from sklearn import metrics
om sklearn.metrics import f1_score, accuracy_score , recall_score , precision_score

clf = DecisionTreeClassifier{critericn= ‘gini', max_depth=None, min_samples_leaf=g8)

Traim Decision Tree Classifer
clf = clf.fit(x_train,y_train)

#Predict the response for test dataset
yv_pred = clf.predict(¥_test)

#

dipred = clf.predict(X_test)

doc_accuracy_aftter_tuning = metrics.accuracy_score(y_test, dipred)
dcc_flscore_after_tunming = metrics.f1_score(y_test, dipred)
dcc_precison_aftter_tuning = metrics.precision_scorely_test, ditpred)
doc_recall_after_tuning = metrics.recall_score{y_test, dtpred)

doc_auc_aftter_tuning = metrics.roc_auc_score(y_test, dipred)
print{‘confusion matrix")
;

(metrics.confusion_matrix(y_test, ditpred))
print{‘'classification report")

arint

print{metrics.classification_report(y_test, dipred))
print(‘Accuracy Ef' X (metrics.accuracy_score{y_test, dtpred)))
print(‘area under the curve : EZf' X (metrics.roc_auc_score(y_test, dipred}})

4 Evaluation metrics

Finally, all the classification model is evaluated based on a few metrics imported from
sklearn library like accuracy, precision, f1-score, recall rate, and AUC. The code for the
evaluation and results of all the models together tabulated as follows.

° from tabulate import tabulate

table = [["Decision Tree without Hyper-parameter Tuning”,dcc_accuracy_before_tuning, dcc_flscore_before_tuning, dcc_recall_before_tuning, dcc_precision_before_
["Decision Tree with Hyper-parameter Tuning",dcc_accuracy_after_tuning, dcc_flscore_after_tuning, dcc_recall_after_tuning, dcc_precison_after_tuning,

"Random forest without Hyper-parameter Tuning”,rf_accuracy_before_tuning,
rf_flscore_before_tuning,
rf_recall_before_tuning,
rf_precison_before_tuning,
rf_auc_before_tuning],
["Random forest with Hyper-parameter Tuning",rf_accuracy after_tuning,
rf_flscore_after_tuning,
rf_recall_after_tuning,
rf_precison_after_tuning,

rf_auc_after_tuning],

["AdaBoost without Hyper-parameter Tuning”,ad accuracy_before_tuning , ad_flscore_before_tuning, ad_recall before_tuning, ad_precision_before_tuning ,
["AdaBoosst Tree with Hyper-parameter Tuning”,ad_accuracy_after_tuning, ad_flscore_after_tuning,ad_recall_after_tuning,ad_precision_after_tuning,ad_rc

["XGBoost without Hyper-parameter Tuning”,xg_accuracy_before_tuning, xg_filscore_before_tuning, xg_recall_before_tuning, xg_precison_before_tuning,xg_s
["XGBoost with Hyper-parameter Tuning”,xg_accuracy_after_tuning,xg_fiscore_after_tuning ,xg_recall_after_tuning,xg_precison_after_tuning,xg_auc_after_

["LightGBM without Hyper-parameter Tuning”,lgb_accuracy_before_tuning, 1gb_f1_before_tuning, lgb_recall_before_tuning, lgb_precision_before_tuning,lgb_
["LightGBM with Hyper-parameter Tuning”,lgb_accuracy_after_tuning,lgb f1_after_tuning ,1gb_recall_after_tuning,lgb_precision_after_tuning,lgb_auc_afte

print (tabulate(table, headers=["Algorithm”, "Accuracy”, "fl-score”, "Recall”, "Precision”,"AUC"]))

el RS e

16

[+ Algorithm Accuracy fl-score Recall Precision AUC
Decision Tree without Hyper-parameter Tuning 9.886241 9.892113 ©.894394 9.889844 ©.885797
Decision Tree with Hyper-parameter Tuning 8.891619 9.896098 ©.888752 2.993567 ©.891775
Random forest without Hyper-parameter Tuning 8.797144 ©.793857 ©.742772 2.852489 ©.800111
Random forest with Hyper-parameter Tuning 8.9e8214 @.968944 @.87641 ©.945057 ©.909949
AdaBoost without Hyper-parameter Tuning 8.877897 @.88424 @.886812 ©.881683 0.877411
AdaBoosst Tree with Hyper-parameter Tuning 8.9@3486 @.986612 ©.8903867 ©.922922 08.904174
XGBoost without Hyper-parameter Tuning 8.985989 9.910138 ©.914189 9.986123 ©.905634
XGBoost with Hyper-parameter Tuning 8.917486 8.919978 ©.918886 8.929337 8.917775
LightGBM without Hyper-parameter Tuning 8.926585 9.926748 ©.908755 2.954286 ©.962087
LightGBM with Hyper-parameter Tuning 8.931591 9.931931 ©.903386 2.956818 ©.963168

Interpretation: LightGBM has given outstanding performance with the highest AUC and
Accuracy rates. Hence, an APl model is designed with the LightGBM mechanism of
classification and predicted fake news with high accuracy and efficiency.

4 APl Model

4.1 Saving Models

LightGBM classification model with the best iteration is saved and exported as a text file that
is to be used for the classification model. The code is as given below.

m

model.save_model(" /content/drive/My Drive/model copy.txt', num_iteration=model.best_itertaion)
with open(’/content/drive/My Drivefwb_transform.pkl’, 'wb’) as model file:
pkl.dump{wb, model file, protocol=2)

4.2 API Interface Design

The API is developed with the swagger tool, and data-preprocessing such as normalization,
word bags are carried out before the classification model makes the prediction.

17

In []:

import re

from flask import Flask

from flask_restful import reqparse, abort, Api, Resource
from flask_cors import CORS

from gevent.pywsgi import WSGIServer

from scipy.sparse import hstack

from flasgger import Swagger

import pickle as pkl

import numpy as np

import lightgbm as 1lgb

from nltk.stem.snowball import SnowballStemmer
from nltk.corpus import stopwords

import pandas as pd

app = Flask{__name__)
#api = Api(app)
cors = CORS({app, resources={r
api = Api(app)

swagger = Swagger(app)

{"origins": "*"11)

stemmer = SnowballStemmer("english™)

zation
rds.words('english’}}
08-9]+")

for text n
v {x: 1 for x in sto
non_alphanums = re.compile(u'[

#app = F name__)

#api p)
def normalize text(text):
return u” ".join(
TITT EXaMpIes USES FISSRRES TTUT ReSOUrTe

cation/json"”

ation/json"

18

type string"
description: "Body of the news"
use porser gnd find the user's query
args = parser.parse_args()
title = args['title']
author = model.encede_author{args["author"])
text = args['text’]

X = medel.vector_and_stack(title-=title, text=text, author=author)
prediction - model.predict(x}

Output either 'Negative' or 'Positive’ glong with the score
if round{predicticn[e]) :H

pred_text = 'Reliable News"
else:

pred_text = 'Unreliable Mews'

round the predict proba value and set to new varioble
confidence = round(prediction[e], 3}

create JSON object
output = {"prediction': pred_text, 'fake_rate': confidence}

return output, 208
Setup the Api resource routing here

Route the URL to the resour
api.add_resource(PredictFakeNews, '/junknewsdetector')

if __name__ == '__main__
Debug/Development
app.run(debug=True, host="g.8.8.8", port="sgae")
Production
http_server - WSGIServer{('®, Seea), app)
http_server.serve_forever()

4.3 Installing Packages

Before running the previous code, application file path must be created with package file
‘npm’. Therefore ‘npm’ is installed using ‘pip install ‘npm’ and use code ‘npm i -g
junknewsdetector’ to create directory where all the necessary software packages to host
swaggerAPI is imported.

{

"author": “"Megan Twphey and Scott Shane®,

"text": "A week before Michael T Flynn resigned as national security adviser a sealed proposal was to his office outlining a way for
Presidemt Trump to 1lift sanctions against Russia Mr Flynn is gone having been caught lying about his own discussion of sanctions with the
Russian ambassador But the proposal a peace plan for Ukraine and Russia remains along with those pushing it: Michael D Cohen the
presidents personal lawyer who delivered the document Felix H Sater a business associate who helped Mr Trump scout deals in Russia and a
Ukrainian lawmaker trying to rise in a political opposition mowvement shaped in part by Mr Trumps former campaign manager Paul Manafort At
a time when Mr Trumps ties to Russia and the people connected to him are under heightened scrutiny * with investipations by American
intelligence agencies the F 6 I and Congress * some of his associates remain willing and eager to wade into efforts behind the scenes
Mr Trump has confounded Democrats and Republicans alike with his repeated praise for the Russian president Vladimir ¥ Putin and his desire
to forge an alliance khile there is nothing illegal abowt such wnofficial efforts a proposal that seems to tip toward Russian imterests
may set off alarms The amateur diplomats say their goal is simply to help settle a gruelinmg conflict that has cost lives Who doesnt
want to help bring about peace?d Mr Cohen asked But the proposal contains more than just a peace plan Andrii v Artemenko the Ukrainian
lawmaker who sees himself as a leader of a future Ukraine claims to have evidence * mnames of companies wire transfersC * showing
corruption by the Ukrainian president Petro O Poroshenko that could help oust him And Mr Artemenko said he had received encouragement for
his plans from top aides to Mr Putin A lot of people will call me a Russian agent a U S agent a C I & agentT Mr Artemenko said But how can
you find a good solution between our countries if we do not talk?C Mr Cohen and Mr Sater said they had not spoken to Mr Trump about the -
proposal and have no experience in foreign policy Mr Cohem is one of several Trump associates under scrutiny in an F B8 I
counterintelligence examination of links with Russia according to law enforcement officials he has denied any illicit conmections The two

Response body

"prediction™: "Unreliable Mews",

"fake_rate™: 8.541
}

Response headers

access-control-allow-origin: hitp: //localhost: 5888
comtent-length: 54

content-type: application/json
date: Thu, 12 Dec 2819 11:26:38 GMT
vary: Origin

19

Description: Above screenshots depicts correct prediction of fake news text which is an actual
fake news data.

5 Conclusion

Hence, step by step implementation, which is given in this report, works 100%, if any interested
third-party people repeat it. Therefore, the research is successful that attained the objectives
framed.

References

[1] Medium. (2019). Google Colab Free GPU Tutorial. [online] Available at:
https://medium.com/deep-learning-turkey/google-colab-free-gpu-tutorial-e113627b9f5d
[Accessed 12 Dec. 2019].

[2] Jupyter.org. (2019). Project Jupyter. [online] Available at: https://jupyter.org/ [Accessed
12 Dec. 2019].

20

