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A Framework to define optimized Shuffling process to
reduce data transfer latency: MapReduce in Serverless

Infrastructure

Achyut Anantakumar Vadavadagi
x18131557

MSc Research Project in Cloud Computing

Abstract

Today in cloud computing, serverless platform is appeared as a modern tech-
nology with the combination of Function as a Service (FaaS) and Backend as a
Service (BaaS) with significant computational power. The FaaS is the class of
serverless computing service in which user has a privilege to deploy their functions
with no management of hardware’s by the user. It enable the users to run multiple
tasks concurrently with higher elasticity and scalability by introducing fine-grained
billing. Cloud providers adds resources arbitrary to deploy and run functions by
millisecond level billing. MapReduce is framework or model for decentralized pro-
cessing of data, where it is broadly operates for processing the large data-sets.
This paper considers MapReduce in serverless platform where shuffling creates the
latency issues because the object doesn’t scale due to Input Output per second lim-
itations during processing of data-sets. This paper provides the Composite Model
for processing large data-sets defined in greater performance serverless platform by
executing the tasks on Function as a Service (AWS Lambda) and Backend as a
service (bringing combination of fast storage and slow storage). An evaluation has
been carried out to understand the suitability of MapReduce in serverless platform
and experimentation is carried out and compare with other platforms. The res-
ults shows that AWS lambda is suitable for processing the large data-sets with less
execution time with moderate billing.
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1 Introduction

1.1 Brief History

In 1950s, John McCarthy and others introduced the concept of cloud computing where
software computing resources and commodity hardware are used to deploy and deliver
the user services through internet (Namboori (2019)). By understanding the needs of the
customers, cloud computing offers:

• 24 * 7 availability

• Easily Manageable

• Flexibility in capacity

• Efficiency and so on

With the evolution of cloud, the serverless computing came into existence which provides
greater advantages like monitoring, server instance selection, deployment, security patches,
logging and so on. Accordingly this infrastructure helps to ease the authorized user to
movement their operational responsibilities to the cloud providers which expands the
user revolution and liveliness. Serverless infrastructure is the combination of Backend as
a Service (BaaS) and Function as a Service (FaaS) where it offers cloud storage services
like object storage, in-memory storage, key value database and so on as a BaaS and plat-
form to write functions (AWS Lambda) as a FaaS. Here users write functions and these
functions are triggered automatically.

In the current scenario data comes from different place with various types where it is
important to analyse the data for the predictions. To analyse the different kinds of data,
different techniques came into existence where MapReduce is most popular framework.
MapReduce is the engineering model for distributed and parallel processing for the big
data. A MapReduce task is to divide the data set into independent pieces which deals by
Map jobs in a absolute parallel format. The technique classifies the output of the map
function, the classified output acts as input to reduce functions. Here both input and out-
put are stored in the file system (Namboori (2019), Goddard (2018), SeasiaInfotechBlog
(2019)).

1.2 Evolution of MapReduce in Serverless Environment

In past decades MapReduce is used to run on Hadoop environment which operates with
in-parallel large number of nodes which is dependent on the size of the data in turn
which causes Latency issue, caching is limited, slow for the processing of large data set
and restricted up to batch processing.

The recent trend is set to MapReduce in serverless environment to overcome the
issues shown in figure[1]. However running analytics on serverless platform leads to
unproductive allocation of data between the jobs i.e., latency issues in the data shuffling
phase. This can be achieved by proper fine grained coordination and providing the
adequate storage for the fine grained operations. The selection of storage medium possess
direct influence on cost and latency. Examining the Map and Reduce functions with N
shuffling, which generates N * N files on cloud based storage. If Amazon S3 or Dynamo
DB as storage which impact the poor performance, where as selecting cache in memory
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Figure 1: serverless Infrastructure, Source: Xenonstack (2018)

Redis as the storage which provides good performance with the increase in cost (Dashbird
(2018), Engdahl (2008)).

In this paper, we define a Composite Model that helps to achieve fine grained elasticity
in consideration of cost and performance. We explored the different cloud based storage’s
to assist the execution of MapReduce jobs.

1.3 Motivation

The implementation of MapReduce in serverless environment by Marla model defines
the high latency during shuffling phase. This paper aims at providing the fine grained
elasticity to achieve low latency with consideration of the cost.

1.4 Research Question

The main objective is to reduce the latency issues during the processing of large data sets
in serverless infrastructure. Analysing and finding the limitations of the architecture and
employ fine grained elasticity is aimed to achieve in this proposal. Hereby, this research
solves the below question:

What are the minimal necessary architecture changes to overcome the difficulties of pro-
cessing data analytics on serverless infrastructure to improve latency issues by employing
the fine-grained elasticity?

1.5 Report Structure

The section 2 explains the execution of MapReduce in various environment. It describes
the individual platforms with defects, solutions and their outcomes. The section 3 de-
scribes the steps, required materials, description about the sample data and measure-
ments of the application. The section 4 describes the Composite model, proposed model,
environment setup and code structure. The section 5 and 6 describes the implementation
and evaluation of Composite model respectively. The section 7 gives the conclusion and
future work of the Composite model.
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2 Related Work

The section gives the design artefacts, models and test cases of MapReduce in different
environments. The table 1 summarize the research areas with pros and cons.

2.1 Defects and Provided solutions in MapReduce Hadoop

Sharma and Singh (2018) and Raj and Babu (2015) addresses the problem of data locality
of MapReduce which is caused due to network latency. This paper discusses the charac-
teristics of different algorithms apprised of data locality in the process of scheduling. The
scheduling algorithms include Delay scheduler, data placement, NKS, Joint scheduler,
Job scheduling, and so on. By considering the issue, Cheng et al. (2018) proposed self
learning model Resource and deadline aware Hadoop based job scheduler considers the
resource availability to reduce the job deadline and estimates the completion time. Dar-
tois et al. (2019) also provides solution by utilizing data placing strategy, QoS controller
and quantile method. The result shows the green power for the prediction, scalability
and accuracy of the job scheduling.

Guo and Agrawal (2018) develops the performance model to notify the minimum
requirement from developers to achieve high productivity and surpass Spark noteworthy.
It includes three functional operations, map, shuffling and reduce which makes ease to
develop middle ware and programming. The experimentation has done by allocating Intel
Xeon quad core processor with operational frequency of 2.6GHz including infinite band
interconnect of 40GB and 12GB RAM. By experimentation it concludes that 30% of
average reduction using MapReduce like API and ten times faster than Spark execution.

Samadi et al. (2018), Cui and Wu (2018) and Kumar et al. (2016) proposes mechanism
for addressing the failures of Hadoop MapReduce by improving fault tolerance. For the
experimentation, each Job tracker and Task tracker is 3 core with 2 GB RAM Virtual
machine. They run Hadoop with version 2.7.4 along the alignment of Centos Linux. One
node act as the master node and all other nodes as slave nodes. By experimentation it
states that response time of the MapReduce is relying on category of failure and failure
rate of job which is directly proportional to response time of the job.

Nabavinejad and Goudarzi (2017) suggests the virtual machine (VM) selection with
smart configuration that solve problems of processing big data and provides the greater
accuracy, better performance, energy consumption and reduce cost. For investigation,
they applied to make span minimization algorithm to explain the effect of this approach.
For experimentation they used the MapReduce based PUMA benchmark and describe
the adjacency, grep and so on. They conclude that examining more resource and time in
profiling phase provides greater accuracy in resource management with high performance.

2.2 Investigation on MapReduce Hadoop environment

Kaniwa et al. (2017) Alipour et al. (2016) and Ahmad et al. (2014) calculates the execution
time and investigated on performance of defined tasks which is facilitated in Hadoop
group of nodes. This paper uses Hadoop platform for running MapReduce jobs using
suffix tree data structure. For experimentation, they used Python 3.5.2, Hadoop 2.6.1
and Anaconda 4.1.1. Input and output values are gathered on the distributed file system.
The experimentation result states that the MapReduce processing time is excessive in
composite distribution systems. By consideration of above issue, Clemente-Castelló et al.
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(2018) combines synthetic bench-marking with analytical modelling which helps resolves
the overhead occurred by fragile connection at the fine granularity of map and reduce
period. Huang et al. (2016) states that the in-memory storage i.e., Alluxio framework
empowers the well organization data sharing with moderate outcomes. The fundamental
outcomes demonstrate that may accomplished four times speedup than Spark.

Hsaini et al. (2018) defines the architecture which is dependent on Conformance test-
ing to check a Mapreduce implementation under MR-IUT test which is adjust to its
particular. This approach uses distributing testing rules which tells how to tackle the
problems occurred in MapReduce distributed testing. This helps to improve the security
and performance of MapReduce complex framework.

Wei Zhang et al. (2013) made an investigation on Hadoop and MapReduce objectives
which refines the capabilities of virus scanning by creating the multi pattern contesting
Aho-Corsick methods. MapReduce takes text input format which is re-conceived input
type so that any data can be read in binary style. For reducer, to solve same matching
query, which is affected by read ahead in the parts, where key and value are made
exclusively same. By experimentation, parallel scanning can enhance the capability of
virus scanning.

Matthews and Leger (2017) defines the two step anomaly detection technique that
uses MapReduce model to process the raw phasor measurement units(PMU) data in Ha-
doop environment. They implemented the approach on multi-core system to operate the
large data-set extracted from PMU carrying approximately 19 million measurement. For
experimentation they executed the large data-set on temporal and constraint detection
algorithms. The result states, this approach is able to identify the formed anomalies with
their behaviours which motivates the MapReduce approaches for SCADA applications.

Wasi-ur Rahman et al. (2013) proposed the blueprint of RDMA (remote direct memory
access) based MapReduce Hadoop across the InfiniBand with in-memory integration
mechanism for reduce function, data shuffle across InfiniBand and pre-pick-up data for
map function. It consist of RDMA listener and receiver, data request queue and RDMA
copier. For experimentation, the cluster is composed of Intel Westmere cluster processor
with compute nodes operate at 2.7GHz.. The result shows the enhancement in perform-
ance which is efficient mechanism for processing the data.

2.3 Different proposed shuffling methods

Li et al. (2013) analyse shuffling issues in phase of shuffle job, rebuild shuffle as service,
and surpass input output scheduling on map face. The evaluation method is carried
with simulation experiment, environment setting and MapReduce job comparisons. By
consideration of above issue, Nicolae et al. (2017) finds solution by considering load bal-
ancing of data shuffling by utilising the executor level reciprocity, source responsiveness
prioritization, and so on. Yu et al. (2015) derived a novel on virtual shuffling technique
to qualify well organized data movement and reduce I/O of data shuffling in MapRe-
duce framework. Their experimentation result states that the memory utilization and
performance can be improved by accelerating data development in MapReduce.

Daikoku et al. (2018) investigated on decoupled shuffle architecture, coupled shuffle
architecture and skew aware meta shuffle with decoupled shuffle architecture ( DSA with
SMS) to address the problems occurred by skewed data in MapReduce shuffling phase.
Considering the skew tolarance and weak scaling performance the result states that DSA
with SMS is the valid solution to tackle the issue.
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2.4 Investigation on MapReduce Serverless environment

Bardsley et al. (2018a) and Baldini et al. (2017) made a inspect on serverless biological
system in a low latency and high accessibility profile setting for analysing the performance
of serverless architectures. They bind the examination explicitly to one part of the
AWS usage of serverless called as AWS Lambda. Their outcomes appears that there
are chances to tune the performance attributes of Lambda based structures and their
diagram contemplation, considering potential latency and cold starts qualities made by
a integration of elements incorporating events and external frameworks.

Moczurad and Malawski (2018) propose a methodology towards serverless infrastruc-
ture that firmly incorporates the Luna programming language and visual-textual with the
model of computation. They created intuitive API by incorporating the Luna features
and libraries using AWS Lambda to trigger the external functions built in JavaScript.

The advantage of using MapReduce in Serverless environment is cost and performance.
Werner et al. (2018), Kim and Lin (2018) and Elgamal (2018) evaluates the scalability,
performance and cost effectiveness of serverless computing for big data processing. For
experimentation they considered the complex calculations and result shows serverless
computing can lower the infrastructure and operational cost with higher performance
and scalability.

There are many providers which offers the serverless platform. In order to select
the suitable provider, McGrath and Brenner (2017), Bardsley et al. (2018b) and Pelle
et al. (2019) evaluated different platforms in high availability with low latency. The
evaluation is done by considering the throughput and scaling in their implementations.
The experimentation’s is done based on the Concurrency test and the Backoff test and
result shows AWS Lambda exhibits the highest throughput and better performance which
scale linearly at all conditions.

Giménez-Alventosa et al. (2019) designed the platform to execute the MapReduce
tasks in serverless environment built on AWS Lambda and AWS S3. They carried out
an assessment and result revels that the non uniform performance behaviour that may
threaten for tightly coupled evaluated jobs. Jonas et al. (2019) describes the limitations
of MapReduce in serverless environment. This is due to IOPS limitations and data stores
latency hence shuffle doesn’t scale which results in reduced performance with greater
latency. They described that the problem is due to poor standard communication patterns
and absence in fine grained elasticity.They have experimented on 100TB of big data for
sorting. The result states that sorting for provided data is same as virtual machine
instances with rise of cost. By considering the cloud storage issue, Klimovic et al. (2018)
investigated on cloud based distributed cache and object storage services to check the
suitability as remote storage for serverless environment. Their analysis helps to design the
ephermal cloud storage system which provides the cost efficiency and better performance.
The experimentation result states the throughput is major considerable than latency
which flash storage gives the stability in cost and performance.

Based on provided solutions, Pu et al. (2019) provided the serverless analytic platform
called Locus which guides the selection of storage which varies by performance and cost.
They combined the slow and fast storage by analysing the bandwidth and throughput
limitations. Their experimentation result shows there is improvement in performance in
comparison with the Apache spark environment.

6



Title of the Papers Pros Cons
A framework and a per-
formance assessment for
serverless MapReduce on
AWS lambda.

Implementation of MapReduce
in serverless by AWS Lambda
and S3 services.

Solution has latency and
cost issues in implementa-
tion without considering fine
grained solutions.

Cloud programming sim-
plified: A Berkeley view
on serverless computing.

Explained about the Server-
less computing and limita-
tions, also given solutions to
achieve fine grained elasticity.

Provides solutions to latency
but the implementation of
MapReduce in serverless has
more cost.

A big data MapReduce
framework for fault
diagnosis in cloud-based
manufacturing.

Solution that provides de-
creased cost and improved
quality about pattern recogni-
tion by MapReduce in Hadoop
environment.

This paper doesn’t specify the
challenges that affects the per-
formance of the classifiers.

A review on data locality
in Hadoop MapReduce.

Provided solution for data loc-
ality of MapReduce which is
caused due to network latency.

Explained about the depend-
ent factors but there are no
techniques to tackle them.

Model driven perform-
ance simulation of cloud
provisioned hadoop
mapreduce applications.

It helps modified to simulation
prototype that enlarge queuing
prototypes to bear nested
queuing networks, which is ac-
ceptable for performance pro-
totyping of composite distri-
bution systems by MapReduce
Hadoop.

The process has approach that
as data size increases, execu-
tion time also increases. There
is no solution for latency.

Parallel algorithm for in-
dexing large dna se-
quences using mapreduce
on hadoop.

Provided solution of mine pat-
terns using MapReduce Ha-
doop with consideration of per-
formance.

Doesn’t specify about the com-
parison with other platforms
like spark which has better
performance due to in-memory
computation.

Improving the shuffle of
Hadoop MapReduce.

Provided shuffling process
which is more efficient than
traditional MapReduce shuff-
ling.

No explanations about fault
recovery and data manage-
ment which effects the shuff-
ling process.

Leveraging adaptive i/o
to optimize collective
data shuffling patterns
for bigdata analytics.

Provided solution for scalab-
ility and performance issues
occurred in the shuffle data
transfer phase for big data ana-
lytics.

Since it is not well organized,
which creates problem of con-
serving energy and power con-
sumption in data movement.

Table 1: Research Areas with pros and cons
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3 Methodology

3.1 Steps

Initially this paper tried to implement the MapReduce in openstack but, the compute
node creation took a huge time (large latency) before execution of tasks. By extending
the MARLA model, the Amazon Web Services (AWS) platform is used for performing
the MapReduce tasks. Although AWS provides the Elastic MapReduce (AWS EMR)
service, it doesn’t provide the management console and the latency is displaying output
is high. The collection of other services like S3 object storage, Redis cache storage and
Lambda platform for adding functions provides flexible services. The AWS S3 acts as
the trigger event to execute the map and reduce functions. The Cloud Watch service
provides the logs which is used to calculate the execution timings, memory allocation,
memory consumption and other dependent factors.

The AWS lambda is attached with Redis external library to support fine grained
elasticity. The external library is created in EC2 instance and added to S3. The lambda
adds external libraries in layers by S3. The layers is functionality of lambda which helps
for adding external libraries for the execution of lambda functions.

3.2 Materials and equipment’s

Using an Amazon Web Service account (AWS), this paper dives into the MapReduce tasks
by adding permissions through AWS IAM. The figure 2 explains the different policies need
to configure and attach to role before creating lambda function.

Figure 2: Policies used in IAM

The Lambda service is used to execute Map and Reduce functions. The lambda func-
tion is created and configured with IAM role, trigger object, network topology, security
groups and run-time that needs to executed. The role (with attached policies shown)
has been attached to get all required permissions, the Python with latest version 3.8 has
been added as runtime and the network topology has been created by adding following
components.
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• Subnets: The public and private subnets are created by adding the IP V4 address and
with port number 20. This helps to delimit the IP address to reside in the VPC.

• Creating NAT Gateway: This allows to create the bridge between the public subnet
to private one. The NAT gateway is created in the public subnet which helps to
access Route Table.

• Route the subnet in NAT gateway: This helps to access the internet for our AWS
resources. By editing the route table of the subnet which helps to target the new
NAT address.

• Security Groups: It provides the security at the protocol and port level which filters
the incoming and ongoing traffic.

• Timeout and Memory: The default timeout is 3 seconds and memory allocated is
128 Mega bytes. This model sets timeout to 9 seconds and 192 memory due to
addition of external libraries.

The AWS S3 bucket is created to store input csv file and the reduce function output.
The S3 acts as the trigger event to invoke the lambda function. The AWS elastic cache
Redis is created to store the intermediate data where data comes from map function and
output to reduce function.

3.3 Sample data

The data used for MapReduce function is SFI gender based data. Here we perform the
operation of number of occurrences of program name present in the comma seperated
file(CSV). The map function generates the key value pair by collecting the data and
seperates the required and non required data for reduce function. The reduce function
collects the key value pair data and outputs the number of occurrences.

3.4 Measurements

Due to limitations of resources, the size of data choosen for execution in MapReduce is
6MB. In according to size of data, the lambda functions are created by allocating below
memories and timeout.

• Mappers: The two mapper functions are created and assigned with 9 seconds timeout
and 192 Memory with all network configurations.

• Coordinator: A single coordinator function is created and assigned with a minute
timeout and 200 Memory with Redis dependencies.

• Reduce: A single reducer function is created and assigned with 3 seconds timeout and
128 Memory with Redis dependencies.
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4 Design Specification

The Marla model (Giménez-Alventosa et al. (2019)) proposed the architecture of MapRe-
duce in serverless platform as shown in figure 3. This model uses the lambda as compute
engine and S3 as the storage for input, output and intermediate data. This model wages
the latency issue due to absence of fine grained elasticity.

Figure 3: MARLA Architecture

In this section we define the composite architecture to execute the MapReduce tasks
using Amazon Web Service resources. The AWS Lambda service works with Amazon
VPC (virtual private cloud) through Amazon Direct Connect Link which allows us to
perform the MapReduce in the composite architecture as shown in figure 4. By default
the AWS is not configured with the VPC, the following components are created.

Figure 4: VPC Architecture for Lambda and Redis

The Composite architecture has three phase task execution: read, compute and write.
The following section describes the components where the task is executed.
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• Input and Output: The AWS S3 (Simple Storage Service) is object storage used to
store the input data which is need to be manipulated to map function and output
data of the reduce function. S3 helps to retrieve and restore the every version of data
easily. The redis cache storage is used to store the intermediate data generated from
map functions. It collects data from map function and pushes to reduce function.

• Compute: The lambda function is used to perform the map and reduce task on the
provided data. The lambda function is connected to s3 object storage at input and
output phase and redis cache storage for shuffling phase.

The figure 4 represents the architecture which is built in the virtual private cloud (VPC)
to provide internet access to lambda and redis services. The VPC is built with private
and public subnets, NAT gateway and security group.

The architecture is built by AWS services in absence of external services. We define
the architecture to overcome the latency issue in shuffling phase by introducing the fine
grained elasticity. The input is txt or csv file stored in s3, intermediate data is stored in
AWS Redis and output is stored in s3. It is composed of coordinator, map and reduce
lambda functions which defines the basic MapReduce function. The coordinator organize
the input data which ensure all the input data is for manipulation and also helps to
trigger the map and reduce lambda functions. The map function takes chunks of data
which is required for the manipulation. The reduce function sorts all the data and stores
the data into S3.

Figure 5: Composite Architecture

Figure 5 depicts the end to end Composite architecture which defines the workflow by
using AWS services. The MapReduce in serverless is defined by 6 steps where workflow
starts from input phase and ends with output phase.
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• Input phase: The input data of csv or txt file is added into the s3 which acts as the
event to trigger the coordinator lambda function automatically.

• Coordinator phase: The given input data is divided into chunks with defined size
and ensures all the given data is used in map phase. This stage also helps to trigger
the map function where the function is defined.

• Mapper phase: The map function split the input data into chunks and further it is
used for the processing. This function returns the name-value pairs, a list of 2D
tuples in the form of Pair[i][j].

• Shuffling phase: In this stage the intermediate data from map function i.e., key value
pairs are sorted and stored data is used for the reduce function.

• Reducer phase: This function reduces the key value pairs which takes a sorted list
as the argument and returns the two dimensional tuple with set of name and value.

• Output phase: This phase stores the output of reduce function which is in the form
of key and its number of occurrences as the value.

when the object is added to input storage the framework is initialized. This makes
s3 event to trigger the coordinator function which calculates the size of data chunks
according to availability of memory and RAM assigned to X number of mappers. The
coordinator will recompute the size of data piece if map function doesn’t have sufficient
memory.

In comprehensive with size of data chunk processed by each map function, the co-
ordinator function run the below tasks. First, it calculates the suitable size of each data
piece by dividing the total data size available as input to number of map function alloc-
ated by the user.
x = number of mappers
y = total data size (input)

then, dataChunk = y / x
If size of dataChunk is smaller than minimum block size that need to be executed, then
the data piece size is counted to size of minimum block size that needs to be executed and
number of mappers is calculated as below lb = LeastBlockSize = 1024KB (as example)
x = int ( y / lb ) + 1

If dataChunk size is greater than the defined fixed memory size (fixedMemorySize),
the coordinator function, will figures the fixedMemorySize as percentage of memory allows
to mapper lambda function. This helps the data piece to hold by mapper functions. In
such scenario the data piece size value is set to fixedMemorySize and x will be recounted.
f = fixedMemorySize
x = int ( y / f ) + 1
If dataChunk size is greater than the defined peak memory size (amount of memory the
processor has used), then the value of dataChunk is set to peak memory size and x is
recounted.
p = peak memory size
x = int ( y / p ) + 1

12



5 Implementation

We have implemented the Composite Architecture by extending the MARLA algorithm
Giménez-Alventosa et al. (2019), a python based MapReduce framework developed in
serverless computing. MARLA helps to implement the MapReduce functions that per-
form data shuffle (intermediate stage) between lambda functions, which lacks the fine
grained elasticity. This paper elevate MARLA with assist for shuffle functionality and
define performance model that depicts the mechanized shuffle operations. For the com-
posite architecture we utilize the AWS services like AWS S3 as input and output storage,
AWS Redis as intermediate data storage and AWS lambda as computation engine.

To execute the MapReduce functions in composite architecture, we define map and
reduce function in python3.8 as runtime by importing the library Boto3 for introducing
S3 and Redis services. Also, libraries like importing csv for reading csv files and importing
Redis for extending the cache memory functionality. Note the fine grained elasticity is
introduced by adding functionality of Redis, which is described in section 4 above.

Figure 6: Cost and time comparsion for S3 and Redis storages, Source: Pu et al. (2019)

• Model Extension: The previous shuffle scenario is using S3 object storage for stor-
ing the input, intermediate and output files. The S3 for shuffle phase creates the
latency issues which is described in figure 7. The cache storage redis considered
as fast storage which minimizes the latency between map and reduce lambda func-
tions. Considering the latency issue, the Composite architecture defines the S3 as
input and output storage and Redis as intermediate storage defines the efficient
performance model.

We have implemented have coordinator, map and reduce function in a multiple lambda
functions which is triggered by the S3 input bucket. The role for creating lambda function
has full access permission to S3, Elastic cache, VPC, cloud watch and so on as shown in
figure [2].

6 Evaluation

Composite Serverless model can reduce execution time by up to 30% than Marla model,
and the same time being close to AWS EMR completion time up to 2X. Even with
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the small amount of fast storage, Composite model helps to reduce the latency in turn
improves the performance. The below graph 7 shows the time taken by lambda to execute
the different size of data.

Figure 7: File size v/s time taken for execution

6.1 Case Study 1

The file size with 1 MB is chosen to validate the memory usage and cost occurrence.
Here this paper creates the test file which is in the form of JSON. After execution, the
duration shows the time taken for the execution. Since it is executed successfully, the
image 8 shows the output is displayed in green color with the output.

Figure 8: The output for executing 1 MB

6.2 Case Study 2

The file size with 11 MB is chosen to validate the memory usage and cost occurrence.
Here this paper creates the test file which is in the form of JSON. Since the file chosen is
larger than the specified size (6 MB), the image 9 shows the output is displayed in red
color with the log.

14



Figure 9: The output for executing more than defined execution file size

Here file size from 1MB to 5MB are executed in Composite model where the comple-
tion time is around 12 seconds for all size of data. The latency of 12 seconds is due to
cold start, the lambda and redis is built in VPC. The lambda utilize resources from VPC
using elastic network interface (ENI), this creates the initial cold start.

The graphs for duration, error count, trottle time and invocation time are provided by
monitoring service in AWS Lambda. The duration graph 10 shows the time from when
the coordinator function starts executing the given data as a consequence of invocation
to when it stops invoking another function. Here the green dot represents minimum
duration of the lambda function is executed. The graph 11 shows the error and success
rate of execution. The graph has green dot of 100% shows all the data being executed
with out any bugs.

Figure 10: Duration for 5MB Figure 11: error count for Composite
model

The graph 12 shows number of times the function is being called. Here the coordinator
lambda is invoked by S3 event and responce event from mapper lambda hence it shows
2 times. The graph 13 estimates the coordinator function invocation strive that were
throttled anticipated to invocation rates exceptional the given concurrent limitations.
The graph shows 0 trottle rate.
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Figure 12: Invocation time for 5MB size
Figure 13: Trottle time

Further extends with the redis, the figure 14 shows the cache memory outline. The
below diagram shows the replication factor for the Redis storage. Replication Bytes
describes the size of memory that the master is forwarding to all of its replicas. Here the
two replicas has been used inside Redis elastic cache.

Figure 14: Replication factor for Redis

Figure 15: CPU utilization

The graph 15 helps to monitor the workload. The graph shows that the usage is under
the threshold value that is under 45%. Here the default threshold value has been set to
90%. The graph 16 shows the packets in and out for the in-memory computing which
has related with the network bytes in and out. This represents the data in and out from
Redis has equal size of data where 100% data has been utilized.
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Figure 16: Redis network bytes in and out

Platforms Time cost
MARLA Algorithm 18658 ms 0.0000266$
AWS EMR 28 seconds 0.00086$
Hadoop MapReduce 183 seconds -$
Composite Architecture 12753 ms 0.000555

The table 6.2 shows the different platforms for executing MapReduce in serverless
infrastructure. The composite architecture shows 0.5x execution time and 3x cost in
compare with Marla model. The cost is due to the usage of cache resources.

As comparison with the variation of execution with different size of files, the composite
model gives the efficient time of execution. Below diagram shows the time v/s file size.
The file size from 1MB to 5MB are executed in Marla model and composite model. The
marla model execution time increases as file size increases. The composite model exhibits
the same execution time for all size of data. This is shown in figure [17].

Figure 17: MARLA v/s Composite

The composite model exhibit the greater performance and cost of using cache memory
is high. It will be in 3 times more than Marla model. The use of cache memory spin up
the large instance for every execution.
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7 Conclusion and Future Work

This paper has introduced the Composite model in order to support MapReduce in AWS
Serverless infrastructure. This paper believes that performance gap is improved by in-
troducing the fine grained elasticity with favour to state of art Function as a service and
Backend as a Service. This paper made efficient usage of AWS S3 and AWS Elastic
Cache for improved data transfers. When comparing the performance result with other
platforms, the AWS Lambda exhibits homogeneous latency behaviour which has no in-
fluence on processing time of MapReduce tasks. To this aim, this research take up the
deep analysis of AWS Elastic Cache CPU utilization and AWS Lmabda with duration,
error rate, invocation and throttle time and pay particular attention to identifying the
reasons for latency and billing.

• The introduction of AWS Elastic Cache as intermediate storage reduces the execu-
tion time up to 5 times less than the Marla model.

• The usage of cache memory increases cost which is 3 times more than the Marla
model.

Due to restriction of resources, this paper proposes the Composite model for small
analytic platform. Future work comprise expanding the Composite model for large ana-
lytical platform. In particular, creating clusters of lambda and elastic cache in AWS EC2
for executing large data sets. Also, different types of storage’s is used for comparing the
results and finding more suitability for the Composite model.
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1 Introduction

1.1 Purpose of this document

This Configuration Manual is done based on the NCI Research project requirements
described in the Project Handbook. Main purpose of this document is to describe the
required software tools and settings in order to successfully deploy the Spot instance
Management System.

1.2 Document Structure

Section Purpose
General Information This module explains the minimum informa-

tion and prerequisites required for the serverless
platform setup

Developement Environment prerequisites This module explains steps required for success-
ful setup of development environment used for
development and update of the solution Solu-
tion

Solution Deployment Procedure This module explains deployment procedure of
the Composite model

Validations This module explains the minimum require-
ments to validate fruitful deployment of the
solution

2 General Information

2.1 Objective

The main objective of Composite model is to enhance the shuffling phase in Marla model
which is defined in serverless infrastructure. The key role is to run the MapReduce tasks
using AWS services and adding fine grained elasticity. Analysing the cost and speed of the
different type of storage’s and other platforms to provide the best fit for the MapReduce
tasks.

2.2 Solution Summary

The Composite model solution consists of six phases which are interconnected and acts
as one architecture.
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- The input phase takes comma separated files which is added into the s3 bucket and acts
as the event to trigger the execution of MapReduce tasks.
- The coordinator phase takes input data and divides into data pieces at specified size
and guarantees that all the given input data is executed in map lambda function. This
stage also helps to trigger the map function where the function is defined.
- In third phase, mapper lambda function divides the given input data into required and
non-required data where it is used for the further execution. This function returns the
key value pairs and stored in to the elastic cache memory.
- In the shuffle phase the data from all map functions is collected and stored in the AWS
Redis storage. The data is key value pair called as intermediate data.
- This fifth phase the reduce function takes the intermediate data from the Redis and
returns the two dimensional key value pairs.
- In sixth phase the output from the reduce function output is stored in to the AWS S3
in text file.

2.3 Architecture Requirements

This section describes the required AWS services for building Composite model.

2.3.1 Amazon Web Services account

The AWS serverless platform account is created with the user details (Vichi (2015)).

2.3.2 AWS Lambda

The Lambda compute service provided by the Amazon is required for the creating co-
ordinator, map and reduce functions. Here functions are written in python 3.8 is used
for executing MapReduce tasks (Hendrix (1983)).

2.3.3 AWS S3

The AWS S3 (simple storage service) is used for storing input and output files. It is also
used for triggering the execution of MapReduce tasks (Street (2002)).

2.3.4 AWS VPC

The AWS VPC (Virtual Private Network) is created to provide the internet access to
lambda and elasti cache services. Here subnets, security groups, route table and NAT
gateway to support VPC (de Médicos de (2016)).

2.3.5 AWS Cloud Watch

The AWS Cloud Watch service is used for analysing monitoring, error handling, analysing
logs and so on. This service provides all the information required for executing Mapreduce
tasks at a given time (Jenkins (2000)).

2.3.6 AWS EC2

The AWS EC2 service provided by the Amazon is used for the creating libraries which
are dependent for executing the tasks (Amazon (2018a)).
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2.3.7 AWS Elastic Cache

It is used for storing the intermediate files that are produced from map functions. This
is mainly used as fine grained elasticity for composite model (Amazon (2018b)).

2.4 Required Skills

In this guide, we assume that user has basic knowledge of using Amazon Web Services.
Also user has to know the python language for creating all functions.

3 Development Environment Requirements

3.1 Code Repository

Refer the zip file which I have submitted in the ICT solution.

3.2 Required Programming Languages

Python Version 3.8
The AWS compute engine provides the platform to write the python code for creat-
ing MapReduce functions. The following packages need to be installed before writting
MapReduce functions:

• boto3 - 1.10.28

• redis - 5.0

• pandas - 0.24.2

• csv -13.1.1

3.3 Creating IAM role

Before creating Lmabda function, create the IAM role which has below permissions. This
sets the lambda to create the execution environment.

• AmazonElasticCacheFullAccess

• AmazonS3FullAccess

• CloudWatchFullAccess

• AmazonVPCFullAccess

• AWSLambdaVPCAccessExecutionRole

• AWSLambdaRole

• CloudWatchEventsFullAccess
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3.4 Create Lambda function

Once the IAM role is created, you can create the lambda functions for coordinator, map
and reduce function. This is shown below:

• Click on create function by selecting the lambda service as shown in figure 1.

• Select the blueprint after clicking the create lambda function as shown in figure 2.

• Configure the function name, run-time and permissions as shown in figure 3]

• After creating the lambda function configure the network as shown in figure 5

• Add the event that triggers the created lambda function. If there is no S3 bucket
created, create the S3 and add it to the lambda function

Figure 1: Creating the function

Figure 2: Select blueprint

Figure 3: Configuration image
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Figure 4: Network Configuration

Figure 5: Triggering event S3

3.5 Create the EC2 instance

After creating the lambda function with above functionalities, create the EC2 cluster for
adding the dependencies files to the lambda function.

• Click on create function by selecting the Ec2 service as shown in figure 6.

• Install the Filezilla to transfer the local python file to EC2. After installing, add
the EC2 public IP and with port number 22 as shown in figure 7.

• Transfer the local file to EC2 as shown in figure 8

• Later install all the dependencies inside the EC2 instance

• Move the installed files to S3 buckets which you have been created

After adding the libraries to S3 buckets, create the layer inside the lambda function
to add dependencies to the MapReduce tasks as shown in figure 9.
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Figure 6: Creating EC2 instance

Figure 7: File Zilla Configuration

Figure 8: Adding files to file zilla

Figure 9: Layer Structure
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3.6 Create Cache Memory

Create the cache memory by selecting the Redis inside AWS Elastic Cache in services.
Create the Redis service with configuration as shown in figure 10.

Figure 10: Redis Configuration

4 Validation

Create the lambda function for Coordinator, mapper and reducer function. The code is
available in section 2 and deploy it inside lambda function. After creation of all services
shown, test the configurations and application from coordinator lambda function. There
are two types of validations are done as shown below.

• Create the test inside the lambda function as shown in figure 11. Execute the test
function and result is shown in figure 12. If there is no proper configuration made,
an error is thrown.

• Add the files inside the S3 buckets as shown in figure 13. It will execute the lambda
function automatically. If there is proper connection made, the output is displayed
in cloud watch service as shown in figure 14.

Figure 11: Creating test event
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Figure 12: Logs from test in lambda

Figure 13: S3 as trigger function

Figure 14: Logs on Cloud Watch
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