~

N\ National
College
Ireland

HONED RESOURCE SEGREGATION IN
CLOUD, FOG AND EDGE COMPUTING
USING DATA CONSUMPTION CHURN.

MSc. CLOUD COMPUTING

HARI NARAYANAN SURESH KUMAR
Student I1D: 18170625

School of Computing
National College of Ireland

Supervisor: Manuel Tova-Izquierdo

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: HARI NARAYANAN
Student ID: 18170625
Programme: MSc. CLOUD COMPUTING
Year: 2019
Module: RESEARCH PROJECT
Supervisor: Manuel Tova-Izquierdo
Submission Due Date: 12/12/2019
Project Title: HONED RESOURCE SEGREGATION IN CLOUD, FOG
AND EDGE COMPUTING USING DATA CONSUMPTION
CHURN
Word Count: 6287
Page Count: [25]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 12th December 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | (I
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

HONED RESOURCE SEGREGATION IN CLOUD,
FOG AND EDGE COMPUTING USING DATA
CONSUMPTION CHURN.

HARI NARAYANAN

Abstract

Data in day to day is in upturn trend due to an increase in the usage of tech-
nological gadgets. In this avant-garde era, all these data are stored in the cloud
and managing these data efficiently in the cloud server is denounce. Even though
the cloud servers have paved a way to develop the fog and edge servers, the de-
cisive resource optimization method in all three servers (Cloud, Fog, and Edge) in
order to reduce latency in them is still a claiming. I proposed an algorithm that
can optimize the resource and hone them by using data analytics methodologies
and the algorithm is named as the ‘Data churn algorithm’ as it hinges on business
churn algorithm. This algorithm takes an application logfile from a corresponding
application and analyses them based on service time, bytes size, URLs, and etc..
The next step is to make a graph with them to detect a point of variation in the
graph to split them into three halves. Each half is then made to fit into Cloud,
Fog and Edge servers by an application load balancer that makes the URLs of
the application in each instance such as cloud, fog, and edge respectively which
is analyzed by the Data churn algorithm. The system performance is calculated
by using the tracert command that estimates the latency of the experimented web
application. On using the data churn algorithm, the tracert command depicts that
there is three-fourth of improvement in latency is observed on comparing with the
traditional methods. The following approach successfully reduces latency in the
Multilevel servers(Cloud, Fog, and Edge) on comparing with the existing algorithm
that they follow.

Keywords : Cloud computing, Data churn Algorithm, Data analytics, Fog
computing, Edge computing.

1 Introduction

Cloud technologies are reaching their utmost demand due to its on-demand self-service,
Instant elasticity, and consistent service. Similar to Cloud servers, the Internet Of Things
(IoT) also paves a vital growth in the emergence of technology. All these IoT devices
which include mobile devices, sensors, demand new requirements that the existing Cloud
technology could not satisfy sufficiently. All these requirements do include a low level of
latency, security, mobility support, and location awareness. To suffice all these exactions,
The research community has introduced two major technologies such as Fog and Edge
computing servers (Shirazi et al.; 2017). [Firdhous et al.| (2014) describes that the Fog
servers are designed in a way to afford the resources that are in Cloud in an omnipresent

manner. The reason for coining this name as ‘Fog’ is that it is closer to the ground level.
In a similar way, Fog servers are those that are near in comparing with the end-user
devices and the cloud data centers. Fog computing has been designed in a way to meet
all the hindrances in the Cloud such as to provide better Quality Of Service, reduced data
traffic, low latency and etc. There are few minor drawbacks in the Fog nodes that include
high power consumption on comparing with centralized cloud servers, Data consistency,
Authentication, and trust issues. Among all these issues, latency in the multilevel servers
and resource scheduling between Fog nodes with the cloud servers are major concerns.
Algorithms that are used for encryption and security policies makes difficult for devices
such as Cloud and Fog to transfer data within themselves and Lack of strong security
policies or encryption may lead to data exposure. Edge computing has its own uniqueness
on comparing with Fog servers such as increasing the efficiency of infrastructures through
its low latency. The absence of an edge server increases the processing time of data thus
makes the total process slow in general. Positive aspects of Edge nodes include its agility,
reliable connection and quality bandwidth that results in lowering the cost of any organ-
ization. The growth of Edge nodes is directly proportional to the IoT devices. It too has
some kinds of drawbacks such as requiring additional hardware for IoT devices, only can
use a part of the complete data and several security issues. A most common problem
faced in both Fog and Edge is which data to place where irrespective of its performance
and other concerns.

In 2009, the term cloudlet was introduced that constantly focuses on latency. The
author Satyanarayanan et al. (2009) proposes a concept that has a two-tier architecture.
The first level architecture is about Cloud nodes and the second is about the Cloudlets
also known as Fog servers. The Fog servers are described as widely spread infrastructure
components that have their own resources for storage and compute. The storage and
compute resources are influenced by nearby mobile computers. The Fog servers act as
cache storage that stores only a minimal amount of data that is essentially needed for
mobile devices.

The Evolution of these data centers started in the year 1990 when the local physical
servers were used to deliver content to the organization. Speech recognition and Cyber
foraging emerged in the 20th century that played a considerable role in technological ad-
vancements by that time. Peer to Peer computing was developed in 2001 and Cloudlets
that are known as fog computing was developed in 2009 by CISCO.

The process of data storage and management in the Cloud, Edge, and Fog servers
are distinct. The data in the cloud are stored in physical servers that are owned by a
service provider also logical storage pools that help these servers to store and utilize data
effectively. Storage types such as block storage or object storage are placed in multiple
or single servers. Unlike the cloud nodes, Fog and Edge computing servers do not process
with the whole application data hence there is a performance deduction that is observed
on latency. Though several resource allocation and scheduling methods (mentioned in
Section 2) are already used in these Multilevel servers such as Cloud, Fog and Edge, all of
them do not focus on latency reduction. There isn’t a common methodology to allocate
these resources in an optimized manner which also reduces latency.

In this paper, a common methodology for resource optimization has been proposed

through the data input churn. The data that are generated by various domains are broad-
ening in past years. Even though Cloud manages all of them at its best, there is a need
to manage them more adroitly and economically as the size of these data increases day
by day. All these operations may increases in latency as sometimes it takes more time to
deliver the content to the client-server as the functionality increases. The contemporary
algorithm known as Data churn Algorithm which is proposed in this paper can be used
to classify this monstrous amount of data on the basis of their frequency rate that desires
to reduce the latency in Multilevel servers respectively. The categorization of these data
based upon its various characteristics can be done using a deep learning model (Churn
Analysis) which is also a subset of machine learning. The following methods can help to
reduce Latency in Multilevel servers.

Research Question:

Can optimization of resources in Cloud, Fog and Edge servers using a
common churn algorithm reduce Latency in them on comparing with existing
methodologies?

The research aims to improve the efficient resource optimization in Cloud, Fog and
Edge computing based upon their response time and to allocate them using Data analytic
methodologies along with churn analysis. This is undertaken by getting the application
logs from the cloud and analyzing them based on various categories as mentioned in sec-
tion 3 and map the resources to Multilevel servers by using the Data churn algorithm. The
performance of the system is evaluated by comparing the application in its initial phase
which is before implementing the algorithm and after implementing the algorithm. This
focuses on the various computational nodes to use the resources with minimal latency at
its utmost efficiency.

This paper is divided into the corresponding sections that give an elaborate under-
standing of the entire system which is processed by using the data churn algorithm, usage
of the system and evaluation of the following approach. Section 2 gives the insights about
the various resource optimisation systems process. Section 3 gives a perception about the
data churn algorithm process and the way it is handles in the system. Section 4 describes
the architecture of the proposed system and its various factors. Section 5 describes about
the implementation of the entire systems process. Section 6 evaluates the system and
analyse the results of the system and section 7 describes the conclusion and future work.

2 Related Work

2.1 Cloud Computing Resource Optimization:

Cloud computing comprises four main deployment models such as Software as a service,
Infrastructure as a service and Platform as a service. The resource optimization method-
ology, in general, is focused on Infrastructure as a service. The various kinds of resource
optimization techniques in Cloud are listed below

2.1.1 Machine learning methods

To maintain the level of latency reduced and to improve the performance of Fog nodes.
Zhang et al.| (2018]) developed numerous sensor streams using correlation co-efficient. This
approach comprises of a Dynamic time wrapping algorithm that detects the lag in the
sensor streams. To identify the physical location of the node, the event routing algorithm
is used, then the existing correlation results are combined. Similarly, The authors Kedia
and Lunawat| (2018) describes that Input-Output Operation Per Second of the storage
stream may be effectively utilized by using the Pearson coefficient and also through
supervised and unsupervised learning. These anomaly detection methods help to find the
IOPS of every port in order to find the port that transmits data slowly.The architecture
mentioned by |Kumar and Palaniswami| (2012)) works as a master-worker plan. The jobs
here work on a directed acyclic graphRengasamy and Chidambaram! (2019) proposed a
predictive novel resource allocation framework for cloud servers using an algorithm named
Random algorithm that associates cloudlets and servers by appointing a random number
to each server. In order to eliminate the requirement of a centralized broker, the list of
the server is managed by the client to provide a better resource allocation methodology.

2.1.2 Deep Learning resource optimization in Multilevel servers:

Methodologies like Convolution Neural network which is a part of deep learning unifies
all computing networks such as Cloud, Fog and Edge. Concepts of Local receptive Field,
Activation, shared weights, and Pooling comes under the CNN. It separates all the data
that are required for the Edge nodes with that criteria. After that, The RNN processes
the data to proceed with predictive analysis in order to optimize edge resources.

2.1.3 Resource Mapping:

The optimal load balancing and mapping focus on to provide optimal cloud storage issues
where the files are partitioned and stored. Partial replication algorithm is used and this is
done to ensure reliability and availability of the data (Al Nuaimi et al.; 2015)). The object
mapping algorithm proposed by |Gan et al.|(2010) balances the objects and resources based
on a load of storage services. The virtual network resource mapping framework proposed
in (Yu et al.; 2008)) formulates a path splitting and migration process in order to reduce
the computational time.

Multiple nodes such as Cloud, Fog and Edge, an algorithm named polyVine which is a
distributed process. This methodology (Samuel et al.; 2013) that sends a single request to
an individual provider that allocates resources by giving priority to the unserved requests.
This runs sequentially unless every resource task is completed. While in this paper, The
author proposed an overall single methodology that segregates the request using Max-flow
and Min-cut process. Dipakbhail (2017)).

2.1.4 Virtual Machine Resource Optimization Techniques:

The Resource optimization techniques based on virtual machine consist of a distributed
process for data storage, communication of network and also works on a three-dimensional
optimization problem. VM placement places the incoming new request into the hosts and
then optimizes the old resources using BFD Algorithm (Best Fit Decreasing Algorithm).
In this paper, the author (Younge et al.;[2010) states the resource optimization techniques

4

can be completed by using correct placement, scheduling, and management of the virtual
machines. (Sonkar and Kharat; 2016) combines the various workload types that increase
the overall server utilization of server resources. The proposed system in this paper
focuses on the load balancing algorithm that works with the criteria such as scalability,
migration, response time and performance.

2.1.5 Traditional Resource Optimization in Cloud:

In order to increase the utilization rate and latency of the Cloud resources, the au-
thorGokilavani et al.| (2013a) wants the resources that specify the cloud servers to be in
demand. Problems in Resource optimization are scalability, task scheduling, reliability,
performance and reallocation of the resources dynamically. Gossip protocol: The nature
of this protocol is to perform resource allocation function in the Cloud servers using a
distributed middleware architecture. The algorithm distributes the cloud resources that
are time-dependant to a group of nodes (Gokilavani et al.j 2013a)). The methodology fol-
lowed in this paper scales with the number of the system but does not scale the number
of applications. While executing this protocol, a single node selects the set of other nodes
to communicate with each other using the selection function certainly.

Navimipour| (2015) compares the Bee’s algorithm as a process of how the bees catch
their scouts. By applying the same method for scheduling of resources, the data are
allocated by using three main functions such as Select, Fitness, and Waggle. The pro-
cessor here plays the role of scout bees respectively. The fitness function monitors the
performance of each task activity over the allocated resources comparing to the same task
executing in the group. Bin packing algorithm packs all the objects in a limited size to
a bin of specific capacity. The size of the bin should not be less than the greater or less
than objects or resources. The weight of the resources and the bin size are the main two
factors taken into consideration (Gouda et al.; 2013).

Wj =Weight of the item j, C = capacity of each bin

Priority algorithm is used when a job arrives with a cloud scheduler. This scheduler
segregates the tasks and these separated tasks are considered to achieve its work based
on priorities. Then these resources are allocated to the tasks to perform them in the
order of the list (Gokilavani et al.; 2013b).

Nishio et al| (2013) says that Cloud Resource Optimization can be processed eca-
ciously as it has a wider path for experimentation. The Increase in the storage resources
is directly proportional to the data increase. Unlike Cloud, Edge computing does not
have vast storage nor data computing power. Researches focus mainly on the ubiquity of
fog node. To maintain the widespreadness of Fog computing latency plays a vital role.

2.1.6 Fog Resource Optimization:

In this 21st century, The [oT devices are in increasing trend and the data from these
devices are growing enormously, this demands in its storage, performance, bandwidth,
and latency to an apex level (Santos et al. [2019). The challenges in Fog nodes as
described by Santos et.al are scalability, Bandwidth, energy efficiency and decentralized
management.

The Online greedy Algorithm Bi et al.| (2019) works with the Fog data centers by
taking bandwidth and resource endpoints into consideration. Flexible greedy Algorithm
commonly known as FlexOG predicts the maximum amount of resources from the list

RESOURCE OPTIMIZATION | PROCESS
ALGORITHMS UNDERTAKEN | ADVANTAGES LIMITATIONS
BEST FIT DECREASING High processing
ALGORITHM VM optimization time Optimal results can't be
evolved
Time-dependant Distributed in
GOSSIP PROTOCOL distribution of nature Unable to implement in large
resources in cloud regions.
nodes
Efficient Task and Effective data Ineffective data search
BEE'S ALGORITHM. ANT Resource storage and procedures and sequence of
' Allocation to collection. random decisions are
COLONY, BIN PACKING Improve evolved.
performance.
Scheduling Distributed task | Not flexible to modify and not
PRIORITY ALGORITHM Resources based allocation. suitable for frequent and
on priority infrequent tasks.
PRE-EMPTIVE AND NON PRE- | Dynamic resource | useful when a
EMPTIVE SCHEDULING allocation high priority Not the best fit for parallel
methodology. process requires processing.
ALGORITHM rapid attention.
SPECIAL CLOUD RESOURCE | Allocate Resources | Energy-efficient Concentrates more on
ALLOCATION METHOD Based on the usage algorithm. energy than other aspects
of Energy. like performance, latency.
predictive novel | Best for parallel
RANDOM ALGORITHM resource allocation processing. The results predicted are
framework for random.
cloud servers
DYNAMIC TIME WRAPPING Detects lagin | Enables to find the
ALGORITHM sensor streams | best alignment. Analyse all possible
patierns.
Faultor laginthe | Handling multi- It doesn’t performs well if
STATISTICAL METHODS data server flow | dimensionaland | adequate resources aren't
multi variety data. provided.
Predicis the It requires less
ONLINE GREEDY ALGORITHM maximum amount computing Difficult to obtain an Optimal
of resource from resources. solution.
the list of
uncompleted tasks

Figure 1: Represents the interpretation observed from the state of Art methodologies.

6

of uncompleted tasks by considering the computing time as ‘ti’ for a specific task ‘I’.
The FlexOG algorithm derived a result of 90% on comparing with the Social Welfare
Maximization Online Auction algorithm. The function of the FlexOG algorithm is to
rearrange uncompleted task steps for newly visited tasks.

2.1.7 Edge computing resource Optimization:

The resources that are located in the edge servers functions mainly to enhance the per-
formance and availability of the resources. The Hungarian method (Giang et al.; 2015)
used in assignment algorithm enables to optimize the data or resources that are present in
the Edge nodes. (Ni et al.; 2017)) that uses the cost function to process many features of
the system which include Resources that are processed, Latency and prices. This is done
by offloading the end devices in order to maximize their life span and also to minimize
latency (Zaharia et al.; 2013). On comparing with Fog and Edge computing in multilevel
architecture, the priority for edge computing has been high and the static resources that
are processed from these two algorithms.

3 Methodology

The methodology is exhilarated from the process of Churn rate analysis. The Churn
rate can be expressed as a method to calculate the outcome of a processor to calculate
the possibility of a specific or collective item in an entity. This Churn rate analysis is
commonly undertaken to analyze the customer’s incoming or outgoing rate from a specific
product or business. On comparing the same with these multilevel servers, several key
performance indicators which can be also known as affinities from the normal process is
observed. This correlation between the business churn and server churn rate is described
below which the performance of the latency can be determined.

e Application data and its usage: The data that are extracted from the backend of
the application that is stored in the database.

e Access of the server data in a Specific time: This specifies the time in which the
server experience maximum traffic.

e Response time: Response time from each method (GET/POST) enables to find how
long does it take the data packets to travel from server to the client (or) vice-versa.

e User application: The entire workload depends on how the deployed application is
created on the basis of its feature (i.e) Larger the application results in a greater
server workload.

e Response size: The data packets that can be represented in the form of bytes
describes the quantity of data transfer from the server to the client. This is also
dependent on Response time.

e Amount of Connections (Request): The amount of connections directly or indirectly
describes the activeness of a specific instance.

By the method of Churn data rate analysis in Cloud computing, a new methodology to
optimize the Multilevel servers can be evolved and this process also can result in reducing
the latency of all the Cloud, Fog and Edge servers.

7

Data analytics methodologies that is implemented by Mutlag et al.| (2019) to reduce
latency in Fog computing in order to reduce latency and the Franciska and Swaminathan
(2017) and [Kawale et al. (2009) described a platform that enables an innuendo for the
entire process respectively.All these methodologies combine to form a contemporary al-
gorithm which is named as Data churn Algorithm. The Figure 3 represents the depend-
ence of the key factors of the Churn analysis and the Data churn Algorithm.

‘ CUSTOMER CHURN ANALYSIS ‘

--

!
| FREQUENCY OF |
' MAX. SALE OF A .
i PRODUCT BUYER PRODUCTS |
! CUSTOMER USAGE |
i\ OF APRODUCT : e i
| :

AMOUNT OF
BUYERS FOR THE
PRODUCT

Application Response
data and its usage size |
Response H
time

I ™\

DATA CHURN
ALGORITHM

Access
of the server data
in a Specific time

Amount
of Connections
(Request)

User
application
complexity

Figure 2: Relationship representation of Customer/Business churn Analysis and Data
churn Algorithm

This process is an antecedent of its own and on comparing with the other resource
optimization algorithm. All these algorithms which comprise of similar characteristics
only focus on a single type of node. Improving latency in one type of server (either on
Cloud, Fog or Edge) does not revamp the latency of the entire application. Henceforth,
This algorithm might be a suitable one to reduce the service time. This algorithm is
enforced by using a Django framework which is a python REST API framework. The
reason for choosing a backend framework as python is because all the data analytics
process of the algorithm is occurred by using python.

The main reason for choosing python for this whole process is that the language does
have more libraries that are required to perform data analytics operations which I do
in data churn algorithm. Python libraries such as pandas, plotly, math and numpy are
used in this whole process. This framework gets in a log file of a specific application
in a Comma separated file format and then analysis them using the algorithm which is
further segregates URL of the application into three main parts to fit into Fog, Cloud
and Edge. These processes are explained in the forthcoming sections of 4,5 and 6.

4 Design Specification

In order to design the entire system, there are certain components that are required to
implement them. The requirements of the system are described below

e A log file for a web application which should be for at least 2 weeks.

e Python

Libraries in python such as pandas, plotly, math and numpy are used in this whole
process.

Data cleaning and processing is done by using python where all the log files content
are taken into CSV format and unwanted details that aren’t needed for the research
are excluded.

e The algorithm is implemented through Django backend framework to map the log
file with the data resources in Multilevel servers.

Cloud server 0

CLOUD SERVERS

FOG SERVERS

.

» 1@ >
L

CSV Format

DATA CHURN
ALGORITHM

Application Logs .
Resource Mapping

EDGE SERVERS

Figure 3: Architecture of the proposed system

The whole process starts from the abstraction of data to the evaluation of results.
The tag line of the work flow of each process are described in the Figure 4.

This research is divided into specific stages based on its workflow. The initial level
of the project starts with the extraction of application logs from the cloud which is con-
sidered experimental data. After that, the data are made into a file of comma-separated
value. Then, Various characteristics are analyzed from the converted file and each value is
defined by a determining factor in order to categorize. These resources are then classified
into a suitable format that can fit into Cloud, Fog and edge servers based the past steps.
Then the resource fitting servers are configured such a way that the appropriate resources
can be placed in them. The results are then evaluated to prove that this experiment is
fit for the given problem.

5 Implementation

The implementation of the whole process is described below which comprises of five main

phases. The second, third and fourth phase such as resource refinement, logfile encoding,

Resource categorization are processed in python language with the help of inbuilt libraries
such as pandas, matplotlib, numpy,math and plotly. The process of resource mapping
done by using is through the application load balancer (AWS) and each phase is described
in detail in Figure 4 and below

1.

2.

Resource Extraction
Resource refinement
Log file encoding
Resource categorisation

Resource Mapping

1 2
H
i ::>
Www
@
WEB APP i LOGS

FILTER

il GET/ E
PO

STATUS

CODE

EYTE SERVICE !

SIZE TIME

S
-

GET/
POST

F‘OST

ACCESS
DATE & TIME

csv

TIME TIME [}

pr.

PDINT OF :

VARIATION

i
i
i
|
SERVICE Ell

Application
Load Balancer

El"|<—|
R

33—

§———

\

RESOURCE EXTRACTION

PHASE

2 , REFINEMENT &
ENCODING PHASE

RESOURCE

RESOURCE
MAPFPING

Figure 4: Implementation Workflow of the proposed Architecture

10

CATEGORIZATION PHASE

J

5.1 Resource extraction:

The experimental data that are extracted are in the form of logs from a web application.
These logs should comprise various information such as IP address, status code, URL
that has GET/POST request, request time and etc..

5.2 Resource refinement:

In order to convert the generated log file into an accessible format (i.e) into a dataset.
The main factors like status code, bytes, date and time of accessing the application are
considered on the initial stage of the process then are converted into columns of the
dataset by using ‘pandas’ which is a python library. The start-up and shutdown logs
are removed from the dataset which is irrelevant to the research and the dataset can be
further denoted as weblogs and router logs.

5.3 Logfile encoding:

The accuracy of an algorithm depends on the number of numerical values it persists.
Henceforth, the values of these generated data sets are encoded numerically. The columns
such as Bytes, Methods, and URL are encoded as below.

5.3.1 Bytes Size:

The bytes size is encoded, as there is a region of size starting from the minimal weight
to the maximum 5 digit size. Henceforth, To plot the graph with nonchalance, the graph
values are encoded as per each 1000 KB.

5.3.2 URL encoding:

Each and every URL navigation part are encoded in a way such that there isn’t any
split that can be observed in the experimented application. This is done by using
‘get_dummies’ function in python. For example, the second part of the URL link is
taken a single numerical value even it is followed by much other navigation further.

5.4 Resource categorization:

The categorization of the process is done by using the following Data churn Algorithm
in the flow chart and in the the algorithmic representation below

11

Application Log

Average GET

[

maximum?

Split all GET /

values from POST/

h 4

Sort them based on

Split all POST
/ values from GET

sort them based on

service time

h

service time as Y-Axis

h A

service time
h 4
Plot graph using GET
values as X-axis and v

Plot graph using
POST values as X-
axis and service fime
as Y-Axis

Point of Variation in the Graph is taken
in order to fit the corresponding URL
data of X& Y axis to fit in Multilevel
Servers.

Resource
mapping

Figure 5: Flow of the Data churn Algorithm

12

Algorithm 1 Data churn Algorithm

Stepl : Average of all the Bytes values of GET are taken.

Step2 : Average of the Bytes values of POST are taken.

If Average value of GET > Average of POST then follow Step3.

Step3 : Split all the rows that has ‘GET’ from ‘POST".

Step4 : Take the separated values of GET and Sort them based on their ‘service time’.
Step 5: Plot graph using Matplotlib by making

e Service time as X-axis.

e Bytes size as Y-axis.

Firstly, Observe the first POV- Point Of Variation (sudden rise/fall of the pattern) in
the graph. Secondly, consider the POV as a splitting factor by undertaking the following
two conditions mentioned below.

1 - The peak value observed after or before the POV in the graph goes to cloud.

2 - Remaining values go to FOG and EDGE nodes.

Step6 : Now, to analyze the perfect data fit for Fog and Edge nodes, The process of step
5 is taken in order to split them into Cloud and Fog.

If Average value of POST > Average of GET.

Step7 : Separate the rows that has ‘POST’ from ‘GET".

Step8 : Take the separated values of POST and Sort them based on their ‘service time’.
Step9 : Follow the process of Stepb and 6.

Stepl0 : The data is decomposed into three major splits and on the basis on its URL
column for each split, the whole data is categorized to place into Cloud, Fog and Edge
node using a mapping separate algorithm that suits the process respectively. In our
case, After following the specified algorithm that is represented above, the following
observations are made.

5.5 Resource Mapping:

The URL columns that are obtained from the Resource categorization phase are to be
mapped to the Cloud, Fog and Edge server to evaluate the efficiency of the algorithm.
The resource mapping is done once after further refining of the log data so that only
accurate data can be placed in the Multilevel servers. The status code such as 200 is
not taken into consideration as it states that the request is a success. There are several
status codes that are analyzed manually based upon their characteristics and considered
to place then in the cloud as it will be better not to place them among one in Cloud,
Fog, and Edge.

The reason for opting 304 requests URL to be placed in all the nodes because it gets
access to the request but not modified which can be transferred to other servers in case of
any failures in any one (i.e) Cloud, Fog and Edge. The Internal server error also known
as 500 can be transferred to all the nodes so that it can balance the request failure. The
code 503 is also placed in all the three nodes because if one service is unavailable at a
cloud, the request can be passed to Fog or Edge to balance the server traffic.

Then once after segregation of the components into data set as described in the steps
above, we can now place the URL components to the Multilevel servers. This can be
done once after decoding the URL link to the actual one. The web application that is
used for experimentation is to be deployed into the Multilevel servers.

The application is now deployed in the cloud by using a load balancer. The chosen

13

load balancer type for this process is application load balancer. This is because it makes
an easier way to deploy the application in the EC2 instances and route them into the
target groups. In order to connect the application with

3 Autoscaling groups — Each Autoscaling group for an instance where one instance is
considered as Cloud, Fog, and Edge in our case. 3 Target groups — Each target group
has made to enter three sets of the defined paths of a website. In our case, the divided
target splits into three as we have three sets of URLs to store in Cloud, Fog and Edge in
the Resource categorization phase. The Target rules are set in the format as in the Rule
ID described below

e IF Path is URL SET 1 THEN forward to 1st Autoscaling Group (i.e.) Instance 1
e [F Path is URL SET 2 THEN forward to 2nd Autoscaling Group (i.e.) Instance 2

e [F Path is URL SET 3 THEN forward to 3rd Autoscaling Group (i.e.) Instance3

6 Evaluation

6.1 Experiment / Case Study 1

The system is experimented by using an apartment management system web application.

This application comprises various navigation pages starting from the e-commerce
page, polling page which is to consider the opinion of the various flatmates, e-bills estim-
ator, and request for a utility in a specific apartment and etc.. that are needed for an
apartment to manage.

The application is accessed within around 50 User profiles and the logs of the web
application are taken for the experimentation. The deployment of the application is in
Heroku. The Bytes size, URL, Status code, Method, Service time and the Date and time
of the access are taken considered as the main information from the logs.

The different types of variables are encoded from the CSV file. The Bytes are categor-
ized from 1 to 12 as per their size, Status codes and service time which are in milliseconds
remain unaltered since they are already in quantitative measures, URL is encoded in a
way such that the application can be classified into parts based upon its module and
functionalities. There are around Twenty five main URL parts that are evolved in this
apartment management system web application. These URLs are encoded based on their
navigation in the application starting from the e-commerce page until the service request
as per the Figure 7 below.

Once after obtaining the useful information from the application logs, The refined
data are now cleaned to form as a CSV format for further analysis. The algorithm is now
implemented to the CSV file but splitting up the GET and POST values. Then the graph
is plotted by using a matplotlib library in python and after that, the POV is observed in
given the graph in the Figure 10 and 11 and the tabluar observation of the graph from
which the result had been obtained is also represented table as Figure 8 and 9.

In Figure 10 of the POST values, Firstly, The service time before 0.37ms and the
values of the bytes above 5(encoded) are taken and placed into Edge server by referring

14

Represented URL
values
1 https://.../action..../
2 https://..../payment../
3 https://.../ calculateelectricbills/...
4 https://.../polls/...
5 https:// ..create,handle_unverified
reguest...
6 https://..... authenticate/...
7 https://..../eshop.../...
8 https://..../applicances/..
q https://..../assets/...
10 https://.../cards/..
11 https://.../currentproviders/...
12 https://.../cals/..
13 https://.../devisg/...
14 https://events/...
15 https://..../home/...
16 https://.../order_item../...
17 https://.../product../..
18 https://.../profile../..
19 https://..../rent/...
20 https://..../user_interest/..
21 https://..../orders../
22 https://..../votes
23 https://.../user/
24 https://..../service_providers/
25 https://.../appliances/
Figure 6: Encoded deatils of URLs

15

the URL of the corresponding rows and Secondly, The service time values starting from
0.56ms and bytes of 5(encoded) are placed on to the Fog servers. Finally, the last values
on the table that are greater than 0.56ms are placed to the Cloud servers respectively
which are noted in the table (Figure 7).

In Figure 9 of the GET values, Firstly, The service time before 0.29ms and the values
of the bytes above 2(encoded value) is taken and placed into Edge server by referring
the URL of the corresponding rows and Secondly, The service time values starting from
0.54ms and bytes of 2 (encoded) are placed on to the Fog servers. Finally, the last values
on the table that are greater than 0.54ms are placed to the Cloud servers correspondingly
which are noted in the table (Figure 8).

POST:

POV Value Resource Allocated

Cloud | Fog | Edge

X-Axis Y-Axis

Step- | 0.37 5

- - | Ed
586 ge

0.56 5
- Fog -

>0.56 5 cloud | -)

Figure 7: Observation of POV in POST Method

GET:

POV Value Resource Allocated

Cloud | Fog | Edge

X-Axis Y-Axis

Step- | 0.29 2
P - - Edge

5&6 | 0.54 2
- Fog

>0.54 2
Cloud |-

Figure 8: Observation of POV in GET data Method

After splitting up of the tuples in the data sets into three halves, the URL column now
plays a vital place. The URL columns which are ranged from 1 to 25 are decoded and
these parts of three are taken and place in Cloud, Fog and Edge server that is described
in the next paragraph.

16

The first set of URLSs that is to be placed into Cloud (as per the Figure 7) are placed
into an EC2 instance of Amazon Web service Northern Virginia location and the Fog and
Edge are placed into two separate instances such as London and in Dublin respectively.

Then the Load balancer part of the application has three autoscaling groups and the
URL which have divided into three main parts are placed consecutively in three target
groups (autoscaling groups). Three target groups have three EC2 instances in general
and we also know that one autoscaling group has one instance. After this step, the system
is taken into the Performance Evaluation phase.

Bytes

T
T

3
v'0
-
9

A

S

6

Service Time

Figure 9: Graphical representation of GET using Data churn Algorithm.

To test the Latency of the system for performance evaluation, The web application
is deployed in Heroku and AWS. The system is evaluated by using tracert command
used for measuring the number of hops and the Round Trip Time (RTT) needed for the
application to reach the client to server.

6.2 Result and Interpretation:

e Phase 1 (Before Implementation): The web application without the algorithm
is deployed into AWS . Then, the application is tested by using ‘tracert’ command.
This is done to evaluate the number of hops the website possess in order to measure
the latency. The performance of latency is calculated and plotted as a graph in
Figure 11.

e Phase 2 (After Implementation): Once after the implementing the algorithm
in the entire setup, the performance evaluation of the system is made by the same
‘tracert’command. The hops have been calculated and then the latency from the
Phase 1 is reduced on comparing with the phase two. The performance of latency
is calculated and plotted as a graph in Figure 11.

From the above interpretation, It is evident that the latency is reduced to three-
fourth in phase-2 on comparing with phase-1 in the experimented web application
(Figure . Henceforth,we can prove that the latency of Multilevel servers can be
reduced by using the Data churn Algorithm. This Data churn algorithm also acts as
a common algorithm to optimize resources in all three types of multilevel server nodes
which motives in latency cutback.

17

Bytes

Service Time

Figure 10: Graphical representation of POST using Data churn Algorithm.

Round Trip Time Evaluation

- I_ I— I—
RTT1

RTT2 RTT3

100 150

Time in Milliseconds
50

M Phasel mPhase2

Figure 11: Comparison of latency using tracert at Phase-1 and Phase-2.

6.3 Discussion

The algorithm is barred to weighed only on a narrowed space. This Data churn algorithm
can be further evaluated into a large application that has higher functionalities. The
server technologies used here are not the explicit Fog and Edge servers as it is not feasible
to experiment one in the finite source. Instead of testing with a Fog server, a normal
instance is used also that the data that are stored in the specific instance supports the
similar characteristics that a Fog server has. The edge server is configured by using a
cloud front, which is a service of AWS. Even though, the algorithm is evaluated in a small
type of application this can be a continual process by using continuous integration and
deployment respectively.

7 Conclusion and Future Work

Data churn algorithm has drafted in a way to reduce the latency in the Multilevel servers
such as Cloud, Fog and Edge. This algorithm can be a potential prevalent one that
can be used in all types of server nodes. Currently, the present standards of resource
optimization and honing methods intensify only on a single multilevel server type node.
Even though this process cannot be an instantaneous process, it can be exploited once
after the server starts receiving the data or information from the application. This is in
order to receive the logs initially then to make an efficient analysis with the application.

In the future, Once this algorithm is carried out to any high functionality application,
this process can also be done in a timely manner by using anomaly detection methodo-
logies. Due to several deteriorations in the accessibility of the Fog server in the system,

18

the replica of the server that has the similar characteristics are used for deployment. Log
analysis can be done in a different way apart from using the service time and bytes by
using several deep learning methods for various purposes of analysis of text and videos
that are present in the server nodes to make them fit in an optimized way:.

8 Acknowledgement

I would like to thank my project supervisor Prof. Manuel Tova-Izquierdo, without whom
this work would not be possible and also would like to thank the department of cloud
computing for their strong academic support. Also, I would like to thank the National
College of Ireland for making me gain knowledge and supporting me for this research.

References

Al Nuaimi, K., Mohamed, N., Al Nuaimi, M. and Al-Jaroodi, J. (2015). Partial storage
optimization and load control strategy of cloud data centers, The Scientific World
Journal 2015.

Bi, F., Stein, S., Gerding, E., Jennings, N. and La Porta, T. (2019). A truthful online
mechanism for allocating fog computing resources, Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems, International Foundation
for Autonomous Agents and Multiagent Systems, pp. 1829-1831.

Dipakbhai, P. J. (2017). Network virtualization based framework for smart grid commu-
nication.

Firdhous, M., Ghazali, O. and Hassan, S. (2014). Fog computing: Will it be the future of
cloud computing?, The Third International Conference on Informatics & Applications
(ICIA2014).

Franciska, I. and Swaminathan, B. (2017). Churn prediction analysis using various clus-
tering algorithms in knime analytics platform, 2017 Third International Conference on
Sensing, Signal Processing and Security (1CSSS), IEEE, pp. 166-170.

Gan, Y., Han, S., Chen, G. and He, Z. (2010). A research of object mapping algorithm
based on cloud storage, 5th International Conference on Pervasive Computing and
Applications, IEEE, pp. 228-231.

Giang, N. K., Blackstock, M., Lea, R. and Leung, V. C. (2015). Developing iot applica-
tions in the fog: A distributed dataflow approach, 2015 5th International Conference
on the Internet of Things (I0T), IEEE, pp. 155-162.

Gokilavani, M., Selvi, S. and Udhayakumar, C. (2013a). A survey on resource alloc-
ation and task scheduling algorithms in cloud environment, International Journal of
Engineering and Innovative Technology (IJEIT) 3(4).

Gokilavani, M., Selvi, S. and Udhayakumar, C. (2013b). A survey on resource alloc-
ation and task scheduling algorithms in cloud environment, International Journal of
Engineering and Innovative Technology (IJEIT) 3(4).

19

Gouda, K., Radhika, T., Akshatha, M. et al. (2013). Priority based resource alloca-
tion model for cloud computing, International Journal of Science, Engineering and
Technology Research (IJSETR) 2(1): 215-219.

Kawale, J., Pal, A. and Srivastava, J. (2009). Churn prediction in mmorpgs: A social
influence based approach, 2009 International Conference on Computational Science
and Engineering, Vol. 4, IEEE, pp. 423-428.

Kedia, R. and Lunawat, A. (2018). Artificial intelligence based storage management
architecture, 2018 IEEFE International Conference on Cloud Computing in Emerging
Markets (CCEM), IEEE, pp. 110-114.

Kumar, V. V. and Palaniswami, S. (2012). A dynamic resource allocation method for
parallel dataprocessing in cloud computing, Journal of computer science 8(5): 780.

Mutlag, A. A., Ghani, M. K. A.; Arunkumar, N. a., Mohamed, M. A. and Mohd, O.
(2019). Enabling technologies for fog computing in healthcare iot systems, Future
Generation Computer Systems 90: 62-78.

Navimipour, N. J. (2015). Task scheduling in the cloud environments based on an artificial
bee colony algorithm, International Conference on Image Processing, pp. 38—44.

Ni, L., Zhang, J., Jiang, C., Yan, C. and Yu, K. (2017). Resource allocation strategy
in fog computing based on priced timed petri nets, ieee internet of things journal
4(5): 1216-1228.

Nishio, T., Shinkuma, R., Takahashi, T. and Mandayam, N. B. (2013). Service-oriented
heterogeneous resource sharing for optimizing service latency in mobile cloud, Pro-

ceedings of the first international workshop on Mobile cloud computing € networking,
ACM, pp. 19-26.

Rengasamy, R. and Chidambaram, M. (2019). A novel predictive resource allocation
framework for cloud computing, 2019 5th International Conference on Advanced Com-
puting & Communication Systems (ICACCS), IEEE, pp. 118-122.

Samuel, F., Chowdhury, M. and Boutaba, R. (2013). Polyvine: policy-based virtual net-

work embedding across multiple domains, Journal of Internet Services and Applications
4(1): 6.

Santos, J., Wauters, T., Volckaert, B. and De Turck, F. (2019). Resource provisioning in
fog computing: From theory to practice, Sensors 19(10): 2238.

Satyanarayanan, M., Bahl, V., Caceres, R. and Davies, N. (2009). The case for vim-based
cloudlets in mobile computing, IEEFE pervasive Computing .

Shirazi, S. N., Gouglidis, A., Farshad, A. and Hutchison, D. (2017). The extended cloud:
Review and analysis of mobile edge computing and fog from a security and resilience
perspective, IEEE Journal on Selected Areas in Communications 35(11): 2586-2595.

Sonkar, S. and Kharat, M. (2016). A review on resource allocation and vm scheduling
techniques and a model for efficient resource management in cloud computing envir-
onment, 2016 International Conference on ICT in Business Industry € Government

(ICTBIG), IEEE, pp. 1-7.

20

Younge, A. J., Von Laszewski, G., Wang, L., Lopez-Alarcon, S. and Carithers, W. (2010).
Efficient resource management for cloud computing environments, International Con-
ference on Green Computing, IEEE, pp. 357-364.

Yu, M., Yi, Y., Rexford, J. and Chiang, M. (2008). Rethinking virtual network embed-
ding: substrate support for path splitting and migration, ACM SIGCOMM Computer

Communication Review 38(2): 17-29.

Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S. and Stoica, I. (2013). Discretized
streams: Fault-tolerant streaming computation at scale, Proceedings of the twenty-
fourth ACM symposium on operating systems principles, ACM, pp. 423-438.

Zhang, 7., Liu, C., Zhang, S., Li, X. and Han, Y. (2018). A service-based method for
multiple sensor streams aggregation in fog computing, Wireless Communications and
Mobile Computing 2018.

9 Appendix

9.1 Experimented web application:

The web application that I experimented with for the whole system is made up of ruby
and the application is deployed in Heroku. The application is made to manage an apart-
ment easily with its features.

e Web Application link: Residential community connect

9.2 Logtfile:

A logfile is obtained from the application which is used for around 2 weeks by around 50
user accounts. The pictorical image of the logfile is represented below

2019-11-09T19:58:31.012118+00:00 app|web.1]: D, [2019-11-09T19:58:31.011818 #4] DEBUG -- : [b283113c-60ad-A36a-bA96-etbeete6citd] || 1ni[35nCACHE (0.0ms)l[om | 1mj| 34nSELECT COUNT(*) FROM
applweb.1]: D, [2019-11-09719:58:31.012762 #4] DEBUG - : [b283113c-60a4-436a-baoe-efbeefeoctfa] I[1ni[35nCACHE (0.oms)lfom O[1nl[34mSELECT COUNT(*) FROM
app[web.1]: D, [2019-11-69T19:58:31.013426 #1] DEBUG -- : [b283113c-60ad-A36a-bAo6-efbeefescia] [[1ni[35nCACHE (0.oms)i[om ([ni[34WSELECT COUNT(*) FROM
app[web.1]: D, [2019-11-69T10:58:31.014730 44 b283113¢-60a4-436a-ba9 - efbeefescifa] [[1nl[35nCACHE (0.0ms)l[om O[1n[34TSELECT COUNT(*) FROM

i [h283113¢-60a4-436a-hag6-efbeefeoc1fa] I[1n[35nCACHE (0.oms)i[om O[1m[34MSELECT COUNT(*) FROM
b283113¢-60a4-4362-ba%6-efbeefecc1fa] I[1n[35nCACHE (0.0ms)l[om O[1nl[34MSELECT COUNT(") FROM
b283113c-60a4-436a-ba%6-efbeefe6c1fa] I[1n[35mCACHE (0.oms)l[om O[1nl[34mSELECT COUNT(*) FROM
b283113-6024-4365-bag6-efbeefecc1fa] I[1n[35nCACHE (0.oms)l[om O[1m[34MSELECT COUNT(*) FROM
b283113c-60a4-436a-b4%6-efbeefe6c1fa] I[1n[35nCACHE (0.1ms)I[om O[1nl[34nSELECT COUNT(*) FROM
b283113c-60a4-436-ba96-efbeefeoc1fa] I[1n[35nCACHE (0.1ms)l[om O[1ml[3amSELECT COUNT(*) FROM
¢ [b262113c-oat-426a-base-efbesfeccafa] [[1[2sncAClE (0-oms)ilon I[1al| MeSELECT coNT(") oM
b283113c-60a4-436a-ba%6-efbeefe6c1f4] Rendered collection of polls/_vote_value.html.erb [3 tin
: [b283113c-G0aa-436a-bag6-efbeefecc1fa] I[1n[35MCACHE (0.oms)i[om O[Im[34TSELECT COUNT(*) FROM
, [2019-11-09T19:58:31,034269 #4] DEBUG -~ : [b283113c-60ad-436a-b4%6-efbeefeac1fa] I[1nl[35mCACHE (0.oms)I[om U[1ni[34TSELECT COUNT(*) FROM
2019-11-09T19:58: 31.035072 #a] DEBUG b283113c-60a4-4362-ba%-efbeefeoc1fa] I[1n[35mCACHE (0.oms)l[om O[1ml[3amSELECT COUNT(*) FROM
, [2019-11-09T19:58:31,042331 #4] INFO -- : [b283113c-60ad-436a-ba%6-efbeefecc1fa] Rendered polls/_voting form.htnl.erb (92.oms
2010-11-00T10:58:21.042613 #4] TNFO b283113c-60a4-436a-b4%6-cfbeefe6c1fa] Rendered polls/show.html.erb within layouts/application
inktosignout
[2019-11-05T19:58:31.045006 #4] INFO -- : [b283113c-60ad-4362-bA96-efbeefese1fa] Conpleted 200 OK in 120ms (Views: 84.1ns | ActiveRecor
er]: at=info method=GET path="/, t=cryptic-escarpment -89060. herokuapp. com request_id=b283113c-60ad-436a-bao6-efbeefe6c1fa fud="37.
nfo method=poST path= ryptic-escarpnent-89060. herokuapp. con request_id-f390f876-1cab-425a-8Fe2-7271066ab781 fud:
2019-11-00T19:58:34.788214 #4] 3001276, 1edb-4750. a7z 727 006ab781] Stariod POST ~/votes” fon 37.220. 259,250 at 2010 11.06 191
2019-11-09119:58: 34796715 #a £390f876-1cab-4253-5Fe2-72710e03b751] Processing by votes:ontrollerncreate B
, [2019-11-09T19:58:34.790900 #4 3907876~ 1cab-4255-8Fe2-72710e6ab781] Parameters: {"ut 1"=>("i
» [2010-11-09T10:58:34.812074 44, 7200f876-1c4b-425a-8fe2-7271006ab781] [1ni[36mUser Lond 7. sm;)][am J[lmHZAmSELE(T
2019-11-09T19:58:34,820329 44 -+ [£390f876-1cab-425-8Fe2-72710e6ab781] I[1nd[36nPoll Load (3.2ms)I[om 0[1m[34mSELECT “poll:
, [2019-11-09T19:58:34.830032 #4; 3907876 1cab-425a-67e2-72710e6ab781] I[1nd[36nVoteValue Load (4.9ms)I[om ([In[34nSELECT “vot
2019-11-09T19:58: 34.842077 4. £390f876-1cab-425a-8Fe2-72710e6ab781] I[1nd[36mVoteValue Load (4.6ms)[om O[In[34mSELECT “vote,
, [2019-11-09T19:58:34.887027 #4 3901876~ 1cab-4252-8Fe2-72710e6ab781] [1nd[35n (4.5ms)[en [1ni[35WBEGTNI[om
, [2019-11-00719:58:34.808384 44 3007876 1cab-425a-8Fe2-72710e6ab781] I[1nd[36mUser Load (2.2ms)I[om [1mi[3ANSELECT “users®.®
2019-11-09T19:58:34.913929 4] i [£390876-1cab-425a-6Fe2-72710e6ab781] I[1nl[36nvote Create (6.5ms)i[om O[1n[32TNSERT THTO "vo
. [2019-11-09T19:58:34.917840 #4 f300f876-1cab-4252-87e2-72716e62b781] [1nl[35m (3.3ms)I[on I[Lnl[3SmCOMAITI om
» [2019-11-09110:58:34.920308 44 F300f876-1c4b-425a-8fe2-72710e6ab781] Completed 500 Internal Server Error in 120ms (ActiveRecor
+ [390876-1cab-4255-6Fe2-72710e6ab781
3907876 - 1c4b-425a-8Fe2-72710e6ab781] NoMethodError (undefined method “id" for nil:NilClass)
£390f876-1cab-4253-5Fe2-7271003b751
3907876~ 1cab-4252-8Fe2-72710e6ab781] app/controllers/votes_controller.rb:9:in “create’
2738-875a-e2fb7c075814 fud="37.228.2¢

app[web.1
app[web. 1
web.

D, [2019-11-69T19:58:31.022673 4.
D, [2019-11-09T19:58:31.023493 #4

2019-11-09T10:58:31.024805 #4.
2019-11-09T19:58:31.025871 #4
2019-11-09T19:58:31.027137 44
2019-11-09719:58:31.028113 44’
. [2019-11-09T10:58:31.020327 #4,
, [2019-11.00710:58:31.030144 44]
2019-11-09719:58:31,031812 #4

2019-11-09T19:58:34,928738 44
. [2019-11-00719:58:34.932067 4.
F, [2019-11-09719:58:34.933075 4’
1]: F, [2019-11-09T19:58:34,933843 44
heruku[ruuter] at=info method=GET path="/shops" host=cryptic-escarpment-89060. herokuapp. con request_id=b6fdcdcd-3aba
1, [2019-11-69T19:58151.489774 #4] INFO -- i [bofdcdea-3aba-4738-8F5a-e2fb7co75814]
1, [2 57 #4] INFO -~ : [b6Fdcdcd-3aba-4: a-e2fb7

Figure 12: Application log file used for experimentation

21

https://secret-depths-31353.herokuapp.com/

9.2.1 The process of log refinement:

The extracted log file is further refined into a data set and the data cleaning is done in
python. The process of data cleaning is attached below which imports all the package
needed to refine the log file CSV. Splitting the date and time from the data set, categor-
izing the status codes, separating them according to through the browser functionalities
which is represented in Figures [13] and [T4]

#import packages

import pandas as pd

import math

from statistics import mean

import plotly.graph_objects as go

import numpy as np

#import logfile into a csv format
logs=pd.read_csv("/content/new_heroku_test_file.csv")
#check file

logs.head()

print(logs['Request_Time'])

#filter slice date_time from columns

logs['DateTime'] = logs['Request_Time'].map(lambda x: x.lstrip('[').rstrip(']"))
#format date and time

logs['Date_Time'] = pd.to_datetime(logs['DateTime'], format='%d/%b/%Y:%H:%M:%S")
#split Date speperately

logs['Date'] = logs['Date_Time'].dt.date

#seperate time

logs['Time'] = logs['Date_Time'].dt.time

logs['dayofweek'] = logs['Date_Time'].dt.dayofweek
#remove datetime of the request time

logs.drop(['Request_Time', 'DateTime’'],axis=1,inplace=True)

Figure 13: Python code used for refining the log file dataset.

logs['dayofweek'] = logs['Date_Time'].dt.dayofweek

#remove datetime of the request time
logs.drop(['Request_Time','DateTime'],axis=1,inplace=True)
logs['Method'] = logs['Request_address'].str[:4]
logs['Request_url_address'] = logs['Request_address'].str[4:]
logs.head(2)

logs.drop(['Request_address', 'Date_Time'],axis=1,inplace=True)
logs['User_agent_Browser'].unique()

#filter browser details to categorize them
logs.loc[logs.User_agent_Browser.str.contains(pat
logs.loc[logs.User_agent_Browser.str.contains(pat
logs.loc[logs.User_agent_Browser.str.contains(pat
logs.loc[logs.User_agent_Browser.str.contains(pat
logs.loc[logs.User_agent_Browser.str.contains(pat
#filter using mobile or system
logs.loc[logs.User_agent_Browser.str.contains(pat = "Mobile"), 'Device’'] = 'Mobile’
logs.loc[~logs.User_agent_Browser.str.contains(pat = "Mobile"), 'Device'] = 'System’

"windows"), '0S'] = 'Windows'
"Macintosh"), '0S'] = 'Macintosh’
"bot"), '0S'] = 'BOT’
"NetcraftSurveyAgent"), '0s'] = 'BOT'
"iPad"), '0S'] = 'MAC 0S X'

Figure 14: Python code used for refining the log file dataset.

9.3 Experimented Data set:

The log file once refined is converted into a proper clean dataset that is fit for experiment-
ing with the data churn algorithm. The cleaned data set comprises of six main columns
that comprise of six main columns that are represented in the Figure no. [15]

22

A B C D E F

1 |DATE METHOD |Bytes Status codservice URL

2 (2019-11-06T01:18:12.38975]GET 1 200 0.31 23
3 (2019-11-06T01:18:12.39388{GET 5 200 0.69 13
4 |2019-11-06T01:18:12.40125|GET 4 200 0.46 4
5 |2019-11-06T01:18:39.72770|GET 4 200 0.92 12
6 (2019-11-06T01:18:39.73053{GET 4 200 0.61 15
7 (2019-11-06T01:18:39.73337{GET 5 200 0.47 7
8 (2019-11-06T01:18:39.73643|POST 2 304 0.77 1
9 (2019-11-06T01:18:39.98681|GET 1 200 0.89 23
10 |2019-11-06T01:18:40.00308)GET 1 200 0.95 8
11|2019-11-06T01:18:40.20719|GET 1 404 0.8 23
12 |12019-11-06T01:19:03.73621]POST 4 200 0.17 23
13 |2019-11-06T01:19:03.74081|GET 1 302 0.67 3
14 |12019-11-06T01:19:03.75248{GET 9 200 0.31 3
152019-11-06T01:19:03.75917)GET 4 304 0.38 3
16 |2019-11-06T01:19:10.76160|GET 4 200 0.13 23
17 |2019-11-06T01:19:10.76503)GET 5 200 0.37

18 |2019-11-06T01:19:10.76822|POST 4 200 0.87 23

Research Project DATA (IMP) ®

Figure 15: Data set after the process of cleaning.

9.4 Data encoding and processing:

The data is encoded to numerical values which are easy to analyze as plot graphs by
using the Data churn algorithm. This is done by using python and code is given below

in the Figure [16] [I7] and [I§

#import needed packages
import pandas as pd

import math

from statistics import mean

import plotly.graph_objects as go

import numpy as np

import dataset

df=pd.read_csv("/content/Research_sorted.csv")

df.head()

#list the GET/POST methods with the bytes values

highest_get = list(df.loc[df['Method']==2, 'Bytes'])
highest_post = list(df.loc[df['Method']==1, 'Bytes'])

#avg value of get and post are taken

print(mean(highest_get))

print(mean(highest_post))

#encoding the GET and POST methods

df_2_get = df[df['Method']==2]

df_1_post = df[df['Method']==1]

#endoing the status code and URL and further refinement of data
df_all['date_parsed'] = pd.to_datetime(df_all['Date'], format = "%d-%m-%Y")

df_all['dayofweek'] = df_all['date_parsed'].dt.dayofweek

df_all

Figure 16: Python code for data encoding and processing data churn algorithm

9.5 Django-API:

The following file is placed as an API using DJANGO which a python backend framework
and the API code is mentioned below which takes all the data columns and stores in the
SQL DB to process them into further. After the process, the data churn algorithm is
placed into views.py file in Django to process the whole API which is represented in
Figure (19|

23

dummy = pd.get_dummies(df_all['StatusCode'])
df_all = pd.concat([df_all,dummy],axis=1)
df_all=df_all.drop(['Date’,'Time','StatusCode', 'date_parsed'],axis=1)

X=df_all.drop('cat',axis=1)
Yv=df_all['cat']|
graph plotting using GET methods which has service and bytes as X-Axis and Y-Axis
fig = go.Figure(data=go.Scatter(x=df_1_post['Service'], y=df_1_post['Bytes']))
fig.update_layout(
xaxis = go.layout.XAxis(
tickangle = 90,
title_text = "Service Time",
title_font = {"size": 20},
)s
yaxis = go.layout.YAxis(
title_text = "Bytes",
),title_text="POST")
fig.show()

#graph plotting using GET methods which as service and bytes as X-Axis and Y-Axis
fig = go.Figure(data=go.Scatter(x=df_2_get['Service'], y=df_2_get['Bytes']))
fig.update_layout(
xaxis = go.layout.XAxis(
tickangle = 90,
title_text
title_font =

ervice Time",
size": 20},

Figure 17: Python code for data encoding and processing data churn algorithm.

title_font = {"size": 20}

)s
yaxis = go.layout.YAxis(

),title_text="GET")
fig.show()

#Point of Variance is noted for GET methods to segregate the resources on basis of URL of the web application.
df_2_get['cat'] = [1 if i <= ©.29 else 2 if 1 > ©.29

and i <= ©.54 else 3 if i > 0.54 else NA for i in df_2_get['Service']]
#Point of Variance is noted for POST methods to segregate the resources on basis of URL of the web application.
df_1_post['cat'] = [1 if 1 <= ©.37 else 2 if i > ©.37

and 1 <= ©.56 else 3 if i > ©.56 else NA for i in df_1_post['Service']]

df_all=pd.concat([df_1_post,df_2_get],axis=0)

df_all.info()

Figure 18: Python code for data encoding and processing data churn algorithm.

24

@permission_required('admin_can_add log entry')
def csv_upload (request) :
templates = "contact_upload.html"
prompt = {
'order': 'Order of the esv should be Date, Time, Bytes, StatusCode, Service, Method’

i

if request.method == "GET":
return render (request,templates ,prompt)
csv_file = request.FILES['file']
if not csv_file.name.endswith('.esv'):
messages.error (request, 'This is not a csv file')
data_Set = csv_file.read() .decode ('UTE-8")
io_string = io.StringIO(data_Set)
for column in csv.reader(io_string):
, created = Contact.Dbjects.updateioricreated

Date = column[0],

Time = column[1],

Bytes = column[2],
StatusCode = column[3],
service = column[4],
Method = column[5],

)
context ={}

return render (request, templates , context)

Figure 19: Data set after the process of cleaning.

9.5.1 Latency evaluation:

TRACERT: This windows command shows the time of the data packets that take to
travel from the client to the server machine. The following command which is mentioned
below helps to attain the details of latency from a specific application.

tracert ”ip address” (or) “www.web application.com”.

9.5.2 Other commands:

To run a django application
e python manage.py migrate : To migrate db.
e python manage.py createsuperuser : To create admin.
e python manage.py runserver : To run the server.
To run the ruby application that is used for specific experimentation.
e ‘rails db:migrate’: Used to run all the database migration.
e ‘rails server’ is a command used to run a rails application.

e If the application is in production “rails server -e production -p 4000”.

25

	Introduction
	Related Work
	Cloud Computing Resource Optimization:
	Machine learning methods
	Deep Learning resource optimization in Multilevel servers:
	Resource Mapping:
	Virtual Machine Resource Optimization Techniques:
	Traditional Resource Optimization in Cloud:
	Fog Resource Optimization:
	Edge computing resource Optimization:

	Methodology
	Design Specification
	Implementation
	Resource extraction:
	Resource refinement:
	Logfile encoding:
	Bytes Size:
	URL encoding:

	Resource categorization:
	Resource Mapping:

	Evaluation
	Experiment / Case Study 1
	Result and Interpretation:
	Discussion

	Conclusion and Future Work
	Acknowledgement
	Appendix
	Experimented web application:
	Logfile:
	The process of log refinement:

	Experimented Data set:
	Data encoding and processing:
	Django-API:
	Latency evaluation:
	Other commands:

