[ \
— 0. =

ey
—_y, -
W, N

National
College
Ireland

Capacity Aware Container Placement in
Heterogeneous Clusters using Genetic
Algorithm

MSc Research Project
Cloud Computing

Bhavna Thakur
Student ID: x18145914

School of Computing
National College of Ireland

Supervisor:  Manuel Tova-Izquierdo




National College of Ireland . National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Bhavna Thakur
Student ID: x18145914
Programme: MSc in Cloud Computing
Year: 2019
Module: MSc Research Project
Supervisor: Manuel Tova-Izquierdo
Submission Due Date: 12/12/2019
Project Title: Capacity Aware Container Placement in Heterogeneous
Clusters using Genetic Algorithm
Word Count: 6582
Page Count: [27]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature: Bhavna Thakur

Date: 2nd February 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.



Office Use Only

Signature:

Date:

Penalty Applied (if applicable):




Capacity Aware Container Placement in
Heterogeneous Clusters using Genetic Algorithm

Bhavna Thakur
x18145914

Abstract

High performance application execution in a containerized environment has been
a popular field of research in Cloud Computing. With Docker containers being
lightweight and providing complete isolation, executing tasks with heavy resource
demands has become effortless. Due to the ubiquity of containers,highly hetero-
geneous and unpredictable workloads proceed that sometimes result in resource
exhaustion leading to start-up latency which can become a hindrance in the exe-
cution process. As the resource requirements from these diverse workloads cannot
be always matched accurately, there is a probability for resource contention, which
limits the scaling levels for further task-based containers and generates a significant
delay. Therefore, there persists a trade-off between resource utilization and latency.
Despite prevalent research work being done in this area, there still remains some
open issues in the field of optimized container allocation in the cluster. In this
research, Genetic Algorithm is used to generate a capacity-aware container place-
ment method to ensure there is a significant amount of resource available to service
the deployed application tasks with different resource requirements by creating a
fitness function based on the capacity threshold parameter. On implementation, it
is observed that there is a 40% increase in the resource utilization level, with 5000
seconds of improvement in execution time. On comparing the individual utilization
values with the average utilization of the cluster, a balanced cluster is seen to be
achieved.

1 Introduction

1.1 Brief History

The concept of Virtualization became an enabler for Cloud Computing to emerge as a
platform to deploy large scale applications in distributed mode. Reliability and fault
tolerance are provided using virtual machine technology by allowing access to surplus
resources for their execution with pay-as-you-go and high availability being the key per-
formance indicators of Cloud Computing. They paved way for virtualized clusters using
virtual machine instances to service intense user demands having dynamic as well as
static workloads. But performance overhead increased for hardware level virtualization,
due to their heavy operational requirements. The solution to these challenges was OS
level virtualization which allowed multiple isolated VMs to exist in an OS kernel.

Most of the OS level virtualization systems are based on Linux, and Docker is one such
software that runs on linux kernel functions allowing applications to run on lightweight



containers. It runs the containers in isolation where software processes can be executed
consistently and ensures a common platform such that any software can be implemented
regardless of where it is deployed. Standalone containerized units are furnished which
can envelope the entire application along with its dependencies. With fast and flexible
application deployment and transparency in resource sharing, containers have become
popular to use for large scale application execution across multiple clusters of compute
nodes.

1.2 Evolution of Container Orchestration and Placement Strategy

Various container orchestration platforms are made bespoke to manage and cater to
the needs of the deployed tasks by the scheduler. With host selection for container
schedulers a huge problem to match for node compatibility, the cluster manager manages
its hosts by fetching the loading information of every host along with the containers
deployed in that cluster and their execution demands to scale them when required. The
docker administrator manages the group of containers as one application which needs
synchronization in execution times. Container orchestration handles the entire lifecycle of
containers starting from their deployment, availability, scaling, load balancing, resource
allocation, container migration and monitoring. Popular orchestration platforms like
Kubernetes, Swarm, Apache Mesos were created for the deployment and management of
applications packaged in containers for efficient execution [[1],[2],[3] ].

Containers have the ability to modify the resources being consumed at runtime,
enabling them to adjust the resource usage based on task concurrency and execution
needs.When a task is launched in the cluster, the scheduler decides the appropriate in-
stance to place the task. It also decides the container that needs to be terminated from
the cluster while scaling down. The importance of an efficient Placement strategy lies
in the role it plays in defining the overall performance of applications where Quality
of Service or QoS parameters like reliability, elasticity, availability and resource utiliza-
tion needs to be considered.[4] provides a detailed evaluation of the challenges faced in
container-based performances in their study. The authors specify that containers are yet
to provide resources for distributed application or policy-specific services.

1.3 Motivation

There has been an extensive research and development done on task schedulers for con-
tainerized applications that majorly aim to find an optimal method of placing containers
to minimize cost overhead occurring due to imbalanced utilization of resources and net-
working overhead generated from bad placement decisions. There persists various per-
formance issues when users want a specific available capacity meant to service all the
different work streams existing in the application. There is a need to minimize the cold
starts for these work streams in response to a new job request queued. For example, a
research group can run hundreds of potentially different sequencing algorithms which can
be compute-intensive, enabling them or any user to execute custom workflows anytime.
So, capacity availability and fast results are both important[5]. There is a need to resolve
this issue by not only creating a capacity awareness in the cluster but also ensuring there
is a resource utilization balance maintained in the cluster. This study evaluates how can
the resources required for a task execution be allocated faster each time in order to not
only avoid startup latency but to also ensure maximum utilization of resources ensuring



capacity availability at the same time to achieve resource usage cluster balance.

1.4 Research Question

Does capacity aware distribution of containers in heterogeneous clusters using Genetic Al-
gorithm increase the resource utilization level and change the overall performance during
containerized task execution?

This study aims in ensuring a capacity aware container allocation is done in a hetero-
geneous cluster of resources such that a significant amount of resources are available to
be used for the next workload having unpredictable resource demands in order to min-
imize the startup latency caused during task execution. The study also aims to evaluate
whether the resource is used in a balanced way such that there is a state of equal resource
sharing maintained in the cluster.

In order to meet the research objective for improving the overall performance and
startup time of application execution in a heterogeneous cluster, Genetic Algorithm is
used, which is a meta-heuristic, evolutionary algorithm. Table[I]shows the gaps in existing
algorithms used for container placement.

Fxisting Placement]| Problems

Strategies

Spread Scheduling Does not utilize the space com-
pletely

Binpack Some nodes maybe overloaded

Random Random allocation which cannot
be controlled

Table 1: shows the shortcomings of the existing algorithms used in Dockers as discussed

by [6]

To ensure capacity awareness is maintained, the fitness evaluation of Genetic Algorithm
will comprise the capacity aware value which will generate the best fit solutions. These
results will then be evaluated in Kubernetes to observe the change in resource utilization
level, execution time and cluster balance.

1.5 Report Structure

The rest of the report is structured as follows. Section [2| presents relevant work done in
the area of optimal container allocation using various methodologies. Section [3| discusses
the steps followed for preparing the environment and data along with the measurements
performed. Section 4] gives an overview on the architecture implemented, and its detailed
implementation in Section [5} Section [6] presents evaluation of the proposed strategy and
discusses the effectiveness of the deployed framework on Kubernetes. Section [7] summar-
ises the work done, identifies and discusses the areas for improvement and concludes the
report.



2 Related Work

The key factors that affects the overall performance of the applications which execute
in containers and the recent studies which aim to optimize these factors are summarized
in Table 2 A literature review related to the proposed objective is discussed based on
different methodologies used.

2.1 Heuristic Algorithm

Zhang et al [7] consider container-VM-PM combination for placing containers and VMs
on PMs efficiently by creating a fitness function model for appropriate selection. Hu,
Laat and Zhao [§ proposes a container deployment algorithm that considers depend-
ency awareness along with load balancing for multi resource requirements of the cluster
providing a capacity limit. Considering cost and network as a primary factor for efficient
container deployment, Zhou, Li and Wu [9] and Rodrigues et al [I0] present an optimal
container placement strategy with inter-container communication as the key parameter
being considered for online container allocation in a cluster. The research presents a
detailed insight on the algorithmic approach with economical benefits and computational
efficiency.

2.2 ACO and PSO based methodology

C. Kaewkasi and K. Chuenmuneewong[11] uses Ant Colony System algorithm to find
that it helps in improving the overall performance of applications that have the same
configurations as their host. M. Lin et al [12] resolves the network transmission overhead
caused in microservices by proposing an algorithm based on ACO for Multi objective
Container-based Microservice Scheduling which is compared with [13]’s solution for op-
timized container allocation. M. K. Hussein, M. H. Mousa and M. A. Alqarni [14] utilize
both VMs and PMs simultaneously by creating an optimum container placement method
using Best Fit (BF), Max Fit (MF) and ACO combined with Best Fit (ACO-BF) al-
gorithms for evaluating the resources used and schedule accordingly.

L. Li, J. Chen and W. Yan [15] overcome the under utilization of resources in container
scheduling by applying Particle Swarm Optimization algorithm for optimal placement of
containers. The ACO approach of [I1] is compared here but it is shown to take longer
time for computation and reaching to the solution. M. Adhikari and S.N. Srirama [16]
use Accelerated Particle Swarm Optimization algorithm for an energy-efficient container
scheduling strategy with focus on processing IOT and non IOT based tasks. With CO2
and temperature emission are important performance metrics considered, the proposed
Energy Efficient Container Scheduling (EECS) strategy is shown to perform better in an
energy-efficient way than the existing strategies.

2.3 Genetic Algorithm based methodology

Chen et al [I7] focuses on generating an energy efficient container placement method
with the aim to minimize the power consumption in Container-as-a-Service(CaaS) model
using an Improved Genetic Algorithm. Dziurzanski and Indrusiak[18] creates a container
allocation algorithm which measures the execution time of the task deployed in the con-
tainer. C. Guerrero, 1. Lera and C. Juiz [13] use NSGA-II and Greedy First Fit approach



for deploying applications with containers that are microservices focused. Mao et al.[19]
provide a Genetic Algorithm approach to solve deadline constrained scheduling problem
in a hybrid Cloud platform for an application with multiple tasks by choosing the hidden
genes from the population set.

Aligning with the methodology of this research, Tan et al [20] have also integrated
with Genetic Algorithm for allocation of resources in dual placement of containers in VMs
and PMs like [7] to increase the efficiency of energy utilized in container deployment and
execution. Applying Genetic Algorithm in a new perspective, Boukadi et al [21] provide a
strategy for deploying Business Processes to containers by considering the QoS parameters
and focusing on creating a cost optimized allocation method. For this they use Linear
programming approach and Genetic Algorithm and compare the proposed architecture
with First-Fit strategy.

2.4 Machine Learning approach

Cai et al [22] presents an automatic resource allocation method that aims to avoid re-
source contention in a container cluster by using a clustering method. S. Nanda and
T. J. Hacker [23] use a deep learning approach for an adaptive resource aware container
placement strategy. For energy-aware container scheduling, Rocha et al [24] presents
Heats, a state-of-the-art tool that considers the dynamism of underlying hardware spe-
cifications of the container-based applications and their varied energy requirements in
heterogeneous cluster environment. Nardelli et al [25] propose an Adaptive Container
Deployment (ACD) model based on Integer Linear Programming problem which exploits
the characteristics of fog computing and [oT environment and can scale resources present
in different locations geographically.

2.5 Miscellaneous approaches

Li et al [26] and Chen, Zhou and Shi [27] propose a novel scheduling algorithm which
uses Graph Coloring Problem based on Graph Theory and a stable matching problem to
map the containers to the node according to the heterogeneous resource configurations
with their future aim to implement cluster stability. Kaur et al [28] consider data locality
and communication overheads with energy utilization as the primary metrics.Pongsakorn
et al [29] proposes a container re-balancing technique by providing insights on LXC
technology based containers and the isolation provided by them with re-balancing to
adjust the resource accordingly and Lahmann et al [30] identifies the existing gaps in
allocation of memory for containers and the utilization of memory showing a graphical
representation of the unevenness in resource utilization in containerized environment. E.
Casalicchio[31] presents a survey on container orchestration methodologies.

2.6 Other approaches:

Li et al [32] proposes an adaptive load balancing algorithm for Nginx containers which
run on their own scheduling algorithm and Hu et al [33] present an Enhanced Container
Scheduler for optimal container scheduling. Aligning with the objective of this study,
Bacou et al [34] presents a solution in Kubernetes to present optimized performance.
Hanafy et al [35], A.Chung, J.W. Park and G.R. Ganger[36] and Wan et al [37] present
a cost-optimum solution for container deployment of applications using microservices.



Liu et al [6] propose a container scheduling algorithm known as MultiOpt that aims
to improve the overall performance of resource scheduling in Docker Containers.Table
summarizes the problems with these algorithms as discussed by the authors. Availability
is focused by Alahmad et al [38] in their proposed placement strategy. E. Casalicchio
[39] provides a state-of-the-art methodology for autoscaling of CPU intensive workloads
in containerized applications.L. Lv et al[40)] addresses the container assignment problem
by reducing the communication overhead and Y. Mao et al[41] give a Resource aware
placement strategy for containers in a heterogeneous cluster.



SIS @S9T) JO [oea UO SNOOJ 1107} UO Paseq SYIOM JUIDSI 9} SoZLIewIwns pue suriojjye[d pnoyD) ur Surnpayds yse} 10 SNA
ut juoweoe]d IoUIejuod SULIOPISU0D A( JUSTUOIIAULS PNO[)) U UOINIaxe suorjedrjdde jo siojeorput soueuriojrod A9y o) Smoys :g 9[qr],

K91
-[Iqe)s 193Sn[D JO Yoe[ ‘POIdPISUOD

"I9)SND pUR SId

s1ojowrered dourmLIO}Od POJIWIT||-UTRIUOD UO UOIRULIOFUT PO[IRId(] Aouejeri1s0N) A3Iouy [® 30 Ajeury STLOOUR[[OISI
‘POJIOPISUOD j0U I3ISN[D

Jo ooue[eq pue A10UL30J0

=19y ‘PoSN SIOUIRIUOD pUR PRO[ "PoIopIS UuoIRZI[I} ) SW)LI03

-)[I0M U0 Pap1A0Id UOTYRULIOUT ON

-U0d SOLjeW douruLIopdd A9y [y

90INOSIY N ITOMID N - ADUDJRT:1S0))

[¢ 10 UOUL],

Iy pesodoxd

J°S

"SI
-jourered oonosor pue Ajoeded
surpie8ol popraoid s[rejop Iomoq

"ADURID

o N PUB JNA 110q SIPISUO))

sopou /sIourey)
-U0D  JO  AJTAIJOQUUODIUT{)SO))

ORYZ pue jee] NI

WIILIOS] Y OLISLINSY

ST QY2 [[® 19pISu0d 03 s[Ieq

"98e)SeM 9OINOSII SOZIWUTUI]N

AS10U7q 150 Aduajer|

e 30 18D

SUTWIRST QUIYPDR]A

ABIaUf]: ADU0)RT:)50)):SopOol /SIo

‘PoJIopISUO0D j0U -UTRIUOD jo
saourejuod jo Juroe[d orureu "poIopIS KJTATIOOUUODIOIUT - UOT)
-A(] pue Jojsn[) podueed|-uod souew souruLiopod Aoy [V ||-RZI[11) 90IN0SOY [ 30 OIOLIONY) || WIYJLIOS[Y Oljouar)
‘poIopIsSuoD dunjerodwa, pue uex ‘M
20D 1] s1ojowrered A310U0 ATU( "PRISpISUOD SYSR) OTWRUA(] UOTJRZI[I}() 92IN0SAY | pue uay) [ ‘I 0Sd
"PROYIDAO I{IOM suom
"PoISPISUOD J0U aIe sIgjourered ||-1oU pue UOIJRZI[IIN 90IN0SSI SUIZI|  SOPOU/SISUIRIUO0D JO AIATIORN || -00UNULNY) "M
90IN0s81 pue speoyiom srwruA(J|-wrydo Aq soueuriojod sorordu]||-U0dILIU] ‘UOIIRZI[I}() SDINOSIY ||PUR ISBYMORY] 1) 0DV
YLOM FUIIIY
sdox sabvjuvapy Id Ifo  2ouauafayr fibojopoya W




3 Methodology

The methodology for meeting the aim of the research are as follows:

3.1 Steps followed

For carrying out the research, a detailed evaluation of existing approaches was made
with their pros and cons. The initial approach chosen was Amazon ECS where, using
Blox Methodology [42], the existing scheduler can be extended to create a customized
scheduler where the aim was to implement the Genetic Algorithm logic that will take as
input the computing statistics generated by the existing scheduler and propose a better
fitting resource value for deploying of containers on the existing nodes. This approach
was not proceeded further with as there was a limitation of AWS budget usage.
Another approach was to implement the same using Kubernetes as Kubernetes sched-
uler follows bin-pack algorithm which is the same algorithm as Amazon ECS’s[43]. Fig-
ure [If shows a high level comparison of Kubernetes and ECS. Minikube allows creation of

Similarity Dissimilarity

Kubernetes 1. Container placement 1. High Availability needs
algorithm is Bin pack. to be self-maintained.

2. Can work on a cluster of 2. Loosely coupled as it

compute instances as allows to use various
well as AWS EC2.

3. Price model depends on
the underlying compute balancers, network
instances and their models and volumes.
usage. 3. Mo such limitation from

4. Provides CLI and Kubernetes.

Dashboard 4.  Applications defined in
YAML of pods and can
be scaled manually or
automatically.
Amazon ECS 1. Container placement 1. ECS maintains High
algorithm is Bin pack, Availability by

combinations of
containers, load

Spread, Random.

Can work on a cluster of
compute instances
(EC2).

Price model depends on

distributing containers
in different Availability
Zones.

ECS is tightly coupled as
it requires to integrate

the underlying compute with Amazon web
instances and their services only.
usage. 3. Cannot have multiple

4. Provides CLI and containers exposing
Dashboard same port on same
node.

4. Applications are defined
in task definitions and
can be scaled manually.

Figure 1: Shows difference and similarity between Kubernetes and Amazon ECS [44]

cluster on Windows, Linux or MacOS using minikube[45]. Deploying kubernetes cluster
with minikube enabled the creation of single node with multiple pods which was not help-
ful for evaluation purposes. So, the next approach was to use virtual machine provided
by VMWare to implement a multi-node cluster of Kubernetes.

3.2 Preparation of Sample data

For preparing the sample data, the kube-scheduler was deployed that runs using bin
pack algorithm along with an nginx application, an application for running Prometheus.
A custom scheduler was deployed in the cluster with default resource values and later
changed according to the results generated by Genetic Algorithm by adding the resource
limit values for evaluating the new utilization rates of CPU and memory.



3.3 Measurements and Calculations performed

The cluster is allotted heterogeneous resource values where the master node is given higher
resources than the worker node. The reason behind this was to notice the variation in the
application’s resource utilization with the allocated resource values. The master node is
allocated 2 CPU processors and worker node is allocated 1 CPU processor. In Kubernetes,
1 CPU is equivalent to 1000m where 'm’ is 'millicpu’. This conversion is performed
by Kubernetes API as shown in Table [3] So, the master node was provided resource
equivalent of 2000m CPU and worker node was provided with 1000m CPU resource
equivalent. For memory, the measurement unit followed is Bytes. In this scenario, master
node was allocated 4GB and worker node was allocated 2GB of memory.

Resource Unit Kubernetes Unit

CPU 1 CPU 1000m (millicpu)

Memory 1GB 976562.5 Ki(Kibibyte) or
953.6(Mebibyte)

Table 3: Unit conversion table followed by Kubernetes [46]

Kubernetes gives a utilization percentage value by considering the requested CPU and
memory by the nodes(Node), and i being the number of nodes, over the total allocated
resources. For calculating the utilization values, the formula used in this study:

[C'PU ysea(Node;) + Memoryysea(Node;)|/Total ClusterCapacity (1)

A capacity threshold parameter is introduced here for limiting the total capacity by
setting a threshold value which should not exceed the total capacity:

Capacityinesn < [CPU(Node;) + Memory(Node;)||VN ode; (2)

This threshold value for Capacity usage is calculated by reserving a percentage value of
the cluster capacity and fitness test is performed based on this.

For calculating the average cluster utilization rate(Average uster), total requested re-
sources is considered over total allocated resources for all the deployed container types.
The difference(Diff;) between the values of individual container’s resource utilization(Rc,)
is represented by:

Dif fi = Averageauster — R, (3)

Diff; will give a set of values which if plotted in a graphical representation will show
how close individual utilization values are from the mean. After Genetic Algorithm
presents a best fit value based on the fitness function where capacity threshold parameter
is checked, the new values are deployed to calculate the new individual utilization rates
as well as the total cluster utilization for benchmarking purpose. Although Kubernetes
by itself ensures that the total requested resources is not exceeding the capacity, the util-
ization rates are calculated by considering the capacity threshold parameter for analysis
purposes.



3.4 Statistical Techniques - Best Linear Fit

For estimating whether the outcome of genetic algorithm will enable an establishment
of a balanced cluster, a best fit line is plotted from the values generated by the Genetic
Algorithm. In this case, two plots are made for CPU usage values and memory usage
values for individual containers and the deviation of their individual resource utilization
rates from the average cluster utilization. PyCharm is used to plot the given values in
python using the matplotlib, statistics and numpy libraries. The aim is to find how the
individual resource utilization values vary from achieving a balanced cluster by analyzing
how deviated the values are from the mean.

4 Design Specification

Kubernetes is an open source platform developed by Google for container orchestration
and management of containerized workloads. The pluggable nature of Kubernetes allows
it to automate diverse workloads running with varied configurations and expedites the
entire execution process of applications. Designed specially for running containerized
applications in production environment, Kubernetes help in ensuring SLA is met with no
downtime by maintaining high availability. Table [4] shows a detail description of features
of Kubernetes and the gaps in it.

Features Gaps
Personalized TP Address of Con- || Does not follow CI/CD for applic-
tainers and Load Balancing. ations.

There is no provision for in-built
application-specific services like
SQL, Spark, caching etc.

Pluggable storage system.

Automated and controlled con-
tainer addition, removal or re-
source deployment.

Does not impose specific log-
ging and monitoring feature, but
provides external methods for log
tracking.

Bin packing of containers to

Does not follow a specific config-

nodes according to resources || uration language rather runs on
provided. declarative APIs.

Container  failover,  frequent || There is mno comprehensive
health check and container || database and messaging system
readiness, popularly known as || provided.

Kubernetes Self-healing.

FEase of secret configuration and
password management.

Random allocation which cannot
be controlled

Table 4: shows the what can be done and what cannot be done in Kubernetes.

4.1 Existing Architecture - Kubernetes

Kubernetes enables cluster deployment which is a collection of different machines. These
machines form nodes in Kubernetes that allow running of applications in containers.A

10



cluster generally has a master and a worker node. The application that has to be hosted
in the containers are held in the pods which are hosted by the worker nodes. The master
node is responsible for managing the cluster nodes and pods deployed in it. Figure
shows the architecture overview of Kubernetes with its components.

Kas Architecture

Figure 2: Overview of Kubernetes Architecture [47]

The components of Kubernetes are divided into sets of master components that helps
in controlling the cluster and detecting any cluster event triggers to respond to them.
They are comprised of kube-apiserver, etcd, kube-controller and cloud-controller
manager and kube-scheduler. The node components help in providing an environment
for running and managing the deployed pods. Node Componenets comprises Kubelet

and Kube-proxy [47],[4§].

4.1.1 Kube-apiserver and etcd

The Kube-apiserver exposes Kubernetes API that validates and configures data for pods,service,
controllers and hosts. It forms the point of interaction for other components in the share
state of cluster. The kube-apiserver is also responsible for scaling of instances horizontally.

etcd provides a storage for critical data in a distributed mode. The simplicity it
provides by using key value pairs for data storage is what makes etcd easy to integrate
with and popular to use.

4.1.2 kube-controller and cloud-controller manager

The kube-controller manager and cloud-controller manager are responsible for running
controllers that perform the task of monitoring the cluster state and ensuring the desire
state is reached by each controller. Kube-controller runs all controllers in the master
and cloud-controller runs controllers that are integrating with the cloud providers. This
enables the running of cloud vendor specific functions exclusive of Kubernetes functions.

4.1.3 kube-scheduler

The kube-scheduler is responsible for assigning nodes to pods by watching the state of
newly created or unscheduled pods. The scheduler ensures that the maximum capacity of
nodes is not exceeded by the resource requests and refrains from placing a pod to a node

11



if the check for capacity is not met to ensure there is no resource shortage for future tasks.
Kubernetes scheduler follows bin-pack algorithm internally for placing pods in nodes.

4.1.4 Kubelet

Kubelets are agents that provides a health check of all Kubernetes containers running in
the pods deployed. They are present in every node.

4.1.5 Kube-proxy

Kube-proxy is an integral part of Kubernetes architecture as it provides a way to im-
plement the application running to be exposed as a network service. It forms a proxy
network as it runs on every node in the cluster and maintains the network routing rules
to allow inter cluster networking.

4.2 Implemented Architecture

Aligned with the above architecture, Kubernetes allows the use of multiple schedulers
as the application requirements maybe diverse and the existing algorithm of kubernetes
might not be applicable for all scenarios. Taking advantage of this feature, a new scheduler
is deployed on top of the Kube-scheduler and assigned to the pods so that the new
scheduler will be considered for container allocation instead of default scheduler. Figure
shows the implemented architecture. The scheduler to be deployed runs in a container
image in the cluster. The values are given as input to genetic algorithm that gives best fit
values back to the scheduler[49]. If the scheduler needs to be used for pods scheduling, the
deployment yaml file for pods needs to be updated with the name of the custom scheduler
[50]. Figure {4 shows the yaml file for pods with custom scheduler name assigned to the

cluster.
KUBERNETES Cloud Provider
Network Edge
Master node
iner i
L 1
GEMNETIC ALGORITHM P 1)
= kubectl
Initialization —I
¢ System Services
¥ L
Fitness eted  |a»
Evaluation s Sy
- \\‘
l { Load o
— et
= ol e \Balancer/ =
‘ Crossover scheduler |« »| APiserver N A JiLER)
2Tl Users
l I scheduies [ Worker node
I <

Mutation

Result W |

System Services

Figure 3: Kubernetes architecture integrated with Genetic Algorithm

12



File Edit View Search Terminal Help
apiVersion: vi
kind: Pod
metadata:
name: annotation-second-scheduler
annotations:
scheduler.alpha.kubernetes.io/name: my-scheduler
labels:
name: multischeduler-example
spec:
containers:

- name: pod-with-second-annotation-container
I image: gcr.iofgoogle containers/pause:2.0

Figure 4: Pod Yaml file with a custom scheduler assigned

5 Implementation

5.1 Materials and Equipment

The implementation was carried out in Windows 10 Home version with configuration as
Intel(R) Core(TM) i5-8250U CPU @ 1.60Hz 1.80Hz with 8GB RAM and 64-bit Operating
System. VMWare Workstation Pro 12.5.2 version was used with Ubuntu 18.04 version
installed where two VMs were created as master node and worker node [51]. To create
a heterogeneous cluster in Kubernetes, both the nodes were allotted different resource
configurations. Docker version of 19.03.5 was installed to run on Kubernetes. For running
Genetic Algorithm, Python 3.7 version was used in PyCharm.

5.2 Applications deployed

Nginx is the best example of container deployment as it is the most popular web server
used in containers [52]. An application can be executed by creating a Kubernetes Deploy-
ment file in YAML format where the details of an application are provided like Selector
to define the connection between pods and deployment, replicas to state the number of
copies of application to create, container name and image, etc, for example, a YAML file
describing a Deployment that runs the nginx:1.7.9 Docker image or a Redis Image. Apart
from nginx application, two simple applications are deployed(Figure . One is for allot-
ting best price to the running nodes in the cluster by considering the resource used by the
scheduled pods. Another application is deployed for testing Prometheus,which is an open
source application that is used for monitoring the cluster metrics. It provides graphical
representation of the resource utilization values according to the time the cluster was up

13



and running [53].

NAMESPACE NAME STATUS RESTARTS
default nginx-deployment-76bf4969df-6khrd Running
default nginx-deployment-76bf4969df-mzfsz Running
default nginx-deployment-76bf4969df-rt59b Running

default nginx-deployment-8ddd7c545-sdvgp Pending
default prometheus-8596b54698-2mlnm Running
default scheduler-67dbdé6755f-9k1gb Running

Figure 5: shows running pods for deployed applications in cluster

5.3 Kubernetes Cluster Creation and Networking
5.3.1 Multinode Cluster creation

Kubectl is used to run commands for Kubernetes cluster in CLI. In this case, a two
node cluster is created where one is the master node and another is the worker node
(Figure . This is created by using "kubeadm join” command in Kubernetes that helps
in the initialization and simultaneously adding the worker node in the cluster [54]. To
enable a secure bidirectional communication of nodes in the cluster, a discovery token is
used while initializing the other worker nodes. This is a root certificate authority which is
given by the Kubernetes Control Plane in the form of a shared token used for connection
verification as shown in figure [0}

dn join 192.168.159
sha256:0f16d6c

reconnended driver is "systend’. Please follow the guide at https://kubernetes. io/docs/setup/cri/

onfig -oyanl’
i k

Map in the kube-systen namespace

orm the TLS Bootstrap...

piserver and @ s received.
cure connection det:

Run 'kubectl get nodes' on the control-plane to see this node join the cluster.

Figure 6: shows worker node is joined to the master node running in a different system

bhavna@master-node:~5 kubectl get nodes
MAME STATUS ROLES AGE VERSION

master-node Ready master 52m vi.16.2
slave-node Ready <none= 12m vi.16.2

Figure 7: shows running nodes from the master node

5.3.2 Kubernetes networking

As Kubernetes has to ensure that the applications deployed are not allocated the same
IP address as all the machines in the cluster are in a shared state, it assigns a unique
IP to all the pods to facilitate networking in the cluster. Flannel is one such enabler
for deploying a networking model in a multi-node cluster environment in Kubernetes and
used in the experiment as it enables a layer 3 IPV4 network between the nodes and assigns
a subnet to each node from a large pool of pre-configured address space. It interacts with
the Kubernetes API or etcd for networking tasks like storing the configuration details
or distributing the subnets, etc. The subnets are leased to the nodes so that they can
be re-used for a different cluster. Instead of controlling the inter-container networking,
Flannel manages the traffic flow in between the hosts [55].

14



bhavnat@master-node:~5$ sudo kubectl get pods --all-namespaces
NAMESPACE NAME READY STATUS RESTARTS
annotation-default-scheduler 1/1 Running
annotation-second-scheduler 1/1 Running
no-annotation 1/1 Running
coredns-5644d7b6d9-dmmgn 1/1 Running
coredns-5644d7b6d9-h5nrf 1/1 Running
etcd-master-node 1/1 Running
kube-apiserver-master-node 1/1 Running
kube-controller-manager-master-node 1/1 Running
kube-flannel-ds-amd64-1pf2j 1/1 Running
kube-flannel-ds-amd64-w5smh 1/1 Running
kube-proxy-8qp7p 1/1 Running
kube-proxy-1lvgx 1/1 Running
kube-scheduler-master-node 1/1 Running
my-scheduler-7cc9bdc74d-779r9 1/1 Running

QuUuoooeoe~NbLrowwooa

Figure 8: shows flannel and coredns specific pods running in the cluster

5.4 Genetic Algorithm

The scheduler yaml takes into consideration the new generated CPU and Memory values
given by Genetic Algorithm which is executed in Python and considers the capacity
threshold as a fitness check value while calculating the best fit resource metrics. Figure
shows the step-by-step execution process of Genetic Algorithm.

The selection process is done randomly with mutation probability defined as 50% of
the first generation and then slowly decreases with each proceeding generation to reach
a constant. A mutation index value is chosen by checking the mutation probability value
against a randomly generated number. If it is greater than the number, then crossover is
performed otherwise it is not proceeded further (figure @ For the crossover procedure,
a uniform crossover is used with probability value of 0.5 to split the existing population
to create new off-springs.

10m. ra

np.random.randint(

Figure 9: shows the mutation probability is checked to perform crossover

The fitness function in Genetic Algorithm checks the capacity threshold value, which
reserves 10% of total allocated resources, and it increases the resource requested value
by 0.5 times. It keeps evolving a new population by simultaneously performing a fitness
check and presenting the best value in the current population and making it as the new
criteria for the next generation population. The objective is to see whether genetically
evolved capacity aware population affects the utilization level and performance of the
container running cluster. This process continues depending on the number of iterations
given.

6 Evaluation

On deploying the applications, the CPU request initially was 850m in master node and
150m in worker node which gives 42% utilization and 20% utilization of CPU resource
respectively. The memory requested by master node is 190Mi which is 4% utilization
in comparison to worker node Memory request value of 50Mi leading to 2% of memory
utilization only as shown in Figure [11] Taking these resource request values as input by

15



Start/Stop Start

1

Population Initialization

1

Fitness Evaluation < — |

L

Selection
Crossowver |

-

Mutation

Process

Decision

Symbols representation

VI ‘
No

Terminate?

Yes |
L 4
Result Set
T
v
End

Figure 10: An overview of Genetic Algorithm

10.244.6.0/24
(8 in total)

16 /24
(10 in total)

CPU Linits M

[} )
o (%)

100m (5%) o (o) @
o% 100n (10%) 5
100m (5%)
5494d8-7natx
Tcwhs

e., overcomnitted.)

Normal icientMemory 51m (x8 over 5im) kubelet, master-node N ter-node status
e e S1n (x8 cub nacter-nod 0 <

(a) master node CPU and memory utilization (b) worker node CPU and memory utilization

Figure 11: Shows the resource utilization values for master and worker nodes as given
by Kubernetes

Genetic algorithm, a fitness function is calculated where the capacity threshold value is
reserved at 10% of total allocated resources. This value has been chosen by deciding the
maximum value to be reserved and can vary for experimental purposes.

6.1 Resource Utilization

After deploying the CPU and Memory best values given by Genetic Algorithm (Figure|17))
in Kubernetes, there are three cases studied:

6.1.1 Case Study 1: Using Genetic Algorithm values

On using the Genetically evolved values for the application resource request as in fig-
ure [12{(a), the new utilization result is observed as shown in Figure [13] where the master
node increases the utilization level on worker node and increases the limit keeping its own
utilization level unchanged.

16



- name: web

containerPort: g containerPort:
resources: resources:
requests: requests:
cpu: "271 cpu:
s V‘I?NOFYC memory:
limits: AT
cpu:
memory:

(a) (b)

cpu:
memory:

ver 51n) kubelet, master
n) _Lubelet nacternode

(a) master node CPU and memory utilization (b) worker node new CPU and memory utilization

Figure 13: Shows the updated resource utilization values given by Kubernetes after
using Genetically evolved values

6.1.2 Case Study 2: Using Genetic Algorithm resource values with higher
limits

When the values given by genetic algorithm are specified in the yaml file in Figure [12|(b)
along with higher limits specified, the new resource utilization level observed is shown
in figure [14] where the worker node’s limit is increased more than 100% to increase the
utilization of CPU and memory in order to service the requested demands. This is
because, when the master node evaluates the resource requests given in the container
yaml file of the deployed application, it checks the total available capacity and rearranges
the utilization value of available worker nodes first to serve the new resource requested by
the container [56]. The calculation for the available capacity is done by considering the
sum of the allocatable resource in the entire cluster. From the utilization value generated,
it can be assumed that master node ensures the worker node is maximum utilized till a
peak value is reached and load is distributed to other nodes in the cluster.

6.1.3 Case Study 3: Resource request higher than individual node’s capacity

When the request value is set higher than the entire cluster, the worker nodes fail to
execute the application and show insufficient resource message as shown in figure 15|

Normal
Normal e e
Normal t kube- a e Starting

Warning e 3 e tem OOM encoun
Warning e kubele \ c M e tered,
Normal  Nod D 3 v status

Figure 14: Shows the new utilization values after specifying higher limits with new re-
source values

17



count from default-token-fpkbl (ro)

Figure 15: Shows insufficient resource when request crosses entire cluster limit

Fitness - pop_size 1904 mutate_prob 0.5 retain 50 Fitness - pop_size 1904 mutate_prob 0.5 retain 50

75.00 75.00
74.95 1595 ‘

74.90 74.90

Fitness
Fitness

74.85 74.85

74.80 74.80 \

74.75 74.75 K

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Generations Generations

(a)2% capacity reservation (b) 20% capacity reservation

Figure 16: Shows the difference in the capacity reservation for memory and the time
taking to provide a stable value

6.2 Genetic Algorithm
6.2.1 Case study 1: Varying the Capacity Threshold value

The fitness function in Genetic Algorithm is calculated with the capacity threshold value
reserved at 10% of total allocated resources. On evaluation, it is seen that the lower
the capacity threshold percentage value is considered, for example 2%, a stable value
is reached later in the evolution generation, whereas the higher the capacity threshold
percentage value,20% in this case, the earlier the stable value is reached. Figure|16|shows
this variation of values through graphical representation presented by GA.

6.2.2 Case study 2: Varying the Number of Generations parameter

Figure [I7] shows the results generated by running Genetic Algorithm for 100 generations
and 200 generations with CPU and memory value of 1271m and 285Mi for master node
and 373m and 75Mi for worker node. The reason behind executing it with different
generations was to evaluate the point where it finds the best fit value of CPU and memory.
While observing, it was noticed that by the time a new population is evolved for 80th

18



Fitness - pop_size 2000 mutate_prob 0.5 request 850

1275

1274

1273

ess- CPU

Fitn

1272

1271

0 20 @ 60 80 100
Generations

(a) master node CPU result

Fitness - pop_size 1000 mutate_prob 0.5 request 250

375.0

3745

3740

ness- CPU

3735

Fit

373.0

3725

) 20 40 60 80 100
Generations

(c) worker node CPU result

Figure 17: Genetic algorithm outcome for CPU and Memory best value for master and

worker nodes(100 and 200 generations).

Fitness - pop_size 3815 mutate_prob 0.5 request 190

285.0

284.9

-
S 284.8

g 2847
g

284.6

2845

] 20 40 60 80 100
Generations

(b) master node Memory result

Fitness - pop_size 1904 mutate_prob 0.5 request 50

75.00

74.95

-
£ 74.90

& 74.85

74.80

74.75

0 20 40 &0 80 100
Generations

(d) worker node Memory result

generation, a stable value has been developed.

6.2.3 Case study 3: Request value greater than the Total Capacity

In the Genetic Algorithm implementation, the "request” parameter takes in the current
requested value of resource and ”pop_size” parameter takes the total allocated capacity
for a node. If the "request” parameter value is greater than the "pop_size” parameter, the
Genetic Algorithm code performs a comparison where it handles this case and performs
a fitness check by updating the total value to give fit results which are lower than the
total allocated capacity. An output is shown, for example, where the requested value is

2048m but the total capacity is 2000m in Figure [18]

19




Fitness - pop_size 2000 mutate_prob 0.5 request 2048

1800 -

1799

1798

1797 A

Fitness- CPU

1796 -

1795

1794

T T T T T
o 20 40 B0 a0 100
Generations

Figure 18: Shows the fit value given by Genetic Algorithm after specifying request value
higher than total capacity

Execution Duration of Cluster Execution Duration of Cluster
mmge=sla-application  ssee=kubedns Prometheus sla-application kubedns Prometheus
16000 16000
14000 " 14000
2 12000 4 12000
[=]
§ 10000 , § 10000
] @ 8000
8000 £
= o 6000 //
w 6000 —i £
[ — E a0
= 2000 -
2000 — =
o
0 1 2 3 4
1 2 3 a 5
Hours
Hours
(a)Initial execution duration (b) Final execution duration

Figure 19: Shows the duration of execution in seconds for every container

6.3 Performance Evaluation

Figure shows the execution duration of all the containers running in kubernetes as
given by Prometheus showing the total seconds of execution over specific time intervals.
For the running application containers, there is a slight change in the execution time but
Prometheus shows a significant change, depicting the total execution time is lowered by
nearly 5000 seconds.

6.4 Cluster Balance

Genetic Algorithm is executed for several other values of allocatable resources generated
by changing the capacity threshold value from 10% reservation to 50% reservation and
using the master and worker node limit of usage values to analyze graphically whether
a balanced cluster can be achieved or not. Figure [20| gives a graphical representation of
the utilization levels plotted for the two nodes.

The plotted graph for CPU gives a slope of -0.000357 and an intercept of 0.721 where
as for Memory plot, the slope generated is -0.00018 and intercept is 0.0895. The graphical

20



L o Memory Vs Deviation from Average cluster utilization
CPU Vs Deviation from Average cluster utilization

0.09 -

0.08 -

0.6 -

0.07 -

0.3 [ ]

0.03 -

Figure 20: Shows the CPU and memory usage values and the deviation of individual
utilization from the average cluster utilization

representation shows there is less deviation from the mean utilization of the entire cluster
denoting a cluster which is nearly balanced but can be better.

6.5 Discussion

From the above evaluations performed considering different performance indicators of a
container cluster, it can be seen that Genetic Algorithm reaches a stable resource value
based on the given values by continuously checking the capacity aware fitness function.
This value, when used to benchmark resource utilization and performance level, is seen to
change the limits of the cluster, along with an increase in utilization level, to accommodate
the new request (Figure , but if the application is less resource intensive, the worker
and master node continues to execute as before. There is also a change in the total time
duration of application execution but it is not significant and is an area which can be
improved further. Although there is an increase observed in the utilization level values,
these values depend on the cluster capacity and the demand generated by the application
deployed. If the cluster was larger with enough capacity, the same resource values for
the applications used might not have brought significant variation in resource utilization
levels. For measuring whether the genetically evolved values can reach a balanced cluster,
the deviation of individual resource utilization from the average value of the entire cluster
is measured and it is seen to be nearly balanced but there is a scope for improved results
to achieve a completely balanced cluster.

21



1000

Resource

7

871
750

500

250

CPU

Memory

Kubernetes worker node

Figure 21: Shows change in Resource metrics for worker node

Conclusion and Future Work

The aim of this research was to enable a capacity aware container allocation in a way
that the resource intensive applications deployed in the cluster can run without facing
resource contention. This study deploys multiple applications in Kubernetes cluster to
get the current resource requested values. The research presents the following:

It proposes a new resource value given by Genetic Algorithm that continuously
provides evolved outcomes.

The values which pass the fitness check of capacity threshold value introduced in
fitness function are proceeded for generating a new population of results.

Using the fit generation of values, the containers are redeployed to measure any
change in the utilization levels, only to find the cluster readjusting itself to ac-
commodate applications with higher resource demands and gives a fairly better
utilization results.

There is not much variation in execution time which can be improved in the future
work.

A statistical measure is generated which shows how balanced is the cluster.

These results are subject to variation based on the system configuration used in case of
VMs or cluster configuration if cloud is used. The utilization levels may not change if
the application is not very demanding and enough resource exists.

Currently, genetic algorithm is used statically and there is much room for improve-
ment in this area as a high resource-demanding application can be used in a cluster
having more number of nodes. The future aim of this study is to use a larger cluster

22



of nodes for dynamic resource measures and simultaneous allocation of containers for
various applications with an enhanced Genetic Algorithm.

References

1]

2]

3]

[4]

M. A. Rodriguez and R. Buyya, “Containers orchestration with cost-efficient auto-
scaling in cloud computing environments,” arXww preprint arXiw:1812.00300, 2018.

Docker, “What is a container? https://www.docker.com /resources/what-container.”
[Online]. Available: https://www.docker.com /resources/what-container

K. Hwang, Cloud computing for machine learning and cognitive applications, Chapter
3. MIT Press, 2017.

N. G. Bachiega, P. S. Souza, S. M. Bruschi, and S. d. R. de Souza, “Container-
based performance evaluation: A survey and challenges,” in 2018 IEEFE International
Conference on Cloud Engineering (IC2E). 1EEE, 2018, pp. 398-403.

“As discussed with Tom Maddox, head of territories, solution architect, amazon web
services uk 1td. and Simon Thulbourn, specialist solution architect, aws emea, Number
of mail and on-call discussions: 3.”

B. Liu, P. Li, W. Lin, N. Shu, Y. Li, and V. Chang, “A new container scheduling
algorithm based on multi-objective optimization,” Soft Computing, vol. 22, no. 23,
pp. 7741-7752, 2018.

R. Zhang, A.-m. Zhong, B. Dong, F. Tian, and R. Li, “Container-vm-pm architec-
ture: A novel architecture for docker container placement,” in International Confer-
ence on Cloud Computing. Springer, 2018, pp. 128-140.

Y. Hu, C. De Laat, Z. Zhao et al., “Multi-objective container deployment on hetero-
geneous clusters,” in 2019 19th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), 2019, pp. 592-599.

R. Zhou, Z. Li, and C. Wu, “An efficient online placement scheme for cloud container

clusters,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 5, pp.
1046-1058, 2019.

L. R. Rodrigues, M. Pasin, O. C. Alves Jr, C. C. Miers, M. A. Pillon, P. Felber, and
G. P. Koslovski, “Network-aware container scheduling in multi-tenant data center,”
arXiv preprint arXw:1909.07673, 2019.

C. Kaewkasi and K. Chuenmuneewong, “Improvement of container scheduling for
docker using ant colony optimization,” in 2017 9th international conference on know-
ledge and smart technology (KST). 1EEE, 2017, pp. 254-259.

M. Lin, J. Xi, W. Bai, and J. Wu, “Ant colony algorithm for multi-objective optim-
ization of container-based microservice scheduling in cloud,” IEEE Access, 2019.

C. Guerrero, 1. Lera, and C. Juiz, “Resource optimization of container orchestra-
tion: a case study in multi-cloud microservices-based applications,” The Journal of
Supercomputing, vol. 74, no. 7, pp. 2956-2983, 2018.

23


https://www.docker.com/resources/what-container

[14]

[15]

[16]

[17]

[18]

[19]

[21]

[22]

[23]

[24]

[25]

M. K. Hussein, M. H. Mousa, and M. A. Algarni, “A placement architecture for a
container as a service (caas) in a cloud environment,” Journal of Cloud Computing,
vol. 8, no. 1, p. 7, 2019.

L. Li, J. Chen, and W. Yan, “A particle swarm optimization-based container
scheduling algorithm of docker platform,” in Proceedings of the jth International
Conference on Communication and Information Processing, ser. ICCIP ’18.
New York, NY, USA: ACM, 2018, pp. 12-17. [Online]. Available: http:
//doi.acm.org/10.1145/3290420.3290432

M. Adhikari and S. N. Srirama, “Multi-objective accelerated particle swarm optimiz-
ation with a container-based scheduling for internet-of-things in cloud environment,”
Journal of Network and Computer Applications, vol. 137, pp. 35-61, 2019.

R. Zhang, Y. Chen, B. Dong, F. Tian, and Q. Zheng, “A genetic algorithm-based
energy-efficient container placement strategy in caas,” IEEE Access, 2019.

P. Dziurzanski and L. S. Indrusiak, “Value-based allocation of docker containers,” in
2018 26th Euromicro International Conference on Parallel, Distributed and Network-
based Processing (PDP). TEEE, 2018, pp. 358-362.

J. Mao, L. Sun, Y. Zhang, and J. Sun, “An improved genetic algorithm for solv-
ing bag-of-tasks scheduling problems with deadline constraints on hybrid clouds,”

in 2018 IEEE International Conference on Progress in Informatics and Computing
(PIC). 1EEE, 2018, pp. 305-310.

B. Tan, H. Ma, and Y. Mei, “Novel genetic algorithm with dual chromosome rep-
resentation for resource allocation in container-based clouds,” in 2019 IEEE 12th
International Conference on Cloud Computing (CLOUD). 1EEE, 2019, pp. 452
456.

K. Boukadi, R. Grati, M. Rekik, and H. Ben-Abdallah, “Business process outsourcing
to cloud containers: How to find the optimal deployment?” Future Generation
Computer Systems, vol. 97, pp. 397408, 2019.

L. Cai, Y. Qi, W. Wei, and J. Li, “Improving resource usages of containers through
auto-tuning container resource parameters,” IEEE Access, vol. 7, pp. 108530—
108 541, 2019.

S. Nanda and T. J. Hacker, “Racc: Resource-aware container consolidation using a
deep learning approach,” in Proceedings of the First Workshop on Machine Learning
for Computing Systems, ser. MLCS’18. New York, NY, USA: ACM, 2018, pp.
2:1-2:5. [Online]. Available: http://doi.acm.org/10.1145/3217871.3217876

I. Rocha, C. Gottel, P. Felber, M. Pasin, R. Rouvoy, and V. Schiavoni, “Heats:
Heterogeneity-and energy-aware task-based scheduling,” in 2019 27th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing
(PDP). 1EEE, 2019, pp. 400-405.

M. Nardelli, V. Cardellini, and E. Casalicchio, “Multi-level elastic deployment of
containerized applications in geo-distributed environments,” in 2018 IEEE 6th In-
ternational Conference on Future Internet of Things and Cloud (FiCloud). 1EEE,
2018, pp. 1-8.

24


http://doi.acm.org/10.1145/3290420.3290432
http://doi.acm.org/10.1145/3290420.3290432
http://doi.acm.org/10.1145/3217871.3217876

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[35]

[36]

[37]

H. Li, N. Chen, B. Liang, and C. Liu, “Rpbg: Intelligent orchestration strategy of
heterogeneous docker cluster based on graph theory,” in 2019 IEEE 23rd Interna-

tional Conference on Computer Supported Cooperative Work in Design (CSCWD).
IEEE, 2019, pp. 488-493.

F. Chen, X. Zhou, and C. Shi, “The container deployment strategy based on stable
matching,” in 2019 IEEE jth International Conference on Cloud Computing and
Big Data Analysis (ICCCBDA). 1EEE, 2019, pp. 215-221.

K. Kaur, N. Kumar, S. Garg, and J. J. Rodrigues, “Enloc: data locality-aware
energy-efficient scheduling scheme for cloud data centers,” in 2018 IEEE Interna-
tional Conference on Communications (ICC). 1EEE, 2018, pp. 1-6.

U. Pongsakorn, Y. Watashiba, K. Ichikawa, S. Date, H. lida et al., “Container re-
balancing: Towards proactive linux containers placement optimization in a data
center,” in 2017 IEEE 41st Annual Computer Software and Applications Conference
(COMPSAC), vol. 1. 1EEE, 2017, pp. 788-795.

G. Lahmann, T. McCann, and W. Lloyd, “Container memory allocation discrep-
ancies: An investigation on memory utilization gaps for container-based application
deployments,” in 2018 IEEFE International Conference on Cloud Engineering (IC2E).
IEEE, 2018, pp. 404-405.

E. Casalicchio, “Container orchestration: A survey,” in Systems Modeling: Method-
ologies and Tools. Springer, 2019, pp. 221-235.

R. Li, Y. Li, and W. Li, “An integrated load-balancing scheduling algorithm for
nginx-based web application clusters,” in Journal of Physics: Conference Series,
vol. 1060, no. 1. IOP Publishing, 2018, p. 012078.

Y. Hu, H. Zhou, C. de Laat, and Z. Zhao, “Concurrent container scheduling on het-
erogeneous clusters with multi-resource constraints,” Future Generation Computer
Systems, 2019.

M. Bacou, A. Tchana, and D. Hagimont, “Your containers should be wysiwyg,” in
2019 IEEFE International Conference on Services Computing (SCC). 1EEE, 2019,
pp. H6-64.

W. A. Hanafy, A. E. Mohamed, and S. A. Salem, “A new infrastructure elasticity
control algorithm for containerized cloud,” IEEE Access, vol. 7, pp. 39731-39 741,
2019.

A. Chung, J. W. Park, and G. R. Ganger, “Stratus: Cost-aware container
scheduling in the public cloud,” in Proceedings of the ACM Symposium on Cloud
Computing, ser. SoCC ’18. New York, NY, USA: ACM, 2018, pp. 121-134.
[Online]. Available: http://doi.acm.org/10.1145/3267809.3267819

X. Wan, X. Guan, T. Wang, G. Bai, and B.-Y. Choi, “Application deployment
using microservice and docker containers: Framework and optimization,” Journal of
Network and Computer Applications, vol. 119, pp. 97-109, 2018.

25


http://doi.acm.org/10.1145/3267809.3267819

[38] Y. Alahmad, T. Daradkeh, and A. Agarwal, “Availability-aware container scheduler
for application services in cloud,” in 2018 IEEFE 37th International Performance
Computing and Communications Conference (IPCCC). 1EEE, 2018, pp. 1-6.

[39] E. Casalicchio, “A study on performance measures for auto-scaling cpu-intensive
containerized applications,” Cluster Computing, pp. 1-12, 2019.

[40] L. Lv, Y. Zhang, Y. Li, K. Xu, D. Wang, W. Wang, M. Li, X. Cao, and Q. Liang,
“Communication-aware container placement and reassignment in large-scale internet
data centers,” IFEE Journal on Selected Areas in Communications, vol. 37, no. 3,
pp. 540-555, 2019.

[41] Y. Mao, J. Oak, A. Pompili, D. Beer, T. Han, and P. Hu, “Draps: Dynamic and
resource-aware placement scheme for docker containers in a heterogeneous cluster,”

in 2017 IEEFE 36th International Performance Computing and Communications Con-
ference (IPCCC). 1EEE, 2017, pp. 1-8.

[42] Blox, “Blox,open source tools for building custom schedulers on amazon ECS
https://github.com/bloz/bloz.” [Online]. Available: https://github.com/blox/blox

[43] Kubernetes, “Production-grade container orchestration,https://kubernetes.io/.”
[Online]. Available: https://kubernetes.io/

[44] C. Wright, “Kubernetes vs amazon ecs,https://platform9.com/blog/kubernetes-
vs-ecs/.” [Online].  Available: https:/ /kubernetes.io/docs/tasks/tools/
install-minikube/

[45] Kubernetes, “Install minikube - kubernetes, https: //kubernetes.io/docs/tasks/tools /install-
minikube/.”  [Online].  Available: https:/ /kubernetes.io/docs/tasks/tools/
install-minikube/

[46] Kubernetes.io, “Managing compute resources for contain-
ers, hitps://kubernetes.io/docs/concepts/configuration/manage-compute-resources-
container/.”  [Online].  Available: https://kubernetes.io/docs/concepts/

configuration /manage-compute-resources-container /

[47] Kubernetes, “Kubernetes components,https://kubernetes.io/docs/concepts/overview/components/.
[Online]. Available: https://kubernetes.io/docs/concepts/overview /components/

[48] Kubernetes.io, “Cluster architecture ht-
tps://kubernetes.io/docs/concepts/architecture/nodes/.” [Online]. Available:
https://kubernetes.io/docs/concepts/architecture /nodes/

[49] A. Gawanmeh, S. Parvin, and A. Alwadi, “A genetic algorithmic method for schedul-
ing optimization in cloud computing services,” Arabian Journal for Science and En-
gineering, vol. 43, no. 12, pp. 6709-6718, 2018.

[50] Kubernetes, “Configure multiple schedulers,
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-
schedulers/.” [Online]. Available: https://kubernetes.io/docs/tasks/

administer-cluster /configure-multiple-schedulers/

26


https://github.com/blox/blox
https://kubernetes.io/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers/
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers/

[51]

[52]

[53]

[54]

[55]

[56]

Ubuntu, “Install kubernetes on ubuntu https://ubuntu.com/kubernetes/install.”
[Online]. Available: https://ubuntu.com/kubernetes/install

Nginx, “Nginx application platform https://www.nginz.com/products/.” [Online].
Available: https://www.nginx.com/products/

Prometheus, “From metrics to insight, https://prometheus.io/.” [Online]. Available:
https://prometheus.io/

Kubernetes, “kubeadm  join  hittps://kubernetes.io/docs/reference/setup-
tools/kubeadm /kubeadm-join/.” [Online]. Available: https://kubernetes.io/docs/
reference /setup-tools/kubeadm /kubeadm-join/

CoreOS, “Flannel, https://github.com/coreos/flannelflannel.” [Online]. Available:
https://github.com/coreos/flannel#flannel

Kubernetes, “Kubernetes  tasks- assign cpu resources to  contain-
ers and pods hitps://kubernetes.io/docs/tasks/configure-pod-container/assign-
cpu-resource/.” [Online].  Available: https://kubernetes.io/docs/tasks/

configure-pod-container /assign-cpu-resource /

27


https://ubuntu.com/kubernetes/install
https://www.nginx.com/products/
https://prometheus.io/
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm-join/
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm-join/
https://github.com/coreos/flannel#flannel
https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/

~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Cloud Computing

Bhavna Thakur
Student ID: x18145914

School of Computing
National College of Ireland

Supervisor:  Manuel Tova-Izquierdo




National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Bhavna Thakur
Student ID: x18145914
Programme: MSc in Cloud Computing
Year: 2019
Module: MSc Research Project
Supervisor: Manuel Tova-Izquierdo
Submission Due Date: 12/12/2019
Project Title: Configuration Manual
Word Count: 1715
Page Count: [13

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature: Bhavna Thakur

Date: 2nd February 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):




Configuration Manual

Bhavna Thakur
x18145915

1 Introduction

1.1 Purpose of this document

A Configuration Manual is presented as a part of MSc Research Project requirements
as given in the Project Handbook. The objective of this document is to give a detailed
procedure for successful deployment of the Capacity Aware Container Placement in the
cluster by providing the Software tools and settings.

1.2 Document Structure

Section Purpose

General Information and Prerequisites

This section provides the Objective, Solution
Summary, Architectural Requirements and Pre-
requisites.

Environment Development Requirements

This part provides a setp-by-step process the
steps for setting the environment used for de-
velopment along with solution update

Procedure for Solution Deployment

This section gives a step-by-step process for set-
ting the environment of the proposed solution.

Deployment Validation

This section gives the steps required to check

whether the deployment is successful or not.

2 General Information

2.1 Objective

The objective of the Capacity Aware Container Placement Strategy is to ensure there
is some capacity available in the cluster to service dynamic resource requirements by
applications and to measure if there is any improvement in the performance as well
as a balanced cluster is reached by using genetically evolved best fit resource value that
conforms with the fitness function where a capacity threshold value is used for performing
a fitness check.

2.2 Solution Summary

The Capacity Aware Container Placement in Heterogeneous Cluster comprises a Kuber-
netes Cluster of Docker containers on which applications are deployed. Kubernetes runs



its own kube-scheduler for container allocation by checking the capacity limits of the
nodes. On running the application containers, it gives values of resource utilization.
These values are given to Genetic Algorithm, which is responsible for generating best
fit values that pass the capacity threshold fitness check. Based on the output, the ap-
plications are redeployed in the cluster by specifying these values in resources template.
The utilization levels are again measured to see if there is any change. Taking values
of Genetic Algorithm, a check is performed to see if a balanced cluster can be reached.
This is done by observing the deviation of the resource utilization from the mean resource
utilization of the cluster.

2.3 Architectural Requirements

In this section the architecture required that forms the base is explained.

2.3.1 Virtual Machine or Cloud Platform

To host a multinode cluster, a Virtual Machine or a cloud platform is used where multiple
instances form nodes that will host the containers or pods to execute the application. Here
VMWare Workstation Pro 12.5.2 version is used with Ubuntu 18.04 version installed.
While creating the Virtual Machine, here two VMs are created and allotted 2 CPU and
1 CPU each with 4GB and 2GB Memory.

2.3.2 Kubernetes
Kubernetes version 1.4.0 is installed on the Ubuntu system on both nodes. Kubernetes
version can be checked by running the —version command in the terminal.

2.3.3 Docker

To run containers on the cluster, Docker Technology is used which enables running applic-
ations on containers by providing cgroups and namespaces by using OS level virtualization
to enable running containers in isolation. Docker version 19.03.5 is installed on Ubuntu.

2.3.4 Prometheus

Prometheus is a monitoring tool deployed in the cluster that monitors and generates
graphical representation of the running status of the applications along with performance
evaluation.

2.3.5 Genetic Algorithm

Genetic Algorithm is executed on PyCharm 2019.2.5 Porfessional Edition is used with
Python 3.7 version for implementing Genetic Algorithm.

2.4 Prerequisites

The user should know basic linux commands, Python programming and basic knowledge
about Kubernetes. Along with this, the user should also have administrator access for
performing the setup.



3

3.1

> /# Templates

Figure 1: PyCharm Project Interpreter changes
Environment Development Requirements

Code Repository

Code is present in the zip file uploaded along with this manual.

3.2

Required Programming Languages

3.2.1 Ubuntu 18.04 or Linux Environment

Linux is used on Ubuntu 18.04 version for this project. Ubuntu can be installed and
given as environment image during the Virtual Machine setup.

3.2.2 Python v3.7 and PyCharm

Install Python 3.7 and perform the setup of PyCharm for updating the python interpreter
with the execution path of python where it is installed in the local system (Figure [1]).
Check whether the environment variables are updated automatically while setup. If not,
then they need to be updated manually.

After installation of Python, the following packages need to be installed:

numpy==1.17.4
matplotlib==3.1.2
pandas==0.25.3
zipp==0.6.0
py==1.8.0
dataframe==0.2.1.3

requests==2.22.0



oot@master-node: /home/achyut# apt install docker.io
eading package lists... Done

Building dependency tree

Reading state information... Done

ocker.io is already the newest version (18.09.7-@ubuntul~18.04.4).

he following package was automatically installed and is no longer required:
linux-modules-5.8.08-32-generic

Jse 'sudo apt autoremove' to remove it.

P upgraded, ©® newly installed, ©@ to remove and 172 not upgraded.

Figure 2: shows docker install command

root@master-node: /homefachyut# systemctl enable docker
Synchronizing state of docker.service with SysV service script with /lib/system

d/systemd-sysv-install.
Executing: /lib/systemd/systemd-sysv-install enable docker

Figure 3: shows docker enable command

3.3 Docker Installation

e In the two VMs created, Docker environment needs to be installed on both. To
install Docker, the command is: sudo apt install docker.io as in Figure 2]

e Once installed, check the version by running the command: docker —version.

e Enable docker on both the nodes, by running the command: sudo systemctl
enable docker as shown in Figure

4 Kubernetes

4.1 Key Generation

First, a key needs to be generated for authentication and authorization purposes [1]. For
generating a signed key of Kubernetes, the following command needs to be executed as
shown in Figure
curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg — sudo apt-
key add.

Install curl if needed by running sudo apt install curl

4.2 Xenial Kubernetes Repository

To add Xenial Repository, run the following command on both the nodes(Figure [5):
sudo apt-add-repository ”deb http://apt.kubernetes.io/ kubernetes-xenial main”.

4.3 Kubeadm installation

Next, Kubeadm needs to be installed which bootstraps and supports kubernetes cluster
lifecycle and can run on different platforms. Run the command:

root@master-node: fhome/bhavnat# curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add
0K

root@master-node: /home/bhavnat# I

Figure 4: Kubernetes Key Generation



root@master-node: fhome/bhavnat# sudo apt-add-repository "deb http://apt.kubernetes.io/ kubernetes-xenial main"
Hit:1 http://security.ubuntu.com/ubuntu cosmic-security InRelease

Hit:2 http://us.archive.ubuntu.com/ubuntu cosmic InRelease

Hit:3 http://us.archive.ubuntu.com/ubuntu cosmic-updates InRelease

Hit:4 http://us.archive.ubuntu.com/ubuntu cosmic-backports InRelease
Hit:5 https://packages.cloud.google.com/apt kubernetes-xenial InRelease
Reading package lists... Done

root@master-node: /home/bhavnat# Il

Figure 5: Adding Repository to Kubernetes

root@master-node: /home/bhavnat# swapoff -a

root@master-node: /home/bhavnat#

Figure 6: Swapoft

sudo apt install kubeadm.
Check the version of Kubeadm by running the command: kubeadm version.

4.4 Deploying Kubernetes
4.4.1 Swap Memory

Swap memory is the space of the physical memory that is used to extend the RAM of the
system when the Physical Memory is full [2]. It is advisable to disable the swap area as
it might decrease the performance of Kubernetes. To disable swap, type the command
on both nodes in Figure [6}

sudo swapoff -a

4.4.2 Naming of hosts

To rename the host nodes to define which is master and which are worker nodes, type
the command on the respective nodes:

sudo hostnamectl set-hostname master-node

sudo hostnamectl set-hostname worker-node

4.4.3 Initialize Kubernetes

For starting the Kubernetes cluster, the following command needs to run on master
node(Figure [7)):
sudo kubeadm init —pod-network-cidr=10.244.0.0/16. Install Kubeadm to run
the above initialization command:
sudo apt install kubeadm
kubeadm version
For starting the cluster, run the following commands one by one on master node which
is the output of initialize command as seen in Figure [}
mkdir -p SHOME /. .kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) SHOME/.kube/config



root@master-node: /home/bhavnat# sudo kubeadm init --pod-network-cidr=18.244.8.8/16
11210 ©5:07:39.629018 9213 version.go:251] remote version is much newer: v1.17.0
[init] Using Kubernetes version: v1.16.3
[preflight] Running pre-flight checks
[WARNING NumCPU]: the number of awvailable CPUs 1 is less than the required
[WARNING Service-Docker]: docker service is not enabled, please run 'systenm
[WARNING IsDockerSystemdCheck]: detected "cgroupfs" as the Docker cgroup dr
[preflight] Pulling images required for setting up a Kubernetes cluster
[preflight] This might take a minute or two, depending on the speed of your interne|
[preflight] You can also perform this action in beforehand using 'kubeadm config inm|
[kubelet-start] Writing kubelet environment file with flags to file "/var/lib/kubel]
[kubelet-start] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml|
[kubelet-start] Activating the kubelet service
[certs] Using certificateDir folder "/etc/kubernetes/pki"
[certs] Generating "ca" certificate and key
[certs] Generating "apiserver" certificate and key
[certs] apiserver serving cert is signed for DNS names [master-node kubernetes kube|
[certs] Generating "apiserver-kubelet-client" certificate and key
[certs] Generating "front-proxy-ca"” certificate and key
[certs] Generating "front-proxy-client" certificate and key
[certs] Generating "etcd/ca" certificate and key
[certs] Generating "etcd/server” certificate and key

Figure 7: Kubernetes Initialization

Your Kubernetes control-plane has initialized successfully!
To start using your cluster, you need to run the following as a regular user:
mkdir -p $HOME/.kube

sudo cp -1 jetc/kubernetes/admin.conf SHOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
https://kubernetes.io/docs/concepts/cluster-administration/addons/

Then you can join any number of worker nodes by running the following on each as root:

kubeadm join 192.168.159.133:6443 --token y82xjn.dza2pvat2wr4vqog \
--discovery-token-ca-cert-hash sha256:dc8749f6fa3f7acbaaf18abe5f3a74311288f83e96b161e71fc20dc7ccb3e960
root@master-node: fhome/bhavnat#

Figure 8: Output of Kubernetes Initialization



g roger BrCUnary MRotr TP o RUD
root@master-node: /home/bhavnat# cp -i Jetc/kubernetes/admin.conf SHOME/.kube/config
root@master-node:/home/bhavnat# chown $(id -u):$(id -g) SHOME/.kube/config
root@master-node: /home/bhavnat# kubectl apply -f https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml
podsecuritypolicy.policy/psp.flannel.unprivileged created
clusterrole.rbac.authorization.k8s.io/flannel created
clusterrolebinding.rbac.authorization.k8s.io/flannel created
serviceaccount/flannel created

configmap/kube-flannel-cfg created

daemonset.apps/kube-flannel-ds-amd64 created

daemonset.apps/kube-flannel-ds-armé4 created

daemonset . apps/kube-flannel-ds-arm created

daemonset.apps/kube-flannel-ds-ppcé4ale created

daemonset . apps/kube-flannel-ds-s390x created

root@master-node: /home/bhavnat# kubectl get pods

No resources found in default namespace.

root@master-node: /home/bhavnat# kubectl get pods --all-namespaces

NAMESPACE NAME READY  STATUS

kube-system  coredns-5644d7b6d9- fp65k 1/1 Running

kube-system  coredns-5644d7b6d9-pz9cx 1/1 Running

kube-system etcd-master-node 1/1 Running

kube-system  kube-apiserver-master-node 1/1 Running

kube-system  kube-controller-nanager-master-node  1/1 Running

kube-system  kube-flannel-ds-amd64-4jmd7 1/1 Running

kube-system  kube-proxy-xab7p 1/1 Running

kube-system  kube-scheduler-master-node 1/1 Running
root@master-node: /home/bhavnat# [l

Figure 9: Flannel deployment and running pods

bhavna@master-node:~$ kubectl get nodes
NAME STATUS ROLES AGE VERSION

master-node Ready master 52m v1.16.2
slave-node Ready <none= 12m v1.16.2

Figure 10: running nodes

4.4.4 Deploying Pod Network

For creating a pod network, flannel is deployed by using the command:

sudo kubectl apply -f https://raw.githubusercontent.com/coreos/flannel /master /Documer
flannel.yml .

To check the running pods, run the command: kubectl get pods —all-namespaces.

Output will be seen as in Figure [19;

4.4.5 Joining nodes in cluster

Ensure the command produced in the initialization part is saved as it will be used to join

nodes in a cluster. Run the command generated in Figure [§| in the worker nodes to join

them in the cluster:

kubeadm join 192.168.159.133:6443 —token y82xjn.dza2pvat2wr4vq9g —discovery-
token-ca-cert-hash sha256:dc8749f6fa3f7acOaaf18abe5f3a74311288f83e90b161e71fc20dc7cc

4.4.6 Check status of cluster

To see whether the nodes are in Ready state and the running Pods, run the command:
sudo kubectl get nodes
Output is as in Figure [10}

sudo kubectl get pods

5 Deploying Applications

To create a custom scheduler or to deploy a new application, a Dockerfile needs to be
generated that will hold all the application details as shown in the example in Figure [11]



FROM busybox
ADD ./ _output/local/bin/linux/amd64/kube-scheduler /usr/local/bin/kube-scheduler

Figure 11: Shows the dockerfile creation for Kube-Scheduler [3]

A simple existing application is deployed that was created for running and testing
Prometheus [4]. Figure |[12|shows the deployment file used for running Prometheus in the
cluster.

Also, an nginx application is deployed by running the following command:
kubectl apply -f https://k8s.io/examples/application/deployment.yaml

For deploying application through Yaml file in the cluster, run the command in the
master node [5]:
kubectl create -f prometheus-deployment.yaml

This will give the following result if successful(Figure

5.1 Kube Proxy

Kube-proxy provides a way to implement the application running to be exposed as a
network service by forming a proxy network. To enable the deployment and running of
deployed applications in the cluster run the command(Figure :

kubectl proxy

6 Validation

To validate the running architecture integration, first check the applications deployed are
running in the cluster or not. To check this run the command:
kubectl get deployments.

If there are any services running, like prometheus or kube-metrics, its status can be
checked by the following command:
kubectl get services.

To check whether the application are running in containers and specified types, check

with the following command:
kubectl get pods.
Figure [15| gives an overview of deployments. Wait till the status for all the containers
changes from ”pending” to "running”. Also, Kubernetes master node allocates the con-
tainers by checking the available capacity, if the application is heavy that requires more
capacity than available, the container will remain in ”pending” state and then move to
"terminated” state eventually.

After confirming the cluster is up and running, run the following command to get
the detailed description of the instances along with resource usage and the percentage of
utilization:
kubectl] describe nodes.

Figure [16| shows the command description given by Kubernetes and Figure (17| shows
the output of the command for nodes.



apivVersion: rbac.authorization.k8s.io/vibetal
kind: ClusterRole
metadata:
name: prometheus
rules:
- apiGroups: [""]
resources:
- nodes
- services
- endpoints
- pods
verbs: ["get"”, "list", "watch"]
- apiGroups:
- extensions
resources:
- ingresses
verbs: [“"get”, "list", "watch"]
apiversion: vl
kind: ServiceAccount
metadata:
name: prometheus
namespace: default
apiVersion: rbac.authorization.k8s.io/vibetal
kind: ClusterRoleBinding
metadata:
name: prometheus
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: prometheus
subjects:
- kind: ServiceAccount
name: prometheus
namespace: default

Figure 12: Shows the Prometheus Deployment Yaml File

root@master-node: fhome/bhavnat/sla/k8s# kubectl create -f deploy.yaml
deployment.apps/sla created

service/sla created

root@master-node: /home/bhavnat/sla/k8s# kubectl create -f prometheus-deployment.yml

clusterrole.rbac.authorization.k8s.io/prometheus created
serviceaccount/prometheus created
clusterrolebinding.rbac.authorization.k8s.io/prometheus created
configmap/prometheus-config created

service/prometheus created

Figure 13: Shows the Prometheus Deployment result

bhavnat@master-node:~$ kubectl proxy
Starting to serve on 127.0.0.1:8001

Figure 14: Shows proxy server running



rootgmaster-node:/home/bhavnat# kubectl get pods --all-namespaces
SPAC A READY  STATUS

root@master-node: [hone bhavnatt kubectl get services
NAKE TYPE (LUSTER-IP EXTERNAL-IP  PORT(S) AGE
kubernetes  ClusterTP 10,9681 <none> e 4in

eployment-54T57cT6br - kxshw e
t-54FS7CTObT- r2xtw 0 Pendtng
> 0 Pe

pronetheus LoadBalancer 10.102.147.119 <pending>  9090:32684/TCP 1fn
sla LoadBalancer 10.99.47.137  <pending>  8080:32586/TCP 1M
rootmaster-node: /hone /bhavnat |

unning
Running
Running

(a) services running

Figure 15: shows deployed services and applications in the cluster

kubectl describe (-f FILENAME \| TYPE [NAME_PREFIX \| Display the detailed state of

describe /NAME \l -1 label]) [flags] 0One or more resources.

Figure 16: kubectl describe command [0]

Figure 17: kubectl describe command output for nodes

10



Enter capacity:

Enter Resource requested:

Enter Number of Generations:

Figure 18: Genetic Algorithm code inputs

Figure 19: Application pod yaml update with new values

6.1 Genetic Algorithm

Taking the values given by describe command, enter it in Genetic Algorithm code attached
in the zip file, by putting the requested value of the node in "request” parameter and
total allotted resource in ”pop_size” (Figure . Once done, run the code and a fit value
will be presented alongwith the graphical representation of the evolution process.

6.2 Pod Yaml Deployment

Taking these generated values, reconfigure the application yaml file to assign the Ge-
netically evolved values as resource request values for the application and change the
"requests” tag in the yaml template with updated CPU and memory values(figure .

Deploy the application again in the cluster with updated requirements by running the
command:
kubectl apply -f deploy.yaml
Change the limits tag of the template for achieving different observations of resource
utilization levels by running the describe command again. An output will be seen as in
figure

For checking the status of the cluster and the logs, run the command:

kubectl cluster-info
kubectl cluster-info dump
Multiple URLs will be presented for the applications hosted in Kubernetes cluster as well
as logs (Figure 21). If needed, run the Prometheus URL in the browser and select the
total duration metrics to compare the change in the total running duration in seconds

11



q kube-proxy.
em OOM encountered

tskPressure

Figure 20: shows the outcome for the new resource requests

root@master-node: /home/bhavnat/sla/k:
is running at ht
is running at https:/ aces/kube-system/services/kube-dns:dns

o further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.
Foot@master-node: /home/bhavnat/sla/kss# kubectl cluster-info dump

/api/vi/nodes",
"resourceVersion”: "4513"

" fapi/vi/nodes /master-node”,
: "cObf6f73 -48a0-a8df-30a178c22e%e”,
"resourceVersion 4",
"creationTimestamp 2019-12-10T13:10:39Z",
"labels": {
"beta.kubernet

ernetes.iofos": "linux",
"node-role.kubernetes.lo/master": ""

"annotations": {
"flannel.alpha.coreos.com/backend-data": "{\"VtepMAC\":\"7a:fc:28:2b:78:7a\"}",
"flannel.alpha.coreos.com/backend-type”: "vxlan",
"flannel.alpha.coreos.com/kube-subnet-manager”: "true”,
"flannel.alpha.coreos.com/public 192.168.159.133",
"kubeadm.alpha.kubernetes.io/cri ": "/var/run/dockershim.sock",
"node.alpha.kubernetes.io/ttl": "@",
"volumes.kubernetes.io/controller-managed-attach-detach": "true”

}

"spec”: {
"podCIDR": "10.244.0.0/24",
"podCIDRs": [
"10.244.0.0/24"

Figure 21: shows the cluster information and logs

according to different time intervals [7].

References

1]

V. L. Compendium, “Install and deploy kubernetes on ubuntu 18.04
Its, https: //vituz. com /install-and-deploy-kubernetes-on-ubuntu/.” [Online]. Available:
https://vitux.com/install-and-deploy-kubernetes-on-ubuntu/

M. Cezar, “How to permanently disable swap in
linux, https: //www.tecmint.com/disable-swap-partition-in-centos-ubuntu/.”  [Online].
Available: https://www.tecmint.com /disable-swap-partition-in-centos-ubuntu/

Kubernetes, “Configure multiple schedulers,https://kubernetes.io/docs/tasks/administer-
cluster/configure-multiple-schedulers/.” [Online]. Available: https:
/ /kubernetes.io/docs/tasks/administer-cluster /configure-multiple-schedulers/

K. Hendry, “Testing prometheus instrumentation met-
rics, hitps://github.com/kaihendry/sla.”  [Online]. Available:  https://github.com/
kaihendry/sla

12


https://vitux.com/install-and-deploy-kubernetes-on-ubuntu/
https://www.tecmint.com/disable-swap-partition-in-centos-ubuntu/
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers/
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers/
https://github.com/kaihendry/sla
https://github.com/kaihendry/sla

[5] Kubernetes, “Deployments kubernetes,https://kubernetes.io/docs/concepts/workloads/controllers/d
[Online]. Available:  https://kubernetes.io/docs/concepts/workloads/controllers/
deployment /

[6] Kubernetes.io, “Overview of kubectl,https: //kubernetes.io/docs /reference /kubectl/overview/.”
[Online]. Available: https://kubernetes.io/docs/reference /kubectl/overview /

(7] —, “Accessing  clusters,hitps://kubernetes.io/docs/tasks/access-application-
cluster/access-cluster/.” [Online]. Available:  https://kubernetes.io/docs/tasks/
access-application-cluster /access-cluster/

13


https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/tasks/access-application-cluster/access-cluster/
https://kubernetes.io/docs/tasks/access-application-cluster/access-cluster/

	Introduction
	Brief History
	Evolution of Container Orchestration and Placement Strategy
	Motivation
	Research Question
	Report Structure

	Related Work
	Heuristic Algorithm
	ACO and PSO based methodology
	Genetic Algorithm based methodology
	Machine Learning approach
	Miscellaneous approaches
	Other approaches:

	Methodology
	Steps followed
	Preparation of Sample data
	Measurements and Calculations performed
	Statistical Techniques - Best Linear Fit

	Design Specification
	Existing Architecture - Kubernetes
	Kube-apiserver and etcd
	kube-controller and cloud-controller manager
	kube-scheduler
	Kubelet
	Kube-proxy

	Implemented Architecture

	Implementation
	Materials and Equipment
	Applications deployed
	Kubernetes Cluster Creation and Networking
	Multinode Cluster creation
	Kubernetes networking

	Genetic Algorithm

	Evaluation
	Resource Utilization
	Case Study 1: Using Genetic Algorithm values 
	Case Study 2: Using Genetic Algorithm resource values with higher limits 
	Case Study 3: Resource request higher than individual node's capacity

	Genetic Algorithm
	Case study 1: Varying the Capacity Threshold value
	Case study 2: Varying the Number of Generations parameter
	Case study 3: Request value greater than the Total Capacity

	Performance Evaluation
	Cluster Balance
	Discussion

	Conclusion and Future Work
	Introduction (1)
	Purpose of this document
	Document Structure

	General Information
	Objective
	Solution Summary
	Architectural Requirements
	Virtual Machine or Cloud Platform
	Kubernetes
	Docker
	Prometheus
	Genetic Algorithm

	Prerequisites

	Environment Development Requirements
	Code Repository
	Required Programming Languages
	Ubuntu 18.04 or Linux Environment
	Python v3.7 and PyCharm

	Docker Installation

	Kubernetes
	Key Generation
	Xenial Kubernetes Repository
	Kubeadm installation
	Deploying Kubernetes
	Swap Memory
	Naming of hosts
	Initialize Kubernetes
	Deploying Pod Network
	Joining nodes in cluster
	Check status of cluster


	Deploying Applications
	Kube Proxy

	Validation
	Genetic Algorithm
	Pod Yaml Deployment


