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Automatic Coherent and Concise Text Summarization

using Natural Language Processing

Kaarthic Muthiah
X18129579

Abstract

Over the past two decades, with the advancements in the World Wide Web and
Internet, there has been an exponential increase in the amount of online informa-
tion causing difficulties in retrieving the precise and necessary information quickly.
The solution to this problem is the Automatic Text Summarization, one of the im-
portant domains of Natural Language Processing (NLP) which is being extensively
focused by the research community. Text Summarization helps to shrink the size
of the source document and presents only the key features without compromising
the overall context of the input document. Summarization is broadly classified
into two types - extractive and abstractive summarization depending on how the
original content is structured in the final summary. In the past, the researchers con-
centrated widely on extractive approaches and now there has been a gradual shift
in the research trend towards abstractive methods and fusion of both extractive
and abstractive ones. Consequently, in this paper, we propose a novel Combined
Extractive Abstractive Text Summarization (CEATS) model which integrates the
benefits of both extractive and abstractive approaches to achieve more concise, lo-
gical and human readable summaries of the online product reviews collected over a
period of time. The extractive stage includes word frequency based sentence feature
extraction, graph based sentence ranking algorithm whereas the abstractive phase
involves deep artificial neural network approach. It consists of sequence to sequence
encoder decoder model made of RNN LSTM networks.

Keywords— Natural Language Processing (NLP), Extractive Summarization, Abstractive Sum-
marization, Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM)
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1 Introduction

Natural languages are languages which are commonly used by human beings in their day-to-
day life for communicating with each other either in the form of text or speech. For example,
English, Spanish. These languages are usually informal in nature and are totally different from
the computer programming languages such as C++, Java and Python which have formal syntax
(Hingu et al.; 2015). As we all know, most of the data in today’s world are in unstructured format
which comprises of text, images, audio and video files. In order to get a deep understanding
of such textual data, we use the concept of Natural language Processing (NLP). NLP refers to
the branch of Artificial Intelligence (AI) which is related to computational linguistics. It helps
the computers to learn, read, understand, interpret and obtain meaningful information from
human languages. NLP is broadly classified into two components namely - Natural Language
Understanding (NLU) and Natural Language Generation (NLG) (Hardeniya et al.; 2016). NLP
has a variety of real time applications. A few of them are chatbots, sentimental analysis,
spelling check, search engines, information extraction from documents or website, personal
voice assistants like Siri, Alexa and Google Assistant, document summarization, auto-complete
feature, language translation and spam email or fake reviews classification.

Over the recent years, with the technological advances in the World Wide Web and the
Internet, there has been an exponential growth in the amount of online information. Nowadays,
people rely the most on the internet for getting information. As they are overloaded with
plethora of information from a wide variety of sources, it has become really tough to figure out
the relevant information based on the user query. So, there is a serious need for a summarization
technique to efficiently access the necessary information, thereby minimizing the reading time
and efforts of the users. This helps the users to get a gist of the entire article within a short
duration. When a document is being summarized by human beings, they go through the
complete article, understand the context and then use the key points to produce their own
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summary. The quality of such human produced summaries will be exceptional. However,
manually summarizing a document consumes more time. (Sethi et al.; 2017).

So, a computer based approach known as Automatic Text Summarization is obviously re-
quired for reducing the size of the longer text to produce a compact and coherent summary
without compromising the main ideas of the original content using the power of NLP (Saggion
and Poibeau; 2013). According to (Radev et al.; 2002), summary is defined as a piece of text that
is obtained from one or more texts which presents the predominant information from the original
text while retaining the length of the target summary to be either half or less than that. Based
on how the contents of the summary are organized, automatic summarization can be categorized
into two major types namely, extractive and abstractive text summarization. Extractive text
summarization produces the output summary by picking up the most important sentences or
phrases from the input text and combining them together. It does not produce any new text
and uses only the existing text from the original document. Basically, it is like highlighting
the key points in an article. On the other hand, Abstractive text summarization technique is
used to generate more concise summaries with novel phrases or sentences by understanding the
overall meaning of the input text by using advanced NLP methods. Abstractive summaries are
more human like in nature that are paraphrasing in their own words while preserving the main
ideas of original article (Saziyabegum and Sajja; 2016).

The various ways of representing the same content has always fascinated the people and it
has made the research community to widely focus on the automatic text summarization domain.
It has its advent nearly sixty years back in late fifties when they researched about summarizing
scientific articles (Saggion and Poibeau; 2013).From then till now, there has always been a lot
of improvements in this domain by proposing diverse approaches to the summarization prob-
lem. Presently, text summarization is widely used in different areas like online search engines,
emails, news articles, research documents, Wikipedia articles, online blogs, product reviews
and comments. Human generated summaries are usually abstractive rather than extractive.
However, researchers have mostly focused on extractive summarization since it is comparatively
easier than abstractive approach. Fully extractive summaries yield better results compared to
the abstractive summaries. This is due to the fact that abstractive summarization techniques
deals with issues such as semantic representation and natural language generation which are
commensurately tougher than data driven methods like sentence extraction (Allahyari et al.;
2017).

1.1 Motivation

In the recent times, the research trend slowly shifted towards abstractive summarization and
combination of extractive and abstractive techniques (Gupta and Gupta; 2018).Right now,
there is a need for more sophisticated, first-class, coherent and concise summaries that are
grammatically correct and knowledge rich. Also, in this modern era of Internet, e-commerce has
gained a lot of popularity across different industry sectors such as food and beverages, clothing,
travel, electronics, real estate and many more. This has caused people to post and share millions
of user reviews, comments and feedback about various products on the e-commerce websites and
other online portals or forums. Manually analysing all such reviews to get a better insight about
the product will cost the users a lot of time. Another, disadvantage is that it is challenging
for the companies to understand the user opinions quickly and improve the quality of those
products. This problem has always fascinated me over the recent years.

Subsequently, in this research paper, we propound a two phase approach of integrating both
extractive and abstractive summarization methods in order to achieve good quality summaries
of the numerous online product reviews. In our proposed model, the output of the extractive
phase (first phase) is passed as input to the abstractive phase (second phase) to obtain the final
output summary.
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1.2 Research Questions

This research paper addresses the following questions as mentioned in our research proposal
(Muthiah; 2019):

• How longer texts can be shortened while preserving the vital information and overall
essence of the source content to minimize the reading time of the readers?

• How the combined extractive and abstractive summarization model will improve the
accuracy of the output summary?

This paper is outlined as follows: Section 2 describes the related work in the field of ex-
tractive and abstractive text summarization. Section 3 and Section 4 explains the proposed
methodology and approach or design workflow respectively. Section 5 deals with proposed im-
plementation. Section 6 discusses the various experiments performed and evaluation of the
output results. And finally, the conclusion and future work.

2 Related Work

This section imparts the literature review of different state-of-the-art existing methods in the
realm of automatic text summarization. Basically, the amount of digital content which is
present online has been increasing exponentially at a faster pace over the last decade. This
has caused hampering of information than what is actually needed for the users. People find
it really arduous to identify the necessary information from a variety of sources. Also, it
consumes a lot of time to manually go through the unstructured information on the internet
and summarize them. Consequently, automatic text summarization has become the need of
the hour in the present day. This has always fascinated the research community to focus
widely on the summarization problem. In general, text summarization is widely divided into
two main types namely, extractive summarization and abstractive summarization. Most of
the research works done in the past until early 2000s or the past decade concentrated widely
on extractive summarization. But, over the recent years, the paradigm has gradually moved
towards abstractive summarization owing to the need of more accurate and less redundant
summaries. Discussed below are some of the past works in these two approaches.

As mentioned before, text summarization had its root in late 1950s when (Luhn; 1958)
formulated a word or phrase frequency based approach to score the sentences and pick up the
top ranking sentences to form the summary of the scientific article. The sentence position
feature was used by (Baxendale; 1958) to determine the most appropriate sentences to be used
in the summary and also suggested that either the first or last sentence in a paragraph can be
used to identify the topic sentence of that paragraph. Ten years later, new features like cue
words and title words along with word frequency and sentence position was used to calculate
the sentence weights. This method proposed by (Edmundson; 1969) produced a similarity of
about 44% between human and machine produced summaries. There are also other word level
and sentence level features such as topic sensitive word, biased word, content words (nouns,
verbs, adverbs, adjectives), upper case word, paragraph position and sentence length that can
be used to extract the sentences for the summary (Chen et al.; 2002). (Vanderwende et al.;
2007) proposed SumBasic system, a word frequency or word probability based technique for
selecting the top sentences for the summary and it is based on a greedy approach whereas,
(Yih et al.; 2007) and (Alguliev et al.; 2011) employed an optimization approach to increase the
appearance of the significant words in the summary.

The tf-idf sentence weighting technique is based on the term frequency and inverse document
frequency values and it is proven to be one of the efficient methods to calculate sentence scores.
Since calculating these scores are pretty easier and faster, it has been extensively used by a
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variety of summarizers in the past, out of which a few are listed below. The sentence similarity
was measured using the tf-idf scores in the summarization model proposed by (Erkan and Radev;
2004). (Alguliev et al.; 2011) developed a generic unsupervised summarization model which
extracts the important content of the source document to a greater extent with less redundancy
with the help of tf-isf (term frequency inverse sentence frequency) scores. It can be applied to
both single and multi document summarization tasks. Inspired from (Alguliev et al.; 2011), to
overcome the optimization issues, a differential evolution algorithm based summarization model
was developed by (Alguliev et al.; 2013). A deep ensemble auto encoder unsupervised deep
learning model using tf-idf was propunded by (Yousefi-Azar and Hamey; 2017) while (Alami
et al.; 2018) also proposed a similar model but with a variational auto encoder focusing on tf-
idf values of both local and global vocabularies for arabic document extractive summarization.
(Qaiser and Ali; 2018) used the tf-idf scores to determine the significance of the top key words
from the various websites in different domains.

Graph based ranking algorithms basically gained popularity from the PageRank algorithm,
a web page ranking algorithm from Google (Brin and Page; 1998) which has created a revolution
in the internet world. This graph based technique was also incorporated into the domain of
document summarization by various researchers as stated below. (Erkan and Radev; 2004)
proposed the LexRank algorithm , a graph based ranking technique inspired from the PageRank
algorithm. It is used to find the sentence importance based on lexical centrality. TextRank
graph based ranking algorithm, an unsupervised method was introduced by (Mihalcea and
Tarau; 2004) was used for performing natural language tasks such as keyword and sentence
extraction. The same TextRank algorithm was also employed by (Barrera and Verma; 2012)
for single document extractive summarization and by (Li et al.; 2019) for keyword extraction
for social media short texts. There are other different approaches for extractive summarization
which includes Naive Bayes model, log linear model, decision tree approach, latent semantic
analysis, cluster based, fuzzy logic based and hybrid approaches such as combining fuzzy based
and LSA based approaches (Saziyabegum and Sajja; 2016).

As stated before, abstractive summarization is used to create more shorter, absolute sum-
maries by either paraphrasing or using new words instead of simply extracting the salient
portions of the source text. Abstractive summarization is mainly classified into two categories -
structure-based and semantic-based approaches. Structure based approach includes tree based,
rule based, ontology based, graph based, template based, lead and body phrase based methods.
While, semantic based approach consists of multimodal, information-item based, predicate ar-
gument based and semantic graph based methods. However, during the recent times, due to
the success in the field of machine translation, a variety of deep learning models and techniques
have also been incorporated in the abstractive summarization domain (Gupta and Gupta; 2018).
This is because deep learning is capable of retrieving both semantic and structural information
from the text. A few of the recent abstractive summarization research works are discussed
below.

A Recurrent Attentive Summarizer (RAS) model, which is based on a convolutional atten-
tion based conditional encoder and standard RNN decoder architecture that concentrates on
each step of the output generation was introduced by (Chopra et al.; 2016). Following a similar
method, (Nallapati et al.; 2016) proposed a complete RNN sequence to sequence model with
GRU-RNN based networks for both encoder and decoder. This model was used to resolve the
keyword capturing, modeling and hierarchical sentence to word structure issues. (See et al.;
2017) presented a new model using pointer generator and coverage mechanism along with the
standard sequence to sequence attentional encoder decoder model. Pointer generator technique
is used to effortlessly select the important content from the original text and reproduce it with
accurate information in the output summary. Also, coverage concept is used to minimize the
repetition of words or phrases in the summary. A Selective Encoding Abstractive Sentence
Summarization model (SEASS) with an encoder, selective gate network and a decoder which
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Extractive Summarization
Paper/Author

Technique Used

Luhn word or phrase frequency approach
Vanderwende et al word frequency based on greedy approach
Yih et al word frequency with optimization approach
Alguliev et al Term Frequency-Inverse Sentence Frequency (TF-ISF)
Erkan and Radev Term Frequency-Inverse Document Frequency(TF-IDF)
Yousefi Azar and Hamey Deep ensemble auto encoder with TF-IDF
Alami et al Variational auto encoder with TF-IDF
Qaiser and Ali Term Frequency-Inverse Document Frequency(TF-IDF)
Brin and Page Graph based PageRank Algorithm
Erkan and Radev Graph based LexRank Algorithm
Abstractive Summarization
Paper/Author

Technique Used

Nallapati et al
Complete RNN seq2seq encoder decoder
model with GRU-RNN

See et al
Standard seq2seq encoder decoder with
pointer generator mechanism

Zhou et al Selective encoding encoder decoder model

Hou et al
Standard encoder decoder sequence model
with joint attention and sub word method

Fan et al
Convolutional Neural Network sequence to
sequence encoder decoder model

Our Research
Technique Used

TF-IDF + Graph based Page/Text Rank
+ Seq2Seq Encoder Decoder Model

Table 1: Summary of Literature Review

is an extension of basic encoder decoder sequence to sequence model was formulated by (Zhou
et al.; 2017). The selective gate network controls the flow of encoded information to the decoder
thereby minimizing the efforts of decoder in generating the final output summary. (Hou et al.;
2017) used the standard encoder decoder sequence model with a joint attention mechanism for
single document summarization which focused on the output sequence as well, thus reducing
the word repetition problem. Also, it used a sub word method which helped to handle the rare
and unknown words. (Fan et al.; 2017) proposed a convolutional neural network based encoder
decoder sequence to sequence model for controllable single document abstractive summarization
that allows the user to set their preferences such as style, length and interested entities.

As aforesaid, only in the very recent times, the research focus has turned towards abstractive
summarization and combining extractive and abstractive approaches (Gupta and Gupta; 2018)
which includes the following. (Hsu et al.; 2018) proposed a combined model which uses both
sentence level and word level attentions. It also introduced a new inconsistency loss function
which is used to improve the consistency between the two attentions. (Subramanian et al.;
2019) used two neural models namely hierarchical seq2seq pointer and sentence classifier in the
extractive model and a Transformer Language model for abstractive phase conditioning on both
extracted sentences and whole or portion of the source document. These models were evaluated
on large scale lengthy document datasets such as CNN, Daily Mail, Newsroom, PubMed and
BigPatent corpus.

On reviewing the past literature in the text summarization domain, it is clear that there has
been a large number of researches performed on extractive and abstractive summarization while
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a very limited number of works in integrating both approaches. Consequently, in this paper
as already mentioned in our research proposal (Muthiah; 2019) and in the motivation section
above, we implement a combined extractive and abstractive model for summarization and also
attempt to evaluate it with a new dataset consisting of online food reviews from Amazon. We
use tf-idf and graph based ranking algorithm in the extractive phase and sequence to sequence
encoder decoder RNN network in the abstractive model to achieve more accurate, concise and
human readable summaries of online reviews.

3 Methodology

This section describes the methodology adopted to approach the implementation of our proposed
solution. In this research, since we deal with text summarization, a machine learning problem
which is one of the applications of Natural Language Processing (NLP), building a proper and
efficient model is a significant task. This can be achieved by following different data analytics
frameworks which are a set of well defined processes for successful product delivery. Few popular
data science methodologies (Azevedo and Santos; 2008) include Cross Industry Standard Process
for Data Mining (CRISP-DM), Knowledge Discovery in Databases (KDD) and Sample, Explore,
Modify, Model, Assess (SEMMA).

After a detailed study of the above mentioned methodologies, the one that best fits our
research purpose is KDD because it has almost all the steps closely matching with our pro-
posal. KDD1 focuses mainly on task execution right from data selection or preparation to
model building and evaluation rather than the project management procedures and helps in
extracting useful information or knowledge from the internet or huge databases or repositor-
ies. The KDD methodology comprises of 5 major stages namely: (i)Data Selection (ii)Data
Pre-processing (iii)Data Transformation (iv)Data mining and (v) Evaluation or interpretation
of results (Fayyad et al.; 1996). Figure 1 illustrates how our proposed approach is aligned with
each stage of the KDD methodology.

Figure 1: Proposed methodology in alignment with KDD framework

3.1 Data Collection or Preparation

In this research, the data is prepared from the online fine food reviews from Amazon (McAuley
and Leskovec; 2013). It consists of various details such as username, user ID, product inform-
ation, ratings, product reviews text and a reference summary for those user reviews. All the
above information are extracted and transferred into a csv file for further processing. The en-
tire dataset consists of approximately 570,000 reviews and we can select the data samples, say
50,000 or 100,000 records for our implementation purpose based on the computational power
or resource available.

1 http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
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3.2 Pre-processing

Once the input data for our implementation is collected, the next very essential step before
starting the data mining process is the data pre-processing. Pre-processing helps in eliminating
the noise in the data, that is, irrelevant or unnecessary data from the samples. Such noisy data
may have serious impact on model performance and the output results. First, the necessary
attributes from the data samples are taken. In this case, we take food reviews text and its
reference summary. Then, some data pre-processing steps such as removing duplicates and NA
values, removing special characters, symbols, numbers and punctuation, removing stop words
and short words, removing HTML tags, contraction mapping and converting everything to
lowercase are performed on the selected fields from the sample. All the above data cleaning tasks
are performed using Python programming language and its related libraries will be discussed
in detail in the upcoming sections of this report.

3.3 Feature Extraction and Transformation

The next step after data cleaning is feature extraction and transforming the input text into
numerical and vectorize it, on which various NLP and deep learning techniques or algorithms
can be applied. Here we use frequency of words feature to calculate the sentence scores with help
of Term Frequency-Inverse Document Frequency (TF-IDF) method. This feature extraction
and data transformation is achieved using the scikit-learn2 (sklearn) python machine learning
library.

3.4 Data Mining

In this step, we use different data mining techniques to build different models to achieve our
objective. The aim of this research is to build a combined extractive and abstractive text
summarization model using various NLP and deep learning techniques. We use TextRank
algorithm, which is a graph-based ranking algorithm in NLP that is basically inspired from
Google’s PageRank algorithm. And we use skearn, tensorflow3 and keras4 machine learning
and deep neural network python libraries to develop models using RNN and LSTM.

3.5 Evaluation

After the building the model, it needs to be trained and validated. The input textual data
is divided in 80:20 ratio for training and testing the model respectively. We perform model
training by tuning the hyper-parameters such as number of epochs, optimizer, batch size, loss
function, embedding dimension and learning rate. In each case, the training and testing loss and
accuracy are determined and plotted as a graph to get a better understanding of the condition
under which model is trained properly and produce more accuracy and less loss comparatively.
And, the final predicted output summary for the input food reviews text is compared with the
given reference summary and evaluated using ROUGE metrics (Recall Oriented Understudy for
Gisting Evaluation). It is a benchmark metric for obtaining the quality of the model generated
summary.

2 https://scikit-learn.org/stable/
3 https://www.tensorflow.org/
4 https://keras.io/
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4 Design Specification

This section discusses about the design and workflow of our CEATS model. It also describes
the various components used to build the model.

4.1 CEATS Model

In this paper, we present an automatic text summarization model known as Combined Ex-
tractive and Abstractive Text Summarization (CEATS) model comprising of two major phases
namely: (i) Extractive phase and (ii) Abstractive phase. The output of the first phase is
used as the input to the second phase. The below Figure 2 demonstrates the workflow of our
summarization model.

4.2 Stage 1: Extractive Approach

The very basic step for our summarization process is input data collection. in our case, the
dataset is prepared from the online fine food reviews from Amazon. Once the data corpus is
ready, it is fed into the summarization model to predict the summary of the input text. The 3
key steps in this phase are the following:

(i) Text Pre-processing:

Raw data or real-world data will have lot of unnecessary, meaningless, inconsistent and un-
structured data which will be really arduous to be interpreted and processed by the machines.
This is referred as noise in the data. Thus, data cleaning or pre-processing is mandatory for any
data mining tasks in order to get proper results. Firstly, remove the duplicates and NA values
from the input food reviews. Now, the remaining reviews are splitted into a list of sentences and
this process is known as sentence tokenization. Next from those sentences, we will remove the
stop words or more common words, special characters, symbols, numbers, extra spaces, HTML
content and contractions mapping. Finally, convert all the text to lowercase.

(ii) Feature Extraction

In this step, the cleaned text is used to extract useful features from it and transform them
into vectors to be used by the NLP algorithms to find the important sentences to be presented in
the summary. In our case, we use the word frequency feature with the help of Term Frequency-
Inverse Document Frequency (TF-IDF) (Allahyari et al.; 2017) technique which is widely used
for summarization and information retrieval problems. It is employed to determine the sentence
scores on the basis of the TF-IDF score of words in those sentences. Basically, Term Frequency
(TF) is defined as the number of times a particular word appears in a text document. If
suppose, there are many documents in the input data corpus each with different lengths, the
TF is divided by the total number of words in the document. Inverse Document Frequency (IDF)
of a particular word is given by total number of documents divided by number of documents
having that word.
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Figure 2: CEATS Model Workflow

The Term Frequency (TF) is given by,

TF(w,D) =
(Number of times a word ‘w′ occurs in a document D)

(Total number of words in that document)
(1)

Inverse Document Frequency (IDF) is given by the formula,

IDF = log(X/D(w)) (2)

where,
X – total number of documents in the input data corpus
D(w) – number of documents containing the word ‘w’

The TF-IDF score is given by,

TF − IDF(w,D) = eq(1) ∗ eq(2)

Therefore,
TF − IDF(w,D) = TF(w,D) ∗ log(X/D(w)) (3)
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(iii) Top Ranking Sentences and Extractive Summary:

In this step, the vectorized format of the sentences are translated into a graphical represent-
ation by using TextRank algorithm which is derived from the PageRank algorithm by Google
(Erkan and Radev; 2004). This is a graph-based ranking algorithm. The nodes of the graph
denote the sentences whereas the edges connecting the nodes represent the similarity scores
between the sentences.Then, based on certain threshold value, the top ranking sentences are
picked up and concatenated to form the output summary which is extractive in nature.

Figure 3: Sequence-to-Sequence Encoder-Decoder Model

4.3 Stage 2: Abstractive Approach

The extractive summary obtained from the stage 1 of our model is used as input for stage 2
- the abstractive phase. We employ a deep learning technique using neural networks in this
phase. Few common types of neural networks include Convolutional Neural Network(CNN)
and Recurrent Neural Network(RNN). Generally, CNNs are preferred in applications such as
image classification, and facial recognition where the input size is fixed (ex: an image) and
output of each state depends only on the current state input. On the contrary, ours is text
summarization which is a sequential learning problem in which both input and output of the
model are a sequence of texts. So, Sequence-to-Sequence Encoder-Decoder model shown in
Figure 3 are the best suited for this purpose. We use RNN for both encoder and decoder
networks because they use the information retained from all the previous state outputs in its
internal memory and current input in order to predict the current state output. However,
RNNs are only effective for very short sequences whereas Long Short Term Memory (LSTM),
an improvised version of RNN helps to overcome the long term dependency issues (Gupta and
Gupta; 2018). Also, we utilize Attention mechanism that helps to focus only on certain portions
of the input sequence to predict the output in case of long sequences (Bahdanau et al.; 2014).
Hence, the stage 2 of our summarization model comprises of a Sequence to Sequence Attentional
Encoder Decoder LSTM RNN. Here, the encoder reads the entire input sequence and encodes
into a one hot fixed length context vector which will then be decoded by the decoder network
to generate the final output summary.

5 Implementation

In this section, we have discussed about the environmental setup or configuration , different
tools, software and libraries used for implementing our proposed model. Also, a detailed de-
scription about the dataset used is also presented here.
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5.1 Environmental Setup or System Configuration

The implementation of our CEATS summarization model was done using Python (version 3.6.9)
programming language. We preferred Python because it is very easy to use, most widely used
for machine learning and NLP projects, has wide range of libraries that can be readily imported
and also has a good support from the online community and forums. We experimented a lot
on different IDEs (PyCharm, Anaconda Jupyter, Spyder) on the local machine i5 6th GEN,
64-bit Windows OS, 8GB RAM. Owing to the poor performance and system hangup issues,
we decided to use Google Colab. To make the executions faster we use Google Colaboratory
popularly known as ”Google Colab”, a free Jupyter notebook environment that runs completely
on Google Cloud and uses Google Compute Engine backend for all the computations. It is very
easy to write and execute the code as it does not require any installation on your local machine.
All you need is a web browser to access the colaboratory. Colab offers both GPU and TPU
hardware accelarators for free with our Google free tier account up to a certain computational
power. That is, we can change the runtime type while executing our code. The free GPU
offered is 1xTesla K80, 2496 CUDA cores and free TPU includes TPU v2, 8 cores, approx 12
GB RAM with a maximum RAM limit up to 36 GB. Since, TPU is comparatively faster than
GPU, we used the TPU accelarator.

5.2 Dataset Description

The data used for this research is extracted from the online fine food reviews from Amazon
(McAuley and Leskovec; 2013). It is a public domain dataset under CC0 license and consists
of approximately 500,000 reviews covering a span of more than 10 years starting from 1999 till
2012 with details such as user and product information, reviews and their ratings. It includes
reviews of nearly 75,000 products posted by over 250,000 users. These interesting statistics5

about our dataset are summarised below in Table 3. The dataset consists of about 10 attributes
as described in the below table Table 2.

Attributes Description
Id Row Serial No.
ProductId Unique id for the products
UserId Unique id of the user
ProfileName User Name

Helpfulness
Ratio of users who were
benefitted from the reviews

Score
Product ratings on a scale of
1 to 5

Time Review Timestamp
Summary Summary of the user review
Text Product Review/Comment

Table 2: Dataset Attributes Description

5.3 CEATS Model Implementation

First of all, the online reviews data is extracted from SNAP6 (Standford large Network Dataset
Collection). Then, from the extracted food reviews text file, we parse the various attributes

5 https://snap.stanford.edu/data/web-FineFoods.html
6https://snap.stanford.edu/data/
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Dataset Statistics
No. of reviews 568,454
No. of users 256,059
No. of products 74,258
Users (greater than 50 reviews) 260
Median no. of words per review 56
Time Interval October 1999 - October 2012

Table 3: Dataset Statistics

mentioned in Table 2 and transform it into a CSV file with help of pandas7 python library.
From the above mentioned dataset attributes, we will use only ’Text’ and ’Summary’ fields
for performing the task of text summarization. The dataset CSV file was imported into Data-
Frames with help of pandas library and the two necessary attributes were extracted and used for
further manipulation. We considered a sample of 100,000 reviews for text pre-processing. We
first removed the duplicates and NA values from the sample resulting in nearly 88,000 reiews.
Then, we use sent tokenize module from the nltk.tokenize package of the NLTK8 python library.
Following this, we remove the stop words, HTML content, remove the special characters, sym-
bols, numbers, extra white-spaces using NLTK, BeautifulSoup and re(RegEx)9 libraries. Also,
all the text is converted to lowercase using lower() string handling function within python.

Once data cleaning is completed, the next step is to extract features from the data. Here we
use tf-idf term weighting scheme to transform the text input into vector representations. This
is accomplished by importing the feature extraction10 module from the Scikit-learn(sklearn) py-
thon machine learning library. The modules CountVectorizer and TfidfTransformer within the
feature extraction package is used for converting the text into count matrix and then transform
it into a normalized tf-idf vector format. Then, the vector representation is converted into a
graph with the use of pagerank algorithm from the NetworkX 11 python library for creating and
studying graphs and networks. Following this, the top ranking sentences are extracted based
on the similarity scores between the sentences and presented in the extractive summary as the
output of phase 1. This output is loaded into a dataframe along with the reviews source text,
reference summary which in turn is converted into a CSV file which will be used for the next
phase.

In the second phase, abstractive summarization neural network model is built using Tensor-
Flow12 and Keras13 machine learning and neural networks python libraries. Here, we consider
about 50,000 samples from nearly 88,000 reviews resulted from stage 1. First, we need to per-
form similar pre-processing tasks on the extractive summary output and reference summary as
we did in the first phase in order to be used by our machine learning model. Fix the maximum
cleaned text and summary lengths based on the distribution of sequence lengths from the chosen
sample. Add ’sostok’ START and ’eostok’ END tokens to the reference summary as this will
help the model to determine when the sequence starts and ends respectively. The dataset is
split into 80% training data and 20% testing data. Now, both the training and testing data are
tokenized to form the vocabulary and converted the word sequences into equal length integer se-
quences by using Tokenizer and pad sequences modules from keras.preprocessing package. The

7 https://pandas.pydata.org/pandas-docs/stable/reference/frame.html
8https://www.nltk.org/
9https://docs.python.org/3/library/re.html

10https://scikit-learn.org/stable/modules/feature_extraction.html#feature-extraction
11https://networkx.github.io/documentation/networkx-1.10/index.html
12 https://www.tensorflow.org/
13 https://keras.io/
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model built here is a three layered LSTM encoder network and a single layered LSTM decoder
network with an embedding layer on both encoder and decoder networks , custom attention
layer to remember the lengthy sequences and the output layer uses SoftMax activation function.
The hidden layers have a dimension of 300 units and embedding layers have a size of 200. Also, a
dropout value of 0.4 is used in each hidden layer in order to reduce model overfitting and improve
its performance. These layers are implemented and model is built by using various wrappers
such as Input, LSTM, Embedding, Dense from the keras.layers and keras.models packages. One
of the hyper-parameters, loss function used here is sparse categorical crossentropy because we
use integer targets and they will be converted into a one hot vector easily without any memory
issues by using this loss function.

After building the model, it needs to be compiled and trained which is achieved byModel.compile
and Model.fit keras models functional methods. Model training is performed by tuning various
hyper-parameters such as epochs, optimizer, batch size, embedding dimension, activation, loss
function and learning rate and variations in the accuracy and loss values are determined and
analyzed. After training phase comes the inference phase, in which we input the testing data
to our model and get the output predicted summary. Various experiments performed during
model training by hyper-parameter tuning and evaluation of predicted output by our model will
be discussed in detail in the upcoming sections of the report.

6 Experiments and Evaluation of the Result

This section discusses about various experiments performed during model training and their
results. Also, the different evaluation metrics used for evaluating the model predicted output
summary is also presented here.

6.1 Model Training Experiments

After cleaning the 50,000 input samples for phase 2, we have about 48,227 samples in the dataset.
As mentioned earlier, they are divided into 80:20 ratio for training dataset (38,606 samples)
and testing or validation dataset (9621 samples) respectively. Now, the model is trained on the
training dataset and is validated using the testing dataset. We carried out different experiments
by varying the hyper-parameters to determine the comparatively better performing model with
better accuracy. Learning Curves are mathematical notations that are extensively used in the
field of machine learning, especially to interpret the performance of the deep learning neural
network models over a period of time and for understanding the learning process (Anzanello
and Fogliatto; 2011). We plot the loss and accuracy curves to understand the model behaviour
over multiple epochs or iterations in each of the experiments performed below. Generally, loss
should be minimal and accuracy should be higher.

6.1.1 Experiment 1

In this experiment, we considered the following hyper-parameters: batch size = 1024, epochs =
30, embedding dimension = 200, activation = SoftMax, loss = sparse categorical crossentropy
and hidden layer units = 300. For the above values, learning rate = 0.001 is fixed and optimizer
values are varied to Adam, SGD, RMSProp and the corresponding training and testing loss
and accuracy curves are plotted for the three cases as shown in Figure 4 and are analysed. The
graph is plotted with number of epochs or iterations on the x-axis and either loss or accuracy
values on the y-axis. figure 4(a), it is clear that the model learns comparatively well with
RMSProp optimizer with a low training loss at a rate of 0.001 than the other optimizers, Adam
and SGD. In figure 4(b), the model with RMSprop optimizer has most generalized behaviour on
the validation dataset after learning the patterns in the training data than the other two cases.
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In figure 4(c) and 4(d), both training and validation accuracy has the same increasing trend for
RMSprop and outperforms both Adam and SGD optimizers with an accuracy of 86.83% on the
testing dataset.

(a) Training Loss (b) Testing Loss

(c) Training Accuracy (d) Testing Accuracy

Figure 4: Exp 1 - Model Performance Metrics with Learning Rate 0.001

6.1.2 Experiment 2

In this case, the following hyper-parameters were taken into account: batch size = 1024, epochs
= 30, embedding dimension = 200, activation = SoftMax, loss = sparse categorical crossentropy,
hidden layer units = 300. The learning rate is maintained at 0.002 and optimizer values are
adjusted to Adam, SGD, RMSProp and respective loss and accuracy values on both training and
validation datasets are presented in Figure 5. Even this experiment shows a similar behaviour
as the first one. The model outshines with the RMSprop optimizer which has slightly higher
performance than Adam optimizer. The model performs the least with SGD optimizer as
illustrated in figures 5(a) and 5(b). The validation accuracy of the model with RMSprop is
about 86.83% which is just 0.07% higher than that of Adam optimizer as shown in figure 5(d).
However, the overall model performance with RMSprop optimizer beats the other two in this
experiment.
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(a) Training Loss (b) Testing Loss

(c) Training Accuracy (d) Testing Accuracy

Figure 5: Exp 2 - Model Performance Metrics with Learning Rate 0.002

6.1.3 Experiment 3

As followed for the above two experiments, we use same hyper-parameter values except for the
learning rate which is tuned to a value of 0.01. Then, by varying the optimizer function to three
different values as done in previous experiments, the loss and accuracy curves are generated as
illustrated in Figure 6. Here, from figure 6(a), it can be seen that the model learns well on the
training datset with RMSprop optimizer compared to the other two. However, on the contrary,
the model performance is good with better generalization behaviour on the validation dataset
in case of Adam optimizer with a low testing loss as depicted in figure 6(b). From figure 6(d), it
is clear that the model has a better validation accuracy of 86.46% using Adam optimizer when
compared to the model using RMSprop (86.19%) and SGD (85.2%) on the testing dataset.
Thus, in this case, the model with Adam optimizer surpasses that of SGD and RMSprop.

6.1.4 Discussion

In this research, Natural Language Processing and Deep Learning techniques are used to sum-
marize the online food review comments and provide a gist of it which reduces the reading time
of the user and at the same time helps in understanding the overall context of the review easily.
In order to obtain a proper fit model, picking up the right hyper-parameters is an important
criteria. So, we performed various experiments by tweaking the hyper-parameters, mainly op-
timizer function and learning rate as discussed above. We could see that the model performed
well using RMSProp optimizer in two (Exp 1 and Exp 2) of the above three experiments and had
a low loss and high accuracy values. Now, let us examine the model behaviour from the learning
curves shown in Figure 7 and analyze its fitness in those two top performing cases. In general,
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(a) Training Loss (b) Testing Loss

(c) Training Accuracy (d) Testing Accuracy

Figure 6: Exp 3 - Model Performance Metrics with Learning Rate 0.01

we can observe 3 common aspects from the learning curves namely, overfitting, underfitting and
good fit (Ian and Yoshua; 2016).

(a) RMSProp with LR = 0.001 (b) RMSProp with LR = 0.002

Figure 7: Learning Curves - Model Behaviour with RMSProp at LR = 0.001 and 0.002

Underfitting is a condition in which the model is not able to effectively learn the training
data and can be perceived from the training loss curve. Overfitting refers to the situation in
which the model learns the training data very well along with the random variations and noise
in the data. Thus, it reduces the ability of the model to generalize on the new data and this
condition can be observed from the training loss which keeps on decreasing and validation loss
that decreases up to a certain point and then starts increasing. A good fit is a state which is
intermediate between underfitting and overfitting. This condition is detected when both training
and testing loss decreases until a stable point and has a very minimum gap between the final
values of training and validation losses (James et al.; 2013). Comparing the loss learning curves
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in figures 7, the one shown in 7(a) closely matches with the good fit condition and 7(b) is more
aligned towards overfit state. This is because the training and validation losses decreases to a
particular stability point and the validation loss has only a very small gap from the training
loss until the final epoch as plotted in 7(a). Whereas, in 7(b), training loss keeps on decreasing
with number of epochs and validation loss falls upto a particular point after which it rises again
steadily.Thus, in conclusion, the model using RMSProp optimizer at a learning rate of 0.001 is
a good fitted model and it outperformed other experiments that were performed above using
different optimizers and learning rates with an accuracy of 86.83%.

6.2 Evaluation

Not only the prediction of output summary by our model is important, but also, evaluating that
result is also a significant task without which we cannot confirm whether the output produced by
our model is efficient or not. Below are the quantitative and qualitative methods for evaluation
of the generated summary.

6.2.1 Quantitative Analysis

ROUGE Metrics

In Text Summarization, summary evaluation is an essential chore. We use ROUGE metrics
for our evaluation process. ROUGE refers to Recall Oriented Understudy for Gisting Evaluation
(Lin; 2004) which is an automatic summary evaluation bench-marking metric that is widely used
by researchers to determine the quality of the summary produced by comparing the machine
generated summary with the reference summary (ideal or human written ones). ROUGE scores
are computed from the number of overlapping words between the reference summary and ma-
chine generated summary.There are different types of ROUGE such as ROUGE-N, ROUGE-L,
ROUGE-S and ROUGE-W. But the most commonly used ones are ROUGE-N (ROUGE-1,
ROUGE-2) and ROUGE-L and hence we also use the same for our research.

1. ROUGE-N: It denotes the overlapping of n-grams between the system generated summary
and the ideal reference summary. For instance, unigram (ROUGE-1), bigram (ROUGE-
2), trigram (ROUGE-3) and so on.
The ROUGE-N is given by,

ROUGE −N =
N(System,Reference)

n− gramReference
(4)

where,
N(System,Reference) - number of n-grams overlap between system summary and reference
summary
n-gramReference - total number of n-grams in the reference summary

2. ROUGE-L: It denotes the Longest Common Subsequence (LCS) matching between the
reference summary and system generated summary.

In our case, the dataset itself consists of actual summary which is the ideal reference sum-
mary that will be considered for the evaluation purpose. The ROUGE scores are calculated in
every case which we considered during model training as shown in the Table 4 where R-1 is
ROUGE-1, R-2 is ROUGE-2, R-L is ROUGE-L and LR is Learning Rate of the model.
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(a) ROUGE Scores - LR=0.001 (b) ROUGE Scores LR=0.002

(c) ROUGE Scores LR=0.01

Figure 8: ROUGE Scores

Model Optimizer
LR=0.001 LR=0.002 LR=0.01

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
Adam 7.1196 0.818 7.099 7.9733 0.9628 7.9438 7.3635 0.9282 7.3255
SGD 7.1024 0.0 7.1024 7.1035 0.0 7.1035 7.1424 0.0 7.1424
RMSProp 10.6304 1.8541 10.5664 10.9534 1.7315 10.8739 10.5389 1.6054 10.4386

Table 4: ROUGE Evaluation Scores

A graphical representation of the ROUGE scores for the output summaries generated in all
the experiments that were performed on the model is shown in the Figure 8. It is evident from
the bar graphs that in all the scenarios, the model with RMSProp optimizer has the highest R-1,
R-2 and R-L scores. The good fit model with RMSProp optimizer at a learning rate of 0.001
which is concluded from the above experiments has the highest ROUGE scores as illustrated
in figure 8(a). Thus, it is proved that the top performing model produced far better output
summaries than the other models.

6.2.2 Qualitative Analysis

We also performed human evaluation of the predicted summaries in order to check whether
the top performing model with highest ROUGE scores produced high quality more readable
summaries. Five different people evaluated some 35 random samples from the validation dataset.
They analysed the original review text, actual summary and system predicted summary and
rated them into good, poor or moderate categories. The human evaluation results showed that
nearly 75% of summaries were rated as ’Good’ whereas about 25% into ’Poor or Moderate’
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ones. The below Table 4 shows few examples of both good and poor summaries generated by
our best performing model.

1

Original Review Text: Cats are finicky animals and what one loves another won’t touch
- that is not a reflection on the food itself. I have two Burmese and their eating habits are
very different. My local Pet Nutrition Center kindly gave me a sample of Prowl the other
day and while my one cat absolutely loves it, the other won’t touch it. That’s why samples
are nice. Both of my cats have been on Evo kibble, but this one cat who now loves the
Prowl, has a habit of throwing up and I’m on the prowl myself for an alternative food that
will help her keep food down. So far, no barf. She also laps it up as soon as I’ve added warm
water - no waiting. I highly recommend you obtain a sample and let the cat decide, as the
food is economical as well as healthy.
Actual Summary: Economical and my cat loves it
Model Predicted Summary: my cats love it (Good)

2

Original Review Text: I popped my first batch and I have to say this does taste pretty darn
close to what you’d find at a movie theatre. Everything seems to be measured well enough
that you don’t see any grease stains when using a popcorn bag but you still get that distinct
taste and flavor. The popcorn tasted fresh but there are no expiration dates or lot numbers
anywhere on the packaging so I’m not sure how they can trace anything if there’s a bad batch.
They don’t have any ISO 9001 markings so I’m assuming there is no quality oversight of
these. <br/><br />I have zero real complaints about the popcorn or the taste, but I don’t think
they should add some sort of traceability.
Actual Summary: Tasty popcorn
Model Predicted Summary: great popcorn (Good)

3

Original Review Text: It was recently suggested to me I try going gluten-free to battle an
autoimmune thyroid disorder. I bought the Gluten-Free Bisquick hoping the pancakes would
at least be edible. The Bisquick has far exceeded my expectations! The pancakes are light,
fluffy, and delicious! I definitely recommend this product!
Actual Summary: Great Pancakes!
Model Predicted Summary: great gluten free bread (Good)

4

Original Review Text: We just learned about Dilmah teas and thought we would try this one
first. It is fabulous! Not a bitter drop in the pot. I certainly will serve this tea to my friends
with pride. It is a Fair Trade tea which matters a great deal to us. Give it a try!
Actual Summary: best tea ever
Model Predicted Summary: great coffee (Poor)

Table 5: Human Evaluation - Model Predicted Summaries Example

7 Conclusion and Future Work

In this research, we implemented a novel automatic CEATS summarization model which com-
bines the advantages of both extractive and abstractive techniques. Our model was evaluated
using the online food reviews dataset from Amazon. From the experiments performed in sec-
tion 6, the model performed well without getting affected by either overfitting or underfitting
conditions at a learning rate of 0.001 using RMSProp optimizer with 300 hidden RNN units in
each layer of the encoder-decoder networks. This model produced more concise and readable
summaries using novel words or phrases with an accuracy of about 86.83% which is better when
compared to the other model experiments performed above using different optimizers and learn-
ing rates. Also, the evaluation of the model predicted summary proved that the inference from
the experimental results were correct and the summaries generated were more human readable
and concise in nature. This system can be utilized to summarize the comments or reviews on
the e-commerce websites by helping customers to quickly analyse the quality of the products
and decide whether to buy the item or not. It also helps the companies to improve their product
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quality and enhance business by reviewing millions of user comments within a short span of
time. The major challenge which was faced in this research was the lack of sufficient compu-
tational resource in the local machine to handle the size of the dataset which was overcome by
using a cloud based platform Google Colab.

As a part of future work, this summarization concept can be extended to various other
domains such as education, science, R&D, tele-medicine, financial research, insurance sector,
legal document analysis, News headlines, search engine optimization, digital or social media
marketing, chat bots, emails skimming, customer support or contact center industry in order
to efficiently retrieve the information, thus reducing the user’s reading time. In today’s more
competitive world, all these above use cases will improve the customer experience in real time
and enhance various businesses making them much more profitable. Also, this model can
be trained and validated using different datasets from multiple sources and results can be
interpreted and compared with that of the state-of-art models using those datasets. The number
of hidden layers and other hyper-parameters can also be tuned in order to check whether the
accuracy is improved or not.
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X18129579

1 Introduction

This configuration manual presents various steps or procedures involved in the imple-
mentation of our research project. It provides various details such as system specifica-
tion, dataset collection and preparation, development of our CEATS model, experimental
results and evaluation with appropriate URLs, code snippets and screenshots.

2 Pre-requisites and System Configuration

• Programming Language: Python (version 3.6.9)

• IDE: Google Colab - Cloud-based Jupyter notebook environment

• Computation: Google Compute Engine backend - free tier google account with
free GPU - 1XTesla K80, 2496 CUDA cores or free TPU - TPU v2, 8 cores, approx
12 GB RAM with a maximum RAM limit up to 36 GB

• Browser: Google Chrome

3 Dataset Preparation

3.1 Collecting Online Food Reviews

1. Open the URL https://snap.stanford.edu/data/ to reach the SNAP Stanford
dataset repository.
2. Go to the Online Reviews section and click on ’web-FineFoods’ to download the ’fine-
foods.txt.gz’ zip file.
3. Extract the zip file and you will get a text file ’foods.txt’.

Figure 1: SNAP Stanford Online Reviews Repository
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Figure 2: Fine Food Reviews Zip file

4. This text file can be uploaded to the google drive so that it can be accessed easily
for future use in the following steps.

3.2 Parsing Food Reviews

1. Now sign in to Google Colab free tier account (https://colab.research.google.
com/) using your Google email id.
2. Navigate to File -> New Python 3 notebook and create a new jupyter notebook file.
Rename the file accordingly by double clicking on the file name (Figure 3).

Figure 3: Google Colab - New Python Notebook

3. Next step is to set up the runtime type (free GPU or TPU) by clicking Runtime ->
Change runtime type. Then, select either GPU or TPU from the ’Hardware accelarator’

drop-down menu (Figure 4).

Figure 4: Hardware Accelerator

4. Mount the Google Drive to your colab notebook by running the code shown in
Figure 5. It will show a link, click on that link to get the authentication code to mount
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your drive and access it.

Figure 5: Mounting Google Drive

5. The code for parsing the food reviews text file and converting into the dataset
CSV file is given in ’ParseData FoodReviews.ipynb’. Initially the text file is transformed
into a pandas dataframe as shown in figure 6. Next after following the code given in the
above python notebook file, the final dataset CSV produced will look like the one showed
in figure 7.

Figure 6: Text file to Pandas DataFrame

Figure 7: Dataset CSV

4 CEATS Model - Project Development

Once the dataset CSV ’ParsedFoodReviews.csv’ is created, it is uploaded to the google
drive to be used in our model development stage. There are different attributes in the
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dataset namely Id, ProductId, UserID, Username, Ratings, Helpfulness ratio, Time, Text
and Reference Summary. For our purpose of text summarization, we use only two of
these fields - Text and Summary. From approximately 500,000 food reviews, we choose
data samples consisting of about 100,000 reviews.

4.1 Libraries necessary for implementation

Figure 8: Libraries required for developing our model

4.2 Extractive Summarization

The first phase of our model is extractive summarization which is used to pick the key
sentences from the input food review text. The major steps involved in this are data
cleaning, feature extraction and sentence ranking. The complete code for this phase is in
’Phase1 Extractive.ipynb’ file. Once the important points are extracted from the review
text, it is transformed into a CSV file - ’FoodReviewsExtractiveSummary.csv’. It consists
of three columns namely Text, Reference Summary and Extractive Summary as shown
in figure 9.

Figure 9: Extractive Summary - phase 1 output CSV file

4.3 Abstractive Summarization

In this phase, we select 50000 samples from the phase 1 output as input for this abstractive
phase. As the first step, we need to clean the review text and summary being fed into
the deep learning model. The text pre-processing is followed in a similar way as the first
stage which is shown in figure 10.
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Figure 10: Abstractive Phase - Data Cleaning Code snippet

Figure 11: Phase 2 - Cleaned input extractive summary and cleaned reference summary

After cleaning the data, that is, the extractive summary which is the input text to
this phase and the actual reference summary appears like what is shown in figure 11.
Now the distribution of lengths of both cleaned text and cleaned summary are plotted
with help of ’matplotlib’ library in python as shown in figure 12. Using this histogram,
we can fix the maximum lengths of the review text and summaries.

Figure 12: Distribution of text and summary lengths

Then we add the start and end tokens namely ’sostok’ and ’eostok’ to the summary before
feeding into the model, in order to easily identify the starting and ending of the sequence
as presented in figure 13.

Now, as shown in figure 14, the dataset is splitted in the 80:20 ratio for training and
validation purposes respectively.Then, we build a tokenizer based on the most commonly
used words in the review and summary to create a vocabulary of unique words and con-
vert word to integer sequences.
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Figure 13: Adding Start and End tokens to the summary

Figure 14: Splitting Dataset - 80:20 ratio

A word cloud of the most common words in reviews text and summary are shown in
figure 15.

(a) Review Text (b) Summary

Figure 15: Word Cloud - Review Text Summary

The three layer LSTM encoder, single layer decoder LSTM recurrent neural network
model built in this research can be seen in the figure 16. The various optimizer functions
(Adam, RMSProp and SGD) are imported from the ’keras’ machine learning library. The
model is then compiled by using the optimizer function. After compiling, the model is
trained using ’model.fit’ function shown in figure 17.
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Figure 16: Recurrent Neural Network Model

After model is trained, say for about 30 epochs until it shows good fit behaviour
without getting overfitted, the loss and accuracy learning curves are plotted for both
training and validation dataset. It is shown in figure 18. The code for this phase is given
in ’Phase2FoodReviewsAbstractiveSummarizer.ipynb’ file.

Figure 17: Model Compiling and Training

(a) Loss Curve (b) Accuracy Curve

Figure 18: Learning Curves for our LSTM RNN encoder decoder model

Finally, the samples from validation dataset will be passed into the model and out-
put summary will be predicted by the model. The final output summary is stored in
’FoodReviewsFinalPredictedSummary.csv’ file. A smaple predicted summary is shown in
figure 19
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Figure 19: Sample of Final Predicted Summary

5 Evaluation

5.1 ROUGE Metrics

For a quantitative analysis of the predicted summary, we use ROUGE evaluation metrics
and the scores are calculated.

Figure 20: ROUGE score Calculation

Figure 21: ROUGE-1, ROUGE-2, ROUGE-L scores
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5.2 Human Evaluation

The qualitative analysis of our model predicted summary was done by human evaluators
by comparing the original review text, actual summary and predicted summary. The
figure 22 shows a sample of good and poor summaries.

Figure 22: Human Evaluation - Sample of Good and Poor Summaries
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