
Enhancing Password Security Using a Hybrid
Approach of SCrypt Hashing and AES

Encryption

MSc Internship

Cyber Security

Vicky Bidhuri
Student ID: x18103120

School of Computing

National College of Ireland

Supervisor: Niall Heffernan

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Vicky Bidhuri

Student ID: x18103120

Programme: Cyber Security

Year: 2018

Module: MSc Internship

Supervisor: Niall Heffernan

Submission Due Date: 12/08/2019

Project Title: Enhancing Password Security Using a Hybrid Approach of
SCrypt Hashing and AES Encryption

Word Count: 5391

Page Count: 19

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 7th August 2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Enhancing Password Security Using a Hybrid
Approach of SCrypt Hashing and AES Encryption

Vicky Bidhuri
x18103120

Abstract

To be a part of this modern society, we have to register for online accounts
and have to swallow the fact that a centralized database storing our passwords
will sooner or later suffer a data breach. Cryptography techniques like hashing
(SHA256, BCrypt, SCrypt and Argon2) and encryption (AES, 3DES and ECC) are
proven secure; however, the confidentiality of password is still compromised. Our
sensitive and valuable information is still vulnerable to multiple attacks like brute
force, reverse engineering, Graphical Processing Units (GPU) and custom hardware
attack. This research paper focuses on the hybrid combination of a strong memory
hard hashing function SCrypt and a memory accelerated Advanced Encryption
Standard (AES) algorithm, which can be used to enhance the security of password
of online users from brute force attacks.

1 Introduction

Cybercrimes are becoming inevitable these days because of the tremendous advancement
of technology. It became challenging for an organization to retaliate against attackers
who are responsible for the leakage of sensitive information. Data breaches happen almost
daily, which exposes billions of user data like passwords, credit card number, bank account
number and other highly valuable and sensitive data1. Recently, a leading gaming website
”Emuparadise” face a data breach, which leads to over 1.1 million account details leaked.
The reason behind that was the vulnerable cryptographic algorithm (MD5) used for
the protection of passwords2. ”Facebook” has also admitted that they had failed to
protect password of over 600 million users which were stored in the form of plain text3.
Passwords have always been the main target for attackers to get into the system. Broken
authentication is a vulnerability caused by insecure passwords, and it comes under the
top 10 list of the Open Web Application Security Project (OWASP)4. There are multiple
attacks such as brute force, dictionary, rainbow table, reverse lookup table attacks and
more, which are the major threat to passwords (Ertaul, Kaur and Gudise; 2016). Brute
force is a kind of attack where multiple combinations of username and password are tried
again and again until the correct one is found (Turan, Barker, Burr and Chen; 2010).
Cryptography is the process of converting the plain text into an encoded text with the

1 https://selfkey.org/data-breaches-in-2019/
2 https://www.zdnet.com/article/emuparadise-gaming-rom-repository-suffers-data-breach/
3 https://selfkey.org/data-breaches-in-2019/
4 https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

1

https://selfkey.org/data-breaches-in-2019/
https://www.zdnet.com/article/emuparadise-gaming-rom-repository-suffers-data-breach/
https://selfkey.org/data-breaches-in-2019/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project


help of mathematical functions. Different cryptography approaches like hashing and
encryption can be used for data protection (Padmavathi and Kumari; 2013). Hashing
is a single way transformation of the plain text into a fixed-length value called message
digest or hash; for example, MD5, SHA1/2/3, PBKDF2, BCrypt, SCrypt and Argon2
(Sriramya and Karthika; 2015). Encryption is a process of converting the plain text into
cipher text and vice-versa with the help of a key; for example, RC5, ECC, DES, 3DES and
AES (Singh; 2013). In this paper, we are focusing on SCrypt hashing, AES encryption
and their combination to be used against brute force attack.

Motivation: Poor password protection leads to broken authentication vulnerabilities,
that allow cybercriminals to get unauthorized access into the system. Although having a
robust security mechanism like cryptographic hashing and encryption used for password
protection, passwords are still vulnerable to multiple attacks. The main motive behind
this research is to blend two or more different cryptography approaches, which increases
the complexity of passwords and make it difficult for attackers to break them.

In this paper, we seek to address the following research question: Can we enhance
the password security of an online user from brute force attack by using a hy-
brid combination of SCrypt hashing and the Advanced Encryption Standard
(AES) algorithm?

The structure of this paper is organized as follows; Section 1: Introduction will intro-
duce the topic and motivation behind this research. After that, Section 2: Related Work
will provide the literature review of this research with Subsection 2.1 Password Protec-
tion using Hashing Algorithms, which outlines the related work done on different hashing
techniques and why SCrypt is chosen for this research. Then, Subsection 2.2 Password
Protection using Encryption Algorithms, provides a comparative study of different en-
cryption algorithms and the features of the AES encryption scheme. The Subsection
2.3 Previous work on Hybrid Algorithms discusses the research already done on hybrid
cryptography approaches and why SCrypt and AES combination is right for enhancing
the security of passwords. In the next Section 3: Methodology of this model is explained
briefly with the help of diagrams. The subsections 3.1 Key Derivation, 3.2 AES Encryp-
tion and 3.3 AES Decryption provides more detail about these phases. Next Section 4:
Design Specification illustrates the architecture and a word-based pseudo algorithm of
this model. Then, Section 5: Implementation provides a full working of this model with
a flowchart. After that, Section 6: Evaluation discusses the results of this research with
tables and graphs. The final Section 7: Conclusion and Future Work summarizes the
research and provide a future scope.

2 Related Work

The following subsections will provide the literature review related to SCrypt hashing
algorithm, Advanced Encryption Standard (AES) algorithm and their hybrid approach.

2.1 Password Protection using Hashing Algorithms

This section mainly focuses on SCrypt and other hashing algorithms that are used for the
protection of the password. (Sriramya and Karthika; 2015) state that hashing is one of
the best methods used to protect passwords compared to encryption because it is a one-
way transformation process, and no one can retrieve the plain text from its hash value.
However, a hashed password has a possibility of a break down by using the pre-calculated

2



hash value or active hash dictionary. It could be possible that two different plain texts
have the same hash value, because of collision effects (Ertaul et al.; 2016). Therefore,
simple hashing algorithms like MD5, SHA1 and SHA256 are prone to the dictionary,
brute force, rainbow and lookup table attacks. Research done by (Ertaul et al.; 2016)
also addresses the same issue and express that there are many open-source software like
John the Ripper 5 and Hashcat6 available in the market, which can crack the traditional
hashing algorithms and recover the actual password. In order to avoid this problem, salt
can be used. As stated by (Marton, Suciu and Ignat; 2010), salt is a random string of
bits which can be generated securely with pseudo-randomness and added to the plain
text password before hashing. If the same hashing algorithm applies multiple times on a
single plain text, different hash values will generate because of the salt. While, (Ertaul
et al.; 2016) stated that salt increases the randomness of hash and makes the password
less susceptible to rainbow table and look table attacks, but still does not protect from the
dictionary and brute force attacks. These kinds of attacks are more powerful because of
high computational custom hardware, which is capable of performing millions of hashing
per second. Therefore, more advanced hashing algorithms like PBKDF2, BCrypt and
SCrypt are used as they are based on key stretching technique. In this technique, a
computation is added in the key generation process to stretch the time for generating the
hash value and thus slow down the algorithm. This technique makes it difficult for an
attacker to crack the hash easily. BCrypt and SCrypt are slow algorithms as compared
to PBKDF2. Slow algorithms are difficult to break than fast algorithms. Apart from
salting, an iteration count is another security factor added in these advanced hashing
algorithms.

According to (Turan et al.; 2010) a user-defined password should not be used directly
as cryptographic key for the hashing algorithm as they have weak randomness and low
entropy (the amount of uncertainty in an unknown value). However, there are a few
situations where the password is the only option that can be used as secret information
for cryptographic algorithms. Therefore, a Password-Based Key Derivation Function
(PBKDF) algorithm can be used, where the key is generated from a secret value like a
password. Meanwhile, (Percival and Josefsson; 2016) had shown that most of the key
derivation functions like PKCS5 PBKD2, SHA2CRYPT, NTLM Hash, FreeBSD MD5
Crypt and BCrypt were based on cryptographic security factors like salting and iteration
count. All these algorithms share a common weakness against powerful attackers. With
the drastic development in semiconductor technology, processors become very small and
much faster, and can perform a large amount of parallel processing at the same cost.
Because of this strong parallelism power, attackers can crack the password faster by
using a brute force attack even after increasing the iteration count. Therefore, a stronger
hashing algorithm like SCrypt aims to bring down the attackers that are taking advantage
of custom-designed parallel circuits.

As described by (Ertaul et al.; 2016), SCrypt is a password-based key derivation
hashing algorithm that generates a large vector of pseudo-random bit strings. It takes
the plain text as the input and generates a fixed-length hash value or message digest.
It is based on memory-hard functions, therefore provides the highest level of security
to passwords and makes it almost impossible for an attacker to crack the password by
brute force attacks. It requires a large amount of memory for its pseudo-random bits
and has high processing costs. Therefore, it is one of the most expensive but secure

5 https://www.openwall.com/john/
6 https://hashcat.net/hashcat/

3

https://www.openwall.com/john/
https://hashcat.net/hashcat/


hashing algorithms. SCrypt is used in the proof of works, key derivations and for many
cryptocurrency applications; and also inspired the design of Argon2 (winner of password
hashing competition) (Hatzivasilis, Papaefstathiou and Manifavas; 2015).

A study conducted by (Percival; 2009) suggests increasing the circuit size used for
key derivation to stand against parallel processing attackers. If the circuit size is double
than only half copies can be placed on a given area of silicon. Still operating within the
given resources available for software implementation, including a strong CPU and large
RAM. In order to increase the cost of parallel attacks, the operation itself will not be the
only parameter considered but the memory usage as well. Therefore, authors introduce
Memory Hard Functions (MHF), which is an algorithm that asymptotically uses as much
memory as its operations. It was also stated by (Alwen, Chen, Pietrzak, Reyzin and
Tessaro; 2017) that MHFs are the hashing algorithms where evaluation cost is controlled
by memory cost. Therefore, it is challenging to evaluate these algorithms on dedicated
hardware at a significantly lower cost. This research also proves that SCrypt being a
sequential MHF is optimally memory-hard. Different types of hashing algorithms were
compared by (Percival; 2009), as shown in Table 1, which provides the estimated cost (in
dollars) of the hardware required to break the hashed password in a year. It is clear from
the analysis that SCrypt is much more expensive for an attacker to crack the password as
compared to other hashing algorithms like DES CRYPT, MD5, MD5 CRYPT, PBKDF2
and BCrypt.

Table 1: Estimated hardware cost need to crack the password in one year (Percival; 2009)

It was stated by (Hatzivasilis et al.; 2015) that the evolution of parallel computing and
dedicated hardware devices on GPU, FPGA and ASIC also gave advantage to the cyber-
criminals to perform more powerful and effective attacks. This research shows that even
modern hashing algorithm like PBKDF2 and BCrypt are susceptible to these attacks.
Whereas, a memory-hard function like SCrypt as a solution to this problem can be much
expensive, but secure. However, SCrypt is also vulnerable to another kind of attacks like
Cache-Timing and Garbage-Collector attacks.

By summarizing the above section, we can state that simple hashing algorithms like
MD5, SHA256/512, PBKDF2 and BCrypt with salting and key stretching are not suffi-
cient to make the passwords secure from brute force, dictionary, rainbow table, reverse
engineering table and lookup table attacks. More advanced and secure hashing algorithm
based on memory-hard function like SCrypt can be used but with some additional high
cost. However, they are still not fully prone to advanced level parallel processing at-
tacks. Therefore, other cryptography technique like a robust encryption algorithm may
be considered for the protection of user password.

4



2.2 Password Protection using Encryption Algorithms

The previous section provides an overview of strong hashing techniques that can be used
for password protection; however, they have their own weakness towards powerful attacks.
This section will focus on other cryptography technique like encryption, especially AES,
which may fulfill the desired security level for passwords. It was researched by (Álvarez-
Sánchez, Andrade-Bazurto, Santos-González and Zamora-Gómez; 2017) that password
management can be a crucial task when hashing is involved in their protection. As
attackers have access to GPU and custom hardware, they can successfully break the
password by performing a brute force attack. Therefore, there is a need for an advance
and unique hashing algorithm or other cryptography function where the time and space
parameters could be adjusted in order to slow down brute force attacks. (Musliyana, Arif
and Munadi; 2015) had mentioned about encryption algorithms like AES, DES, IDEA,
RC4, RSA, DSA, DH and ECC, as the alternative of hashing that could be used for
better protection of passwords.

(Widiasari; 2012) stated that the National Institute of Standard and Technology
(NIST) had chosen the Rijndael algorithm to be used as Advanced Encryption Standard
(AES) because of its high security and efficiency. DES was replaced by AES to be used
as the data encryption standard because of its small key size (56-bit). It was not enough
to provide a sufficient level of data security. Although 3DES came up with a solution as
a more efficient and secure version of DES, but it was very slow. AES is a block cipher
algorithm that works on substitution (S-box) and permutation (P-box) system. AES has
three different versions based on key length, which are AES-128, AES-192 and AES-256
with the key size of 128 bits, 192 bits and 256 bits respectively. AES is one of a best
encryption algorithm which is currently used as the data encryption standard.

The research done by (Musliyana et al.; 2015) also describes that AES is a secure and
strong encryption algorithm that provides better protection to passwords as compared
to few hashing algorithms like MD5 and SHA1. AES used with time-based key gener-
ation provides relatively fast encryption and decryption speed, which leads to stronger
password security. A comparison between symmetric encryption algorithms (AES, DES
and 3DES) and asymmetric algorithm like RSA was conducted by (Singh; 2013). The
authors observed that AES was more efficient in terms of encryption/decryption speed,
time, throughput and avalanche effect. Similarly, (Padmavathi and Kumari; 2013) had
conducted a comparative analysis of algorithms like AES, DES and RSA with a stegano-
graphic algorithm like LSB substitution technique. This analysis was done in order to
check the performance of these algorithms while ensuring security. The result of this
analysis concluded that AES algorithm was not only faster and more efficient than RSA
and DES in terms of encryption/decryption time but also in terms of buffer usage and
software/hardware implementation. In addition to that, AES was also found to be highly
secure and consume less power than others. Different symmetric encryption algorithms
are compared and analyzed by (Kant and Sharma; 2013), as shown in Table 2, based on
factors like speed, key length, block size, cryptoanalysis resistance and security. Research-
ers concluded that AES was much faster, efficient (in terms of encryption/decryption time
and throughput), secure and resistant towards many attacks like differential linear, inter-
polation and square attacks. (Álvarez-Sánchez et al.; 2017) stated that AES is natively
slower than a few stream ciphers but still has a significant advantage of hardware ac-
celeration in modern processors. AES can be used to protect data against any custom
hardware or GPU attacks since it is already implemented as hardware in the system,

5



Table 2: Comparative study of multiple encryption algorithms (Kant and Sharma; 2013)

balancing the field between attackers and those protecting the data. The other main
advantage of AES against these attacks is its memory usage that prevents parallelism.
Unlike hashing algorithms which perform multiple orders of magnitude faster on these
platforms and allowing brute force attacks to succeed. These features of AES made it
very fast with speed of over 1GB/s on many machines and qualified itself as the build-
ing block for those cryptosystems that aim for speed and security. The researchers also
compared the performance of AES in CTR mode based on time and memory factors with
strong hashing technique like SCrypt; and concluded that AES under particular condition
was much more efficient than SCrypt. Although, AES being immune to many cryptana-
lytic attacks, various improvements can be suggested in order to enhance its security
feature. The researchers (Sachdeva and Kakkar; 2018) proposed a technique to enhance
the security of AES by using three cipher keys. Increased number of keys will lead to
increased encryption/decryption time that makes it very difficult and time-consuming for
an attacker to crack the password by brute force attack.

(Chhabra and Lata; 2018) contrasted that AES being one of the most popular and
successful algorithms used for making secure cryptosystem is still not entirely immune
to some attacks like advance brute force, key-based, biclique and side-channel attacks at
software or hardware level. Therefore, multiple techniques like white-box cryptography
have been deployed for protecting software level attacks on AES. At the hardware level,
multiple protection techniques can be used like hardware obfuscation, fingerprinting,
digital watermarking and more. However, all these solutions are still not able to stand
against more powerful attacks like reverse engineering attack.

The above section summarizes that AES is proven to be faster, efficient and highly se-
cure algorithm as compared to other encryption algorithms like DES, 3DES, RSA, IDES,
RC5, blowfish and some hashing algorithms like MD5, SHA1 and SCrypt under certain
conditions. AES is stronger against multiple attacks like GPU, custom hardware, paral-
lel processing, differential, linear and algebraic attack because of its memory acceleration
feature. However, there are few stronger and powerful attacks like key-based, biclique,
side-channel and reverse engineering attacks that can break AES. Therefore, a hybrid ap-

6



proach with a different combination of hashing and encryption algorithms under certain
conditions may be considered to increase the strength of password protection.

2.3 Previous Work on Hybrid Algorithms

The above two sections have focused on strong cryptography techniques like hashing
(SCrypt) and encryption (AES); both are individually proven durable against multiple
attacks. However, they both possess some weakness against high computation attacks like
custom hardware or reverse engineering attacks. This section will discuss about the mul-
tiple hybrid approaches along with the primary focus on SCrypt and AES combination.
(Álvarez et al.; 2018) had proposed a model to optimise the performance of PBKDFs
by employing AES - 128 in CTR mode (acts as a pseudo-random generator) and SHA3
256 as the secure hashing algorithm that generates the input for AES (128-bit key and
Initialisation Vector). The researchers analyzed the model based on its security features
and compare its performance with robust hashing algorithms like SCrypt and Argon2.
This hybrid model was found to be faster than Argon2 for an equal amount of memory
used. (Kumar and Chaudhary; 2018) had proposed a hybrid combination of BCrypt and
AES in order to secure online accounts from different attacks like brute force. This model
focused on the security of passwords, even if the database is compromised. The result
was analyzed on the basis of parameters like encryption time and throughput, which was
found to be in favour of this model. Another hybrid approach of modified Blowfish with
SHA was proposed by (Gore, Meena and Purohit; 2016) for data security in the cloud.
This model improves the security problems related to the transfer of files or data in cloud
computing. A similar approach was utilized by (Kaur and Sharma; 2018), as they pro-
posed a hybrid model called ”HESSIS”. This model used the combination of SHA3, ECC
and AES to enhance the strength of data security in transit. ECC was used for generat-
ing keys to be seed as input for AES and SHA3 was used to enhance the capabilities of
ECC and secure the key generation process. This hybrid model was found to be faster,
highly accurate and efficient than others, that could be used to provide more accuracy
and security while sharing images over the cloud. (Almorabea and Aslam; 2015) pro-
posed a hybrid algorithm that utilized AES in Galois/Counter Mode (GCM), BLAKE2
and SCrypt. The research was based on strong key derivation functions (BLAKE2 and
SCrypt) which ensure the strength of keys, to be used for AES encryption. This model
was found to be more efficient and secure for data protection in both desktop and mobile
applications.

With the help of above literature review, we can conclude that SCrypt is found to
be the strongest hashing algorithms based on memory hard functions that can be used
against multiple attacks like brute force, rainbow, dictionary and more, but still some-
how vulnerable to GPU or specialized hardware attacks. This weakness can be cured by
AES encryption as of its hardware acceleration feature that resists custom hardware at-
tacks. However, it is still sensitive to some high computation reverse engineering attacks.
As suggested by (Almorabea and Aslam; 2015; Álvarez et al.; 2018; Gore et al.; 2016;
Kaur and Sharma; 2018; Kumar and Chaudhary; 2018), different hybrid combination of
algorithms must be implemented to analyze the security of passwords. Therefore, this
research focuses on a hybrid combination of SCrypt with AES, and to analyze the per-
formance of the proposed algorithm. The result of this model leads to the advancement
of password security of an online user from multiple attacks like brute force.

7



3 Methodology

The following section provides an overview of the methodology applied in the proposed
model for the password protection of an online user from brute force attack. The main
idea is to make use of the password as a primary element to generate the key and then feed
that key into encryption and decryption process (Almorabea and Aslam; 2015). As per the
analysis done in the literature review, it is clear that SCrypt hashing and AES encryption
algorithms are proven as the strongest candidates for this hybrid model because of their
features like memory-hard functioning and memory acceleration. The structure of this
model is divided into three phases, which are key Derivation, AES Encryption and AES
Decryption.

3.1 Key Derivation

Firstly, the key is generated with the help of a strong password based key derivation
algorithm SCrypt. As shown in Figure 1, the alphanumeric password with a minimum
length of 8 characters is taken from the user and then seeded as input to SCrypt hash
function. The resulting hash value will be considered as the key (named S-key) of size
256 bits. This key is used as the private key for the next encryption and decryption
processes. The randomness of a user password and larger key space make it difficult for
an attacker to crack the password easily through brute force attack. Multiple parameters
are assumed while using SCrypt such as CPU or memory cost parameter (N = 214),
block size parameter (r = 8), password from user (p = 1).

Figure 1: Key Derivation Process

3.2 AES Encryption

In the second phase, AES-256 in ECB (Electronic Code Book) mode is used for encryption
in this model. The private key (S-key) generated in key derivation phase and a nonce
(32 bytes) is used for AES encryption (Figure 2). A nonce is an arbitrary secure pseudo-
random number that can be used only once. AES encryption takes S-key and nonce as
its input and generates a cipher text. This way the user can register into the existing
model. The value of nonce is unique for every password, and it is not possible to have
two passwords having the same nonce value. The reason for adding a nonce to AES
encryption is to ensure the confidentiality and integrity of the password. Finally, the
resulting encrypted text is stored in the database.

8



Figure 2: AES Encryption Process

3.3 AES Decryption

In this last phase, the cipher text (final complex encrypted password) extracted in the
previous phase along with the same S-key is used for AES-256 decryption in ECB mode
(Figure 3). If the value of resulting decrypted text is same as the value of nonce used in
previous encryption phase, then the user can successfully login into the system. Somehow,
if the intruder gets the encrypted cipher text generated in the last step and tampers it
to get access into the system. Then at the time of login, validation never results in
success. As decryption will never happen and results never match to the same nonce
value. Therefore, the attacker will never get access to the system.

Figure 3: AES Decryption Process

9



4 Design Specification

This section provides detail about the design and architecture of the proposed model
discussed in the methodology section. As shown in Figure 4, the architecture of this
model comprises of three main parts, that are Key Derivation (using SCrypt), AES
Encryption and AES Decryption.

Figure 4: Architecture of the propsed model (Almorabea and Aslam; 2015)

4.1 Algorithm for the Proposed Model

Step 1: Input plain text user-name and password entered by the user.
Step 2: Check if the user already exists, if yes then proceed to Step 8 otherwise continue.
Step 3: Input user credentials like user name, password, email and contact number.
Step 4: Take password and generate a hash using SCrypt function. Set this as the S-key.
Step 5: Generate nonce using a secure random number generator function.
Step 6: Pass the key produced in step 4 and nonce as input to AES encryption function.
Step 7: Store the cipher text as the encrypted password with other details like user
name, email, contact number, hash value and nonce.
Step 8: Take the plain text password and validate it with the hash value stored in the
database for the corresponding user by using SCrypt.util.check function. If it results false
then EXIT program, otherwise continue.
Step 9: Take the hash value (S-key) and encrypted password from the database for this
user and pass them to AES decryption function.
Step 10: Compare the resulting value with nonce for this user.
Step 11: If the value matches then authenticate the user and allow to login into the
system, otherwise EXIT program.

10



5 Implementation

This section describes the implementation of the proposed model. We have developed
a web application in JAVA programming language by using Eclipse IDE7. The applic-
ation is hosted locally over Apache Tomcat server8. MySQL Workbench9 is used for
handling the database of this web application. The work flow of the web application
is illustrated in Figure 6. The homepage of the web application has two input boxes
prompting for user-name and password along with two submit buttons for ”Sign In” and
”Register” (Figure 5). Initially, the user is required to register into the web application.
A user enters the password in order to generate the private key. The password is passed
through SCrypt hashing algorithm (key derivation phase). For example, a user password
is ”n1ZeAJ6Bo8ZV ”, then the hash value will be:

”s0e0801nH6NZrJi2jxHcT8 + pKBIV w ==CCa2i/77ELjMmOXEQALDEMGz6f
DruAE+NPKlrBZawac=”

As explained earlier in the previous sections, if the same password is used multiple
times, then web application generates different hash value every time because of random
salt. This hash value will be treated as the private key (S- key) for next steps. Now, the

Figure 5: Login and registration page of web application

S-key along with nonce is passed through AES Encryption algorithm to encrypt the hash
value and generates a complex and secure password. For example, using the above hash
value and a random nonce like ”ayqWYFBjugn60mACqBcn9A==”, the final password
after encryption will be:

”rqa7qCj8LmJkn2ffpsqX2+w46xvuSa3k6TAfhOvTUw=”

7 https://www.eclipse.org/
8 https://tomcat.apache.org/
9 https://www.mysql.com/products/workbench/

11

https://www.eclipse.org/
https://tomcat.apache.org/
https://www.mysql.com/products/workbench/


Figure 6: Flowchart of the proposed algorithm

After applying hashing and encryption, this final password is stored in the database.
Apart from this password, hash value and random nonce generated for a particular user
are also stored in the database to be used for the authentication process. This hybrid
password is considered as more secure and difficult to crack by attackers even through
brute force attack.

At the time of login (Figure 5) user needs to enter the same credentials used during
registration. The password entered by the user is then passed through the authentica-
tion phase, where the password is validated with the SCrypt hash value stored in the
database for the corresponding user. If the result is true, then the corresponding encryp-
ted password and S-key are passed through the AES decryption algorithm. Finally, the
resulting value is compared with the nonce value for this user. If the results match, the
user successfully login into the system (Figure 7). Somehow, if the password is captured
or malformed by an attacker, then decryption will never happen, and an unauthorized
user cannot log in into the system. Hence, brute forcing this complex password would be
more difficult for an attacker.

Figure 7: User successfully logged in

12



6 Evaluation

This section provides information about the performance analysis of the proposed model.
We have ethically generated a dataset using mackaroo10, comprises of 10 users with ran-
dom user-name and password (shown in Table 3). The size of plain text password entered
by users is calculated (in MB) in Table 3. The evaluation of this model is based on per-
formance metrics like encryption time and throughput.

Encryption time is the total time taken to encrypt the plain text, i.e. total amount
of time taken for SCrypt hashing and AES encryption together. The efficiency of a
cryptography algorithm is inversely proportional to encryption time (Arora, Sharma and
Engles; 2017). That means less encryption time taken by an algorithm to convert the
plain text will have more efficiency.

On the other hand, the performance of an algorithm can be determined by its through-
put. It can be calculated by dividing the size of plain text by encryption time (Arora
et al.; 2017). It is directly proportional to performance, i.e. more the throughput, higher
the performance of an algorithm.

In order to evaluate the model, we have implemented our proposed hybrid algorithm
and record the encryption time and throughput for all users in the given dataset. Be-
cause of SCrypt and AES being memory hard techniques, we have studied the output in
two different operating systems of different configurations (as per the limited resourced
available).

Table 3: Dataset generated for this model

10 https://mockaroo.com

13

https://mockaroo.com


6.1 Case Study 1: Mac OS

The hybrid model is implemented on 1.6 GHz (2 CPUs) Intel Core i5 processor, 4 GB
1600 MHz DDR3 RAM, Intel HD Graphics 6000 1536 MB GPU and 64-bit macOS Mo-
jave (v10.14.5) operating system. Results of encryption time taken by BCrypt with AES
and SCrypt with AES for the same users are compared in Table 4 and Figure 8. It has
been observed that SCrypt with AES takes less time as compared to BCrypt with AES.
Hence, the proposed hybrid algorithm of SCrypt with AES is more efficient than others.

Table 4: Analysis of encryption time (macOS)

Figure 8: Encryption time (macOS)

.

14



It can also be observed from Table 5 and Figure 9, that throughput of SCrypt with
AES is much higher than the throughput of BCrypt with AES. Hence, our proposed
algorithm has high performance as compared to others.

Table 5: Analysis of throughput (macOS)

Figure 9: Throughput (macOS)

6.2 Case Study 2: Windows OS

The hybrid model is implemented on a different machine with 2.8 GHz (8 CPUs) Intel
Core i7 7700HQ processor, 16 GB 2667 MHz DDR4 RAM, NVIDIA GeForce GTX 1060
6GB GPU and 64-bit Win10 Windows operating system. As shown in Table 6 and Figure
10, SCrypt with AES takes much less time as compared to BCrypt with AES. Therefore,
the proposed hybrid algorithm is more efficient than others in this machine as well.

15



Table 6: Analysis of encryption time (Windows)

Figure 10: Encryption time (Windows)

It can also be observed from Table 7 and Figure 11, that throughput of SCrypt
with AES is much higher than that of BCrypt with AES. Hence, our model has a high
performance than others.

6.3 Discussion

The proposed model have been implemented on two different machines. As discussed
in the literature review, BCrypt was the strongest hashing algorithm before SCrypt and
Argon2. The combination of BCrypt and AES has already been researched and examined
by (Kumar and Chaudhary; 2018), which showed positive results for increased security of
password against brute force attack. Now, the model for this research has been compared
with the previous model of BCrypt with AES. The results from the above two case studies
shows that SCrypt with AES has very low encryption time and high throughput as
compared to others. The more advanced the configuration of the machine, the higher the
efficiency and performance of SCrypt with AES algorithm. Therefore, for this research,
the proposed hybrid model of SCrypt with AES is proved to be more secure than others
against brute force attack.

16



Table 7: Analysis of throughput (Windows)

Figure 11: Throughput (Windows)

7 Conclusion and Future Work

The main objective of this research was to check whether we could enhance the password
security of an online user by using a hybrid combination of SCrypt hashing and AES
encryption against brute force attack. SCrypt is proven as an optimal memory hard
hashing algorithm and AES is the strongest memory accelerated encryption scheme. We
have increased the complexity of a password by passing it through SCrypt and then to
AES in sequential order. The Results of the proposed model proves that this hybrid al-
gorithm is highly efficient and have high performance as compared to others. This makes
it more difficult for an attacker to crack the password even with brute force attack. This
research concludes that the hybrid combination of SCrypt hashing and AES encryption
successfully increases the password security of an online user from brute force attack.

Argon2 has been recently proven as the best hashing algorithm among all others,
which may give better results with AES than SCrypt (Biryukov et al.; 2016; Hatzivasilis
et al.; 2015). The future scope of this research could be to check whether the security
of passwords will significantly increase by using AES with Argon2, either sequentially or
parallelly. A different combination of multiple hybrid algorithms can also be considered
with this model.

17



References

Almorabea, A. M. and Aslam, M. A. (2015). Symmetric key encryption using aes-gcm
and external key derivation for smart phones, pp. 264–270.

Álvarez, R., Andrade, A. and Zamora, A. (2018). Optimizing a password hashing function
with hardware-accelerated symmetric encryption, Symmetry 10(12): 705.

Álvarez-Sánchez, R., Andrade-Bazurto, A., Santos-González, I. and Zamora-Gómez,
A. (2017). Aes-ctr as a password-hashing function, International Joint Conference
SOCO17-CISIS17-ICEUTE17 León, Spain, September 6–8, 2017, Proceeding, Springer,
pp. 610–617.

Alwen, J., Chen, B., Pietrzak, K., Reyzin, L. and Tessaro, S. (2017). Scrypt is maximally
memory-hard, Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Springer, pp. 33–62.

Arora, M., Sharma, S. and Engles, D. (2017). Parametric comparison of emds algorithm
with some symmetric cryptosystems, Egyptian informatics journal 18(2): 141–149.

Biryukov, A., Dinu, D. and Khovratovich, D. (2016). Argon2: new generation of memory-
hard functions for password hashing and other applications, 2016 IEEE European Sym-
posium on Security and Privacy (EuroS&P), IEEE, pp. 292–302.

Chhabra, S. and Lata, K. (2018). Enhancing data security using obfuscated 128-bit
aes algorithm-an active hardware obfuscation approach at rtl level, 2018 International
Conference on Advances in Computing, Communications and Informatics (ICACCI),
IEEE, pp. 401–406.

Ertaul, L., Kaur, M. and Gudise, V. A. K. R. (2016). Implementation and performance
analysis of pbkdf2, bcrypt, scrypt algorithms, Proceedings of the International Confer-
ence on Wireless Networks (ICWN), The Steering Committee of The World Congress
in Computer Science, Computer , p. 66.

Gore, A., Meena, S. and Purohit, P. (2016). Hybrid cryptosystem using modified blow-
fish algorithm and sha algorithm on public cloud, International Journal of Computer
Applications 155(3): 6–10.

Hatzivasilis, G., Papaefstathiou, I. and Manifavas, C. (2015). Password hashing
competition-survey and benchmark., IACR Cryptology ePrint Archive 2015: 265.

Kant, D. C. and Sharma, Y. (2013). Enhanced security architecture for cloud data
security, International journal of advanced research in computer science and software
engineering 3(5).

Kaur, J. and Sharma, S. (2018). Hessis: Hybrid encryption scheme for secure image
sharing in a cloud environment, International Conference on Advanced Informatics for
Computing Research, Springer, pp. 204–216.

Kumar, N. and Chaudhary, P. (2018). Password security using bcrypt with aes encryption
algorithm, Smart Computing and Informatics, Springer, pp. 385–392.

18



Marton, K., Suciu, A. and Ignat, I. (2010). Randomness in digital cryptography: A
survey, Romanian journal of information science and technology 13(3): 219–240.

Musliyana, Z., Arif, T. Y. and Munadi, R. (2015). Security enhancement of advanced
encryption standard (aes) using time-based dynamic key generation, ARPN Journal of
Engineering and Applied Sciences 10(18).

Padmavathi, B. and Kumari, S. R. (2013). A survey on performance analysis of des, aes
and rsa algorithm along with lsb substitution, IJSR, India .

Percival, C. (2009). Stronger key derivation via sequential memory-hard functions.

Percival, C. and Josefsson, S. (2016). The scrypt password-based key derivation function.

Sachdeva, S. and Kakkar, A. (2018). Implementation of aes-128 using multiple cipher
keys, International Conference on Futuristic Trends in Network and Communication
Technologies, Springer, pp. 3–16.

Singh, G. (2013). A study of encryption algorithms (rsa, des, 3des and aes) for information
security, International Journal of Computer Applications 67(19).

Sriramya, P. and Karthika, R. (2015). Providing password security by salted password
hashing using bcrypt algorithm, ARPN Journal of Engineering and Applied Sciences
10(13): 5551–5556.

Turan, M. S., Barker, E., Burr, W. and Chen, L. (2010). Recommendation for password-
based key derivation, NIST special publication 800: 132.

Widiasari, I. R. (2012). Combining advanced encryption standard (aes) and one time
pad (otp) encryption for data security, International Journal of Computer Applications
57(20).

19


	Introduction
	Related Work
	Password Protection using Hashing Algorithms
	Password Protection using Encryption Algorithms
	Previous Work on Hybrid Algorithms

	Methodology
	Key Derivation
	AES Encryption
	AES Decryption

	Design Specification
	Algorithm for the Proposed Model

	Implementation
	Evaluation
	Case Study 1: Mac OS
	Case Study 2: Windows OS
	Discussion

	Conclusion and Future Work

