

Declaration Cover Sheet for Project Submission

SECTION 1 Student to complete

Name:

Shane O’Mahony

Student ID:

10359651

Supervisor:

Josephine Andrews

SECTION 2 Confirmation of Authorship

The acceptance of your work is subject to your signature on the following declaration:

I confirm that I have read the College statement on plagiarism (summarised overleaf and printed in full in

the Student Handbook) and that the work I have submitted for assessment is entirely my own work.

Signature: Shane O’Mahony

Date: 13 – 5 - 2018

 - 2 -

NB. If it is suspected that your assignment contains the work of others falsely represented as your own, it

will be referred to the College’s Disciplinary Committee. Should the Committee be satisfied that

plagiarism has occurred this is likely to lead to your failing the module and possibly to your being

suspended or expelled from college.

Complete the sections above and attach it to the front of one of the copies of your assignment,

 - 3 -

What constitutes plagiarism or cheating?

The following is extracted from the college’s formal statement on plagiarism as quoted in the Student

Handbooks. References to “assignments” should be taken to include any piece of work submitted for

assessment.

Paraphrasing refers to taking the ideas, words or work of another, putting it into your own words and

crediting the source. This is acceptable academic practice provided you ensure that credit is given to the

author. Plagiarism refers to copying the ideas and work of another and misrepresenting it as your own.

This is completely unacceptable and is prohibited in all academic institutions. It is a serious offence and

may result in a fail grade and/or disciplinary action. All sources that you use in your writing must be

acknowledged and included in the reference or bibliography section. If a particular piece of writing

proves difficult to paraphrase, or you want to include it in its original form, it must be enclosed in

quotation marks

and credit given to the author.

When referring to the work of another author within the text of your project you must give the author’s

surname and the date the work was published. Full details for each source must then be given in the

bibliography at the end of the project

Penalties for Plagiarism

If it is suspected that your assignment contains the work of others falsely represented as your own, it will

be referred to the college’s Disciplinary Committee. Where the Disciplinary Committee makes a finding

that there has been plagiarism, the Disciplinary Committee may recommend

 that a student’s marks shall be reduced

 that the student be deemed not to have passed the assignment

 that other forms of assessment undertaken in that academic year by the same student be declared
void

 that other examinations sat by the same student at the same sitting be declared void

Further penalties are also possible including

 suspending a student college for a specified time,

 expelling a student from college,

 prohibiting a student from sitting any examination or assessment.,

 the imposition of a fine and

 - 4 -

 the requirement that a student to attend additional or other lectures or courses or undertake
additional academic work.

 - 5 -

 - 6 -

2018

X10359651

NATIONAL COLLEGE OF IRELAND

TABLE OF CONTENTS

Table of Contents ... 7

Executive Summary .. 9

Introduction .. 10

Background .. 10

Aims 10

Technologies .. 11

High level Structure overview .. 11

System ... 13

User Requirements Definition ... 13

Requirements Specification ... 14

Functional requirements .. 14

Use Case Model .. 14

Requirement 1: user registration .. 15

Requirement 2 Upload materials .. 17

Requirement 3 download materials ... 19

Requirement 4: user registration .. 21

Requirement 5: Creating forum posts .. 23

Requirement 6: Viewing and commenting on forum posts .. 25

Non-Functional Requirements ... 27

Performance/Response time requirement .. 27

Availability requirement .. 27

Recover requirement ... 27

Security requirement ... 28

Maintainability requirement ... 29

Extendibility requirement .. 29

Reusability requirement .. 29

Interface requirements ... 30

GUI 30

Implementation and Feature development ... 38

AWS environment development .. 38

 - 8 -

Secure login and session management ... 40

Unit test 42

Material upload and download .. 43

Unit test 44

Forums 45

Unit test 47

System Architecture Class Diagram ... 48

Penetration testing .. 49

Further development or research ... 52

Appendix ... 52

Project Proposal .. 52

Table of Contents ... 54

Introduction and Background.. 54

Objectives ... 55

Technical Approach .. 56

Special Resources Required ... 58

Project Plan ... 59

Technical details ... 62

Evaluation ... 63

Monthly Journals ... 64

September .. 65

October 65

November ... 66

December.. 66

January 67

February 67

February 68

March 68

April 69

May 69

User manual... 70

References ... 79

 - 9 -

EXECUTIVE SUMMARY

The scope of this project pertains the development of a fully scalable and secure means of content sharing

for college students and curious individuals alike. The application has a simple user interface which

primarily provides the capability for users to securely upload and download college materials. There is a

forum page for discussion on each category where individuals can ask questions and engage in

conversation.

To minimize cost for development I developed the application on a LAMP () stack which is open source

and free to use.

INTRODUCTION

BACKGROUND

The inspiration for this concept came from my own experience of being in 3rd level education for 7 years. I

found the material we are provided with in college to be extremely beneficial, however on further self-

study and research of a given topic, I found it hard to find related material on a similar academic level to

give me some perspective. This lead me to reaching out to friends and family in similar courses to find

additional material from their courses which I could use to enhance my own understanding of a given

topic. I found the combination of these different materials and approaches to be very helpful and thought

if I could widen the pool of contributors it would be mutually beneficial for all involved.

After conducting some research in the area, I found nothing to specifically facilitate this kind of content

sharing apart from the colleges own in house content sharing systems such as Moodle or Blackboard

which are only accessible by students of that particular college and only allowing students to access their

own courses.

Having a keen interest in the open source community I felt I could develop an application that would be

available to all who are interested and all who care to contribute that could become an extremely useful

tool in every students arsenal.

I also feel that an application like this will not just benefit current students but also prospective college

students who are unsure of what course they would like to start. Again, taking from my own experiences;

when I completed my leaving certificate in 2010 I was very unsure of what path I wanted to take and what

course I wanted to commit 4 years of my life to. If I had access to an application such as this, I feel I could

have made a much more educated decision and also taken away some of the stress and fear of the

unknown involved in the transition from 2nd to 3rd education.

AIMS

Given this problem I have decided to create a web application for students around the country to share

their course materials. First and foremost, the application should have a signup form where the user can

input their username and create a password in order to create an account. Once the user has created an

account, it should have a secure login once they return. The application will offer a clean interface which

will be divided into categories and courses which will be easily identifiable and accessible. It should

provide a section for students to upload their course materials such as slides, videos, past exam papers,

past projects etc. All materials should be easily downloadable or viewable from this point. The application

should scan all uploads for malicious software to protect users when downloads materials to their local

machines.

I have also incorporated a forum. This will give the users more space to ask questions and have open

discussions about different topics.

I will primarily target the Irish market of over 17,000 students and countless prospective students, but can

see no reason why it could not be pushed out on a global scale.

 - 11 -

TECHNOLOGIES

First and foremost, I started by clearly defining the user requirements, requirements specifications,

functional requirements and non-functional requirements in the requirements specification document.

This granted a clear path and allow me to meet the goals and deadlines laid out in the Gantt chart. I

wanted to use as many open source resources as possible, so I started by creating a LAMP stack in AWS.

To do this I launched an EC2 and instance and installed Apache, MySQL and PHP. Once the LAMP stack

was set up, I then began working on logins, registrations and. At this point I will carried out some

penetration testing on the logins using the Burp suit to validate the security of the application. Once the

session management was under control and penetration testing has complete, I will began creating and

defining the structure of the application by developing the PHP page templates for each section such as

course type, content type etc. Within each section I added an upload, so users can upload their materials.

Technologies and services utilized:

HTML, CSS and JavaScript – for the frontend development

PHP – server-side scripting language

MySQL – database language

PHPMyAdmin – This is the localhost database

AWS – Amazon Web Services

EC2 – Elastic Cloud Compute, used for hosting the site

Route53 – used to handle the traffic routing from the domain to the site

VirusTotal public API – a service for scanning files for known malicious code

Cloud 9 – this is the cloud based IDE I used to develop the project

HIGH LEVEL STRUCTURE OVERVIEW

Below I will outline a high level over of the overall structure of the application. I will go into further detail

on this further down the document.

Hosting and Deployment:

I started by creating a LAMP stack on the AWS platform for hosting the application. This pertains installing

Apache, MySQL and PHP on a Linux server. The browser will send a request to the Apache server which

will then pass the request to the PHP scripts to retrieve the data from the database to generate the

webpage which is then sent back to the browser via the Apache server. I used Route53 DNS which

connects the domain name to the LAMP stack. I am utilizing an EC2 t2.micro instance and a localhost

database in the form of PHPMyAdmin. I have 2 separate databases, 1 for the main application and one for

the forum. I have installed and tested an SSL certificate and made traffic over 443 mandatory.

 - 12 -

Frontend:

For the frontend development, I will used HTML5, CSS3 and JavaScript.

Backend:

The server-side scripting language I have decided to use is PHP. I chose this language has there is a ton of

resources and useful libraries I can call upon and it is compatible with Apache. When a user uploads a file,

it calls a function which adds an entry to the database and gives it a default value of 0. Another function

uploads the file to VirusTotal for scanning. I the created a script which periodically checks for a result.

Once the scan is complete, the function returns an array which determines the state of the file. If the file

is clean the default value in the database is switched to 1 and the file remains on the server. If the file is

found to be malicious the entry is removed from the database and the file is removed from the server.

API’s:

As mentioned above I will be leveraging the VirusTotal public API. This free API allows for 4 requests per

minute on the public version, however it is possible to request an unthrottled private API with a good

enough use case.

 - 13 -

SYSTEM

USER REQUIREMENTS DEFINITION

Edyoucate.ie will be designed to make it as easy and as clear as possible for users to locate specific

topics/categories so they can upload or download the necessary materials. There are 2 types of user

access for the application; Non-registered users and registered users:

1. Non-registered users: these users have not signed up to the website through the signup form

and thus will have restricted access. These users will have the following privileges:

 Option to signup – These users will have the options to set up a free account using the

signup for which will then convert them to a registered user.

 Register for forum – The user can register of the forum.

 View forum posts – These users can view the forum posts.

2. Registered users: These users have signed up through the signup form and now have access to

the main functionalities of the application. Registered users will have the following privileges:

 View lists of categories and content – These users can view all content on the

application.

 Upload and download materials – They can upload and download materials to any

category or topic.

 View, create and comment on forum posts – Registered users will have full access to

the forums for viewing and creating posts and also for commenting on existing posts.

 - 14 -

REQUIREMENTS SPECIFICATION

Edyoucate.ie has been designed and developed with ease of use being a number 1 priority. It has a clean

and minimal interface with no cluttering of elements. On visiting the site, users will not be asked to sign

up, however once they attempt to navigate to the categories section to view the material, they will be

redirected to the register page. I have developed the forum as a separate entity so users do not need to

sign up in order to view forum posts. As the forum is a separate entity, users do not need to be registered

for the main application before signing up. There will be no training required to use the web application. If

users do have any questions or issues with navigating the site or using the functionalities, once registered,

they can reach out to other users via the communications channel, that being the forum.

FUNCTIONAL REQUIREMENTS

In this section we I will break down each function which can be performed by each type of user.

USE CASE MODEL

 - 15 -

REQUIREMENT 1: USER REGISTRATION

DESCRIPTION & PRIORITY

This requirement is ranked 1. The user needs to register for the web application in order to utilize the

functionalities of the web application.

USE CASE

Scope

The scope of this use case is to provide users with a means of signing up via a GUI in order to use

the functionalities of the application.

Description

This use case describes what a non-registered user can do so they can become a registered user.

Flow Description

Precondition

The web application is idle on the home page awaiting user interaction.

Activation

This use case starts when a non-registered user clicks on the register button.

Main flow

1. The system identifies the user interaction and displays an option to register or login. See

A1.

2. The non-registered user clicks the register option

3. The system displays the register form.

4. The non-registered user fills in the required fields (name, email, password, username)

and clicks the save button. See A2.

5. The system then saves the user details to the database and redirects the now registered

user back to the home page. See E1.

6. The now registered use can utilize all functionalities of the system and the system

awaits interaction.

Alternate flow

A1 : User is already registered

1. The user clicks the login option.

2. The system displays the login portal.

 - 16 -

3. The user inputs their credentials and clicks login. See E2.

4. The main flow then continues from point 1.

A2: Non-registered does not register

1. The non-registered user clicks cancel

2. The system then reverts to the home page where the non-registered user can

navigate site without functionality.

3. The non-registered user then clicks a function and main flow continues from

point 1.

Exceptional flow

E1: Non-registered user inputs invalid data in form

1. The system throws an error asking user to input valid

characters/username/password.

2. The user inputs valid characters/username/password and clicks save.

3. The use case continues at position 5 of the main flow.

E2: Registered user inputs incorrect login credentials

1. The systems checks database and returns error “invalid credentials”.

2. The registered user inputs the correct credentials and the main flow continues

from point 6.

Termination

This flow is terminated when the user is successfully registered and returned to the home page.

Post condition

The system then awaits the next user interaction.

 - 17 -

REQUIREMENT 2 UPLOAD MATERIALS

DESCRIPTION & PRIORITY

This is ranked 2 as it is one of the primary functions of the application. This allows registered users to

upload materials for others to download and utilize.

USE CASE

Scope

The scope of this use case is to allow registered users to upload materials in a secure manner.

Description

This use case describes the process of how a registered user can upload materials to specific

topics/categories.

Flow Description

Precondition

The user is logged in as a registered user and the system is awaiting interaction on the home

page.

Activation

This use case starts when a registered user selects the upload option from the navigation bar.

Main flow

 - 18 -

1. The system identifies the registered user interaction and displays the upload form.

See E1.

2. The registered user selects the category and topic they would like to upload to.

3. The system then displays the upload box.

4. The registered user the drags the desired file to the upload box and clicks upload.

5. The system calls the TotalVirus API and scans the file being uploaded and once

scanned and cleared the system displays a message to confirm upload. See E2.

6. The registered user clicks save. See A1

7. The system then uploads the file and displays a upload successful message.

8. The registered user clicks OK.

9. The system then redirects the user to the location for the file upload.

Alternate flow

A1 : Registered user clicks cancel on the upload

1. The system then displays a message asking if they are sure they want to cancel.

2. The registered user clicks yes.

3. The system returns the registered user to the home page and the use case

continues at position 6 of use case 1 of the main flow

Exceptional flow

E1 : A non-registered user clicks the upload.

1. The system displays a message saying you are not a registered user and redirects

to the register form.

2. The use case continues at position 3 of use case 1 of the main flow

E2 : The upload contains malicious software identified by the TotalVirus API.

1. The system displays a message saying this upload contains malicious software

and cannot be uploaded.

2. The user clicks ok.

3. The main flow continues from point 1.

 - 19 -

Termination

The system redirects the user to the upload location.

Post condition

The system then awaits the next user interaction.

REQUIREMENT 3 DOWNLO AD MATERIALS

DESCRIPTION & PRIORITY

This is ranked 3 and just as important as the previous requirement of uploading. This allows registered

users to download materials to utilize.

USE CASE

Scope

The scope of this use case is to allow registered users to download materials to their local

machines.

Description

This use case describes the process of how a registered user can download materials from

specific topics/categories.

Flow Description

Precondition

 - 20 -

The user is logged in as a registered user and the system is awaiting interaction on the home

page.

Activation

This use case starts when a registered user navigates to a given topic.

Main flow

1. The system identifies the registered user interaction and displays the all materials

for the given topic.

2. The user views the description of the topic and then clicks download. See E1.

3. The system displays a message asking if they are sure they want to download.

4. The user clicks yes. See A1.

5. The system then initiates the download to the users local machine.

Alternate flow

A1 : Registered user clicks cancel on the download.

1. The system then displays a message asking if they are sure they want to cancel.

2. The registered user clicks yes.

3. The system then cancels the awaiting download and returns the user to the

same topic page.

Exceptional flow

E1 : A non-registered user clicks the download link.

1. The system displays a message saying you are not a registered user and redirects

to the register form.

2. The use case continues at position 3 of use case 1 of the main flow

Termination

The system returns the user to the topic page for further browsing.

Post condition

The system then awaits the next user interaction.

 - 21 -

REQUIREMENT 4 : USER REGISTRATION

DESCRIPTION & PRIORITY

This requirement is ranked 4. The user needs to register for the web application forum in order to create a

post and/or comment on an existing post.

USE CASE

Scope

The scope of this use case is to provide users with a means of signing up via a GUI in order to

create a post and/or comment on an existing post.

Description

This use case describes what a non-registered user can do so they can become a registered user

on the forum.

Flow Description

Precondition

The forum is idle on the home page awaiting user interaction.

Activation

This use case starts when a non-registered user clicks on the register button.

Main flow

7. The system identifies the user interaction and displays an option to register or login. See

A1.

8. The non-registered user clicks the register option

9. The system displays the register form.

10. The non-registered user fills in the required fields (name, email, password, username)

and clicks the save button. See A2.

11. The system then saves the user details to the database and redirects the now registered

user back to the home page of the forum. See E1.

12. The now registered user can now post on the forum and/or comment on an existing

post.

Alternate flow

A1 : User is already registered

5. The user clicks the login option.

 - 22 -

6. The system displays the login portal.

7. The user inputs their credentials and clicks login. See E2.

8. The main flow then continues from point 1.

A2: Non-registered does not register

4. The non-registered user clicks cancel

5. The system then reverts to the home page where the non-registered user can

navigate site without functionality.

6. The non-registered user then clicks a function and main flow continues from

point 1.

Exceptional flow

E1: Non-registered user inputs invalid data in form

4. The system throws an error asking user to input valid

characters/username/password.

5. The user inputs valid characters/username/password and clicks save.

6. The use case continues at position 5 of the main flow.

E2: Registered user inputs incorrect login credentials

3. The systems checks database and returns error “invalid credentials”.

4. The registered user inputs the correct credentials and the main flow continues

from point 6.

Termination

This flow is terminated when the user is successfully registered and returned to the home page.

Post condition

The system then awaits the next user interaction.

 - 23 -

REQUIREMENT 5: CREATING FORUM POSTS

DESCRIPTION & PRIORITY

This is ranked 4. This allows registered users to create forum posts.

USE CASE

Scope

The scope of this use case is to allow registered users to create forum posts to interact with other

users.

Description

This use case describes the process of how a registered user can create a forum posts.

Flow Description

Precondition

The user is logged in as a registered user and the system is awaiting interaction on the home

page.

Activation

This use case starts when a registered user navigates to the Forums section.

Main flow

1. The system identifies the registered user interaction and displays all forum posts

and option to create post. See E1.

2. The user clicks create post

3. The system displays the form requesting a title and a body.

4. The user fills in both fields clicks submit. See E2.

5. Systems displays a message asking if they would like to submit the post to the

forum.

6. User clicks yes. See A1.

7. System redirects the registered user to the newly created forum post.

Alternate flow

A1 : The user clicks no on the submission confirmation prompt.

 - 24 -

1. The user is returned to the still populated form and as the option to edit or

cancel.

2. If the user edits they can again click submit and the main flow will continue from

4. If the user clicks cancel the main flow will continue from point 1.

Exceptional flow

E1 : A non-registered user clicks the create post option.

1. The system displays a message saying you are not a registered user and redirects

to the register form.

2. The use case continues at position 3 of use case 1 of the main flow.

E2 : The user does not fill in one of the fields.

1. The system will display throw an error advising that all fields have not been filled

in.

2. The user then fills in the required field and clicks submit.

3. The main flow continues from point 5 of the main flow.

Termination

The system idles on the forum page.

Post condition

The system then awaits the next user interaction.

 - 25 -

REQUIREMENT 6 : VIEWING AND COMMENTING ON FORUM POSTS

DESCRIPTION & PRIORITY

This is ranked 5. This allows registered users to view and comment on forum posts.

USE CASE

Scope

The scope of this use case is to allow registered users to view and comment on existing forums

posts.

Description

This use case describes the process of how a registered user can view and comment on forum

posts.

Flow Description

Precondition

The user is logged in as a registered user and the system is awaiting interaction on the home

page.

Activation

This use case starts when a registered user navigates to the Forums section.

Main flow

1. The system identifies the registered user interaction and displays all forum posts.

2. The user clicks an existing post.

 - 26 -

3. The system displays the post and all comments on the post and an empty

comment box.

4. The user adds their comment in the comment box and clicks submit. See E1.

5. Systems displays a message asking if they would like to submit the comment to

the post.

6. User clicks yes. See A1.

7. System then submits the comment and reloads the page with the newly added

comment.

Alternate flow

A1 : The user clicks no on the comment submission confirmation prompt.

1. The user is returned to the still populated comment box and has the option to

edit or cancel.

2. If the user edits they can again click submit and the main flow will continue from

7. If the user clicks cancel the main flow will continue from point 3.

Exceptional flow

E1 : A non-registered user clicks the submit comment option.

1. The system displays a message saying you are not a registered user and redirects

to the register form.

2. The use case continues at position 3 of use case 1 of the main flow.

Termination

The system idles on the forum post page.

Post condition

The system then awaits the next user interaction.

 - 27 -

NON-FUNCTIONAL REQUIREMENTS

In this section I will discuss the non-functional attributes which are required for the success and longevity

of the Edyoucate.ie web application.

PERFORMANCE/RESPONSE TIME REQUIREMENT

The optimal response time for general navigation for the site (meaning page to page) in 20 milliseconds.

For pages such as the topics which include material that will be pulled from the database and also the

forums page which will be pulling existing posts from the database I will be aiming for a response time of

no more than 40 milliseconds. The login response times will be a little longer but should be no more than

90 milliseconds, the reason for this extended response time is due to a security requirement which I will

go into more detail about in the Security Requirement further down. Upload and download performance

will be very much reliant on the users internet connection however taking an average download speed of

20Mbits/s and an average file size (a document) 1MB and assuming the user is on an 24Mbit/s ADSL

connection the download should take no more than 1 second. The upload on the same connection should

take no more than 3 seconds. To optimise these times, I will be installing Googles PageSpeed tool on my

Apache server to monitor response times over time in order to identify any potential bottle necks. When

making calls to the database for logins I have added a limit of 1 to the prepared statement which returns

the email once found rather than looping through all email address until it gets to the end.

AVAILABIL ITY REQUIREMENT

The Edyoucate.ie application is accessible 24/7 from any location. To enforce this promise, the application

will employ a traffic handling service on AWS called Elastic Load Balancing. This allows me to add multiple

EC2 instances to the environment, the traffic is then routed to and balanced across each instance. If one

of the instances fails, the traffic is automatically rerouted to the operational instances hence eliminating

unscheduled downtime. I will be using this load balancer across 2 AWS availability zones, this means that

even in the unlikely event that an AWS datacentre goes down, the traffic is rerouted to the running

instances in the second availability zone further decreasing the risk of unscheduled downtime.

RECOVER REQUIREMENT

The structure of my application consists of an EC2 instance and an EBS volume. The instance is responsible

for the computing and the EBS volume is responsible for the storage. With this in mind, backups of the

EBS volume are vital. If the application does do down or is compromised in anyway a backup will allow me

to restore the environment in minutes. To add more consistency to the backup process I am leveraging

AWS CloudWatch events to create a snapshot (a compressed image) of the storage volume every 2 days:

 - 28 -

As my database is stored locally to the server I have created a bash script to which connects to the

database and creates a back. I then created a cronjob to run the script again every 2 days and store the

backup in a backups folder outside the web directory.

SECURITY REQUIREMENT

As the nature of this project is the uploading and download of files, user security is of utmost importance.

To expand on the login response times mentioned in the Performance/Response time section, these

response times will be a little longer as I have used SHA512 password hashing with Salt as PHP is my main

server side language. Salt essentially adds a random string of letters to the end of the password to

disguise it which are assigned to that user and then the full string is passed through the SHA512

encryption. To prevent against SQL injection, I will be calling the mysql_real_escape_string PHP function,

which adds a backlash before potentially malicious characters. I used prepared statements throughout

project. Further down the document I will outline the penetration testing carried out along with the

results.

In order to prevent users from downloading files with malicious contents, all uploads are ran through

VirusTotal which scans the file and runs it through 60 different antivirus engines. Once the file has been

passed the check, it is uploaded to Edyoucate.ie, however if the file fails the check the file is removed

from the server and the entry is removed from the database.

 - 29 -

MAINTAINABILITY REQUIREMENT

The web application itself will be relatively maintenance free as it is in a cloud environment allowing for

seamless interchanging of infrastructure. To accommodate any frontend development however there

may need to be some scheduled downtime. To best identify the optimal time for this downtime I have

installed AWStat on the server which monitors traffic to the site. From the information recorded through

this, I can identify at what time of the week and day/night has the least amount of traffic and schedule the

downtime accordingly. I can then send a mass email to all users notifying them of the scheduled time. I

can view the web app statistics at any time by going to http://edyoucate.ie/cgi-

bin/awstat/awstats.pl?config=linux

EXTENDIBIL ITY REQUIR EMENT

To keep the current scope of the project realistic, I will primarily be focusing on the Irish market

attempting to build a library of resources, however once the application has matured I could then look at

creating “By Country” categories and also implementing multilingual support.

REUSABILITY REQUIREMENT

As the content of the application is user generated, code reusability will be a prominent focus. In my

forum section I have used an MVC like framework which Each input will have a specified template.php file

that will be populated by the user through the UI form and then stored in the database. When a user

revisits the page, the include() PHP function will be called to pull all required information from the

database. Using these templates allows for future changes with minimal work.

http://edyoucate.ie/cgi-bin/awstat/awstats.pl?config=linux
http://edyoucate.ie/cgi-bin/awstat/awstats.pl?config=linux

 - 30 -

INTERFACE REQUIREMENTS

In this section I will describe how the software interfaces with the user and give a run through of how the

user navigates the application. I have provided screenshots from the working application.

GUI

Edyoucate.ie is a clean, bright, minimal and inviting interface. It is extremely important that the first

impressions of the interface are good as this will set the tone for the rest of the user experience. When a

non-registered user first visits the site, they met by the home page which contains a main header with the

title, a login or register option, a simple but straight forward menu bar, a carousel containing the main

topics and a short paragraph about what we offer.

 - 31 -

As per the main flow a non-registered user can freely navigate the main homepage, however if they click

on the “Categories” tab they will be redirected to the registration page where they will be asked to

register an account using an username, email address and password:

 - 32 -

Once the user has registered they will then be redirected back to the homepage where they can sign in

with their new credentials using the Login button in the top right corner of the page:

When the user logins in they can then navigate to the “Categories” where the can view materials. To view

the materials the user simply needs to click the desired category and then the desired topic:

 - 33 -

In order to download a file, the user simply needs to click on the desired file. If the file is an image it will

open in the browser, any other file type will begin download.

If you user would like to upload material they can do so by using the upload form on the left of the screen,

selecting the desired category, the desired topic and then using the file chooser to choose a file from their

local machine:

If they are happy to upload, they can click the Upload button which will submit the file to the chosen

position and also queue the file for scanning by VirusTotal:

 - 34 -

Registered and non-registered users alike can both visit the forum where they can view all forum posts.

Before a user can create post or comment on a post they first need to register an account. They can do

this by clicking the register button on the frontpage. The register requests the name, username, email,

password, avatar and has an optional about section.

 - 35 -

Once the user has added the required fields they can then click the register button which will redirect

them back to the frontpage of the forum and display a registration successful message:

Now that the user is fully registered they can login using the login form:

 Now that the user is logged in, they can create a forum post by clicking the create button in the top right

corner of the page. This will bring the user to a form where they can choose a title, choose a category and

add further details of the question:

 - 36 -

Once the user has filled in all fields, they can hit the submit button which will submit the post and redirect

the user back to the forum frontpage where they will see a confirmation message and their post will be at

the top of the list:

Users can also comment on other post by clicking on the desired post title. This will take the user to the

post where they will find a blank text area:

 - 37 -

Once the user fills in their reply they can click the reply button which will instantly post the reply to the

page and they will also receive a reply confirmation:

When the user has finished reviewing the forums they can use the logout button to log themselves out of

the application. Once successfully logged out they will also receive a logout confirmation:

 - 38 -

IMPLEMENTATION AND FEATURE DEVELOPMENT

AWS ENVIRONMENT DEVELOPMENT

I developed my application on an ubuntu Linux t2.micro instance which I backed with an 8GB EBS volume.

As the application primarily targets Irish residents, I launched the instance in the EU-West-1(Ireland)

region, this cuts down on any potential latency.

Once I launched my instance I installed a LAMP stack to support the application. A LAMP stack consists of

Linux, Apache, MySQL and PHP. In order to secure the instance, I configured the security groups to only

allow traffic on port 22 (SSH), port 80 (HTTP) and port 443 (HTTPS). In a production environment it would

not be ideal to leave port 22 open, however as I was using Cloud9 IDE to develop the application it was

necessary to open this port so I could SSH into the instance.

To further secure the inbound traffic I installed an SSL certificate and configured to server to force all

inbound connections onto port 443 (HTTPS). I tested my SSL certificate on SSL labs which returned an A

rating.

 - 39 -

I created my databases using phpmyadmin. I have 2 separate databases for the project, one for the web

application to record uploads and one for the forums. I decided to use 2 separate databases because all

data on the main uploads database would already be sanitized by the VirusTotal API and by the very

nature of the forums there would be many different code segments being uploaded. Even though the

forum post uploads are well sanitized using secure application development practices, I still felt it better

to separate the data. I had initially planned to only use the phpmyadmin localhost database for testing

and then migrate to an independent RDS instance, however due to time constraints I was unable to

complete this.

Main application database tables:

Forums database tables:

 - 40 -

SECURE LOGIN AND SESSION MANAGEMENT

I put a lot of time into the login system and session management as Broken Authentication and Session

Management from the 2013 OWASP top 10 was broken into 2 separate points in the OWASP 2017

revision due to its severity.

 I started by creating my database in PHPmyadmin named secure_login and created a user with restricted

privileges to access this database. In the event that an attacker does find a hole, the use of a user with

restricted privileges will deny them the ability to DROP a table or database. I then created 2 tables,

“members” and “login_attempts”. The members table stores the general user data such id, name, email

and encrypted password (I will develop further on the latter later). The login_attempts table stores all

user login attempts for the last 2 hours.

On the registration page I used FILTER_SANITIZE to sanitize all user input on each input field. When the

users sets a password it is hashed using the SHA512 hashing algorithm and then stored in the database.

When the user logs in using the password, their input is hashed and compared with the stored password

hash, if the hashes match then the user is logged in. This is an extremely important process because even

if the database was compromised the attacker could not utilize the credentials to access the user

accounts. I am utilizing prepared statements throughout the web application, for example when a user is

logging in I am using a prepared statement with set parameters and limiting the selection to 1 email. This

prevents potential attacker from inputting their own queries and it prevents them from manipulating the

given query to select more than 1 email address.

To promote say password use have set conditions for the chosen password, it must be a least 6 characters

long, it must contain at least one capital letter, at least one lowercase letter and at least one number.

 - 41 -

Once my database structure was complete a created a PHP function called sec_session_start() rather than

using the insecure default session_start(). This forces the sessions to use only cookies which stops

potential attackers from gaining access to the session id cookie through an XXS attack. This function also

calls a secondary function called session_regenerate_id() which forces a session id regeneration with

every page reload. This prevents attackers from hijacking the session id.

To eliminate the risk of a brute force attack on the login, I have implemented a timeout function which

queries the login_attempts table. If the user has 5 failed attempts in the past 2 hours, the account will be

locked out for 2 hours from the first login attempt.

I am also using a function to sanitize the URL to prevent against Reflective XSS. This function scrubs the

URL of nefarious characters and calls htmlentities() to prevent against PHP_SELF exploits.

 - 42 -

UNIT TEST

I tested the basic functionality of the login system and tested the brute force function for account lockout.

Expected login behaviour:

Observed login behaviour:

 First, I inputted the correct username and password and clicked login, this passed me back to the index

page and displayed my username as logged in. Then I input incorrect password which failed to log me in

as expected. I also tested the lockout feature by inputting the incorrect password 5 times and then

inputting the correct password which again resulted in a login error signifying the account is now locked

out. I then waited 2 hours and attempted the login again with the correct password which successfully

login me in.

 - 43 -

MATERIAL UPLOAD AND DOWNLOAD

The Categories section allows registered users to upload and download materials to specified categories

and topics within those categories. The section is comprised of a tab structure which contains the

category and an accordion which contains the topics for the corresponding category both of which are

built using JavaScript. The file upload has 2 conditions, it must not already exist on the server and it must

be small than 1MB.

To mitigate against the risk of users uploading malicious files (intentionally or non-intentionally) I am

leveraging the VirusTotal API which scans files for malicious content and runs the result against 60

different anti-virus databases.

I first created a VirusTotal account to get my API key. I then used the used the class and functions

provided on the VirusTotal website to lay the basis for the API calls I would be making. I created a class

called virustotalClass.php and a functions file called virustotalFunctions.php. The Class is first initialized

and then uses its checkFile() method to send the file for scanning and then uses its getResponse() to grab

the output. I then used a function VirusTotalScan() to take the output and put it in an array. I then used

another function VTCheckHashOfFileSubmitted() to populate the array with the details of the file that is

being scanned including the file hash and a link to the VirusTotal scan.

When the file is uploaded it also creates an entry in the userUploads table in the database. Th entry

consists of the user who uploaded, a timestamp, the file path (including the name) and the hash of the

file. I also have a column called scanResult which has an initial default value of 0. When uploaded, the file

is not scanned instantly, it enters a queue system and can take a number of minutes to return a scan

result. To get the result I created a cronjob to run the virustotalCronScan.php script, this pulls the result

and checks it. If the file is clean the scanResult value is changed to 1 and the file stays on the webserver. If

the file is malicious, the scanResult value stays as 0, the entry is removed from the database and the file is

removed from the webserver using php unlink.

The user chooses the category and topic and upload file chooser using the form on the left of the page.

Once the file is uploaded, it is displayed under the chosen heading. I achieved this by using a directory

viewer to pull all files in the given directory and display their types.

 - 44 -

UNIT TEST

I conducted 4 tests on the upload feature:

 Upload clean file

 Upload malicious file

 Upload duplicate file

 Upload file that is to large

Expected behaviour:

Observed behavior:

I first uploaded a clean file and received a confirmation that the file was submitted and awaiting the

VirusTotal scan. After the scan was complete I checked the scanResult in the database which had correctly

changed to 1 and observed that file remained on the server. I then submitted a malicious reverse shell

php script and received confirmation that the file had been submitted and was awaiting the VirusTotal

scan. After the scan was compete I checked the scanResult in the database which had correctly remained

as 0. Once the cronjob ran the virustotalCronScan.php script, the database entry for the file was removed

and the file was correctly removed from the server. Next, I submitted a file that was 1.2MB and received

an error advising the file was too big and thus had not been submitted as expected. I then submitted a

duplicate file and received an error advising that the file was a duplicate and had not been submitted as

expected.

 - 45 -

FORUMS

To develop the forums, I used an MVC (Model-View controller) like framework and PDO (PHP Data

Objects) to connect to the database. PDO uses secure practices which works on the premise of creating

prepared statements with placeholders. So first we create the query and add placeholders for our

variables, we then prepare the statement and define the variables. This prevents potential attackers from

adding their own query to perform an SQL injection.

PDO is now the preferred method of developing PHP with SQL due its security and portability. PDO

queries are structured so they can be incorporated with multiple other database types.

MVC or Model-View-Controller strongly supports code reusability. The user uses the controllers which are

the main functionalities of the application to the manipulate the models which are the database queries

and then outputs them in different views which are then templates for the data to sit which is what the

user sees.

 - 46 -

The Forum2 root directory contains the 5 Controllers which are the main functions of the forum:

 index.php is the main page/front page controller

 register.php is the controller for user registration

 create.php is the controller for creating posts once a user has successfully registered

 topics.php is the controller for displaying all posts on the page

 topic.php is the controller for displaying replies and creating replies on a forum post

The 5 Models are contained in forum2/libraries directory. These are used by the controller to the query

the database and pass the data through the views. These models are as follows:

 database.php is the model that connects to the database

 template.php is the model that is used for defining and managing the views

 topic.php is the model that is used to define the forum topics page

 user.php is the model that defines the user which handles the sessions and registration

 validator.php is that model that is used to define the validation for all user input fields.

The 5 views (or templates) which are contained in the forum2/templates folder takes the output from the

model that was manipulated by the controller and displays it in a meaning way. The 5 views are as

follows:

 frontpage.php is the view that contains all forum posts and takes data provided by the index.php

controller.

 Register.php is the view which handles the user registration.

 create.php is the view that is used to create a forum post. This takes data provided by the

create.php controller.

 topic.php is the view which handles the topic.php controller data to display replies on a forum

post.

 topics.php is the view that takes the data from the topics.php controller and displays all forum

posts for that given topic.

 - 47 -

UNIT TEST

I conducted 2 unit tests on the forums:

 Registration

 Login

 Create post

 Reply to post

Expected behaviour:

Observed behaviour:

I first tested the registration form by inputting all details correctly. This worked as expected registering

the account. I then came back and attempted the registration again this time leaving out required fields

which resulted in an error as expected.

Once registered I then attempted login with the correct details, the app logged me in as expected. I then

attempted the login with the incorrect details which resulted in an error as expected.

I then followed the expected behaviour flow and created a created a forum post inputting all required

information correctly. This action performed as expected. I then came back and left out the title and body

which resulted in the app throwing an error as expected.

Lastly, I tested the reply to post feature by adding a reply and hitting the reply button, this worked as

expected. I then attempted to reply without adding a body to the reply, this through an error as expected.

 - 48 -

SYSTEM ARCHITECTURE CLASS DIAGRAM

Below is the class diagram which includes all of the above outlined:

 - 49 -

PENETRATION TESTING

I conducted 3 separate penetration testing phases on the web application.

Phase 1:

The first was a light automated scan using pentest-tools.com which returned no medium or high risks,

however it did return 3 low risks, 2 of which were false positives and the other being a positive.

The positive was auto complete was not switched off.

I fixed this issue by going back to my forms input and adding the “autocomplete=off” attribute to the

input tags:

 - 50 -

Phase 2:

For the second stage of penetration testing I used another automated tool called OWASP Zed Attack

Proxy Project (or ZAP). ZAP is a much more intense scan which tests the application against the OWASP

top 10 vulnerabilities. The results of the scan came back clear on all counts:

 - 51 -

Phase 3:

The third phase of the testing was carried out on the login system as the unit test brought to light a brute

force vulnerability. I used the Intruder tool of the Burp suit to confirm that there was indeed a major flaw:

To fix this issue I implemented a lockout feature which would lock the account if there was more than 5

failed attempts in the past 2 hours:

 - 52 -

FURTHER DEVELOPMENT OR RESEARCH

Given the AWS cloud environment which Edyoucate.ie will be developed in, backend infrastructure can

easily be changed with little to no interruption to service. This makes it easier to keep the technology

current and up to date. Also, given the elastic nature of EC2 and ELB coupled with the traffic monitoring

tools that will be employed I can easily scale the application as traffic numbers grow.

Going forward it will be important to maintain the scope of the project by solidifying the current

functional requirements, however there is always room for adding new features in the future such as;

 Private meeting rooms (or group chats) with screen share capabilities,

 Cloud storage for materials,

 Multilingual support.

With the current technologies being utilized and the aforementioned future feature implementation

possibilities, Edyoucate.ie will be an application that will meet user needs and scale seamlessly with

growth promising a prosperous future.

APPENDIX

PROJECT PROPOSAL

 - 53 -

EDYOUCATE.IE

Shane O’Mahony, 10359651, x10359651@student.ncirl.ie

BSc (Hons) in Computing

Specialisation: Cyber Security

Date : September 18th 2017

 - 54 -

TABLE OF CONTENTS

Project Proposal ... 1

Table of Contents ... 2

Introduction and Background.. 3

Objectives .. 4

Technical Approach .. 5

Special Resources Required .. 6

Project Plan .. 7

Technical details ... 10

Evaluation .. 11

INTRODUCTION AND BACKGROUND

The inspiration for this concept came from my own experience of being in 3rd level education for

7 years. I found the material we are provided with in college to be extremely beneficial, however

on further self-study and research of a given topic, I found it hard to find related material on a

similar academic level to give me some perspective. This lead me to reaching out to friends and

family in similar courses to find additional material from their courses which I could use to

enhance my own understanding of a given topic. I found the combination of these different

 - 55 -

materials and approaches to be very helpful and thought if I could widen the pool of

contributors it would be mutually beneficial for all involved.

After conducting some research in the area, I found nothing to specifically facilitate this kind of

content sharing apart from the colleges own in house content sharing systems such as Moodle

or Blackboard which are only accessible by students of that particular college and only allowing

students to access their own courses.

Having a keen interest in the open source community I felt I could develop an application that

would be available to all who are interested and all who care to contribute that could become

an extremely useful tool in every students arsenal.

I also feel that an application like this will not just benefit current students but also prospective

college students who are unsure of what course they would like to start. Again, taking from my

own experiences; when I completed my leaving certificate in 2010 I was very unsure of what

path I wanted to take and what course I wanted to commit 4 years of my life to. If I had access

to an application such as this, I feel I could have made a much more educated decision and also

taken away some of the stress and fear of the unknown involved in the transition from 2nd to 3rd

education.

OBJECTIVES

Given this problem I have decided to create a web application for students around the country

to share their course materials. First and foremost, the application should have a signup form

where the user can input their username and create a password in order to create an account.

On this form the user should be asked to choose from a number of different preferred areas, in

order to better define and propose their content. Once the user has created an account, it

should have a secure login once they return. The application will offer a clean interface which

will be divided into categories and courses which will be easily identifiable and accessible. From

here, the user should be able to choose which year of the course they want to view. It should

provide a section for students to upload their course materials such as slides, videos, past exam

papers, past projects etc. All materials should be easily downloadable or viewable from this

point. The application should scan all uploads for malicious software to protect users when

downloads materials to their local machines. It should also scan all picture uploads to prevent

explicit pictures.

Upon first use, the application should suggest content based on the preferences chosen I the

signup form. Over time, it should suggest new material which the user has not yet viewed that

 - 56 -

they may find useful based on their past activity and courses and topics browsed. It should also

suggest content based on the materials view by others with the same interests. This will help

users discover more topics and materials they may not have previously considered.

I will also include a global chat for quick questions and answers and for general interaction

between users. To moderate this, I will develop an auto-moderator bot to scrape the chat to

delete any key words I define and also give the user 3 chances before being banned from the

chat. This will insure a secure and friendly environment for users to chat.

Like the above I would also like to incorporate a forum. This will give the users more space to ask

questions and have open discussions about different topics. To moderate this I will use a similar

bot to scrape the forum posts for any malicious or offensive words or phrases again securing a

friendly and thought provoking environment.

I will primarily target the Irish market of over 17,000 students and countless prospective

students, but can see no reason why it could not be pushed out on a global scale.

TECHNICAL APPROACH

First and foremost, I will start by clearly defining the user requirements, requirements

specifications, functional requirements and non-functional requirements in the requirements

specification document. This will grant a clear path and allow me to meet the goals and

deadlines laid out in the Gantt chart. Ideally, I want to use as many open source resources as

possible, so I will start by creating a LAMP stack in AWS. To do this I will need to carry out

extensive research on what size EC2 instance and what size MySQL database instance will be

most optimal for the project at hand. Once the LAMP stack has been set up, I will then begin

working on logins and sessions and attempt to implement 2factor authentication using a PHP

library and also a CAPTCHA on the sign-up form. At this point I will carry out some penetration

testing on the logins using the Burp suit to validate the security of the application. Once the

session management is under control and penetration testing has complete, I will begin creating

and defining the structure of the application by developing the PHP page templates for each

section such as course type, content type etc. Within each section I will add an upload, so users

can upload their materials, I will also be utilizing the TotalVirus and Rekognition APIs to prevent

malicious uploads.

 - 57 -

Once the above is complete, I will have a have comprehensive prototype to demonstrate at the

Midpoint presentation.

From here I will begin the implementation of the machine learning algorithm. I will be using the

Linear regression model to suggest content. This model will be implemented in a number for

stages.

 Construct algorithm

 Data injection and validation Stage 1 – This is the baseline for the machine learning

model. The results of this first iteration will be quite far out and inconsistent at roughly

5% - 10%.

 Data injection and validation Stage 2 – This is a second iteration with a different dataset.

This iteration will be closer to the desired accuracy at 60% - 70%.

 Data injection and Testing (final stage) – This is the final stage of injection. The results of

this final phase will be manually altered and fed back in to improve the accuracy hit rate.

This should lead to accuracy of over 90%.

I will then create the live global chat using PHP, jQuery and MySQL. The MySQL will not be used

to store/record chats but to keep track of active users and also to keep track of the chatrooms. I

will also be using PHP and MySQL to create the user forums.

 - 58 -

SPECIAL RESOURCES REQUIRED

 I will be deploying the application in AWS so firstly I will need an AWS account. I will

initially be testing my application on a t2.micro EC2 instance and also an RDS

db.t2.micro MySQL instance. For my production environment I will be moving to a

t2.medium EC2 instance and multiple corresponding RDS MySQL instances.

 For the machine learning element, I will need to source relevant datasets from

Kaggle.com.

 Towards the end of the project I will need 20 individuals to test the application features

both simultaneously and individually.

 I will need to download the Burp suite for penetration testing purposes.

 - 59 -

PROJECT PLAN

 - 60 -

 - 61 -

Link to file:

edyoucate.mpp

 - 62 -

TECHNICAL DETAILS

To develop this application, I will be utilizing several technologies, those being:

Hosting and Deployment:

I will start by creating a LAMP stack on the AWS platform for hosting the application. The

browser will send a request to the Apache server which will then pass the request to the PHP

scripts to retrieve the data from the database to generate the webpage which is then sent back

to the browser via the Apache server. I will be using Route53 DNS which will connect to the

LAMP stack. I will be utilizing an EC2 t2.mcro and RDS MySQL db.t2micro for initial testing and

will then be scaling up to an EC2 t2.medium and 2 RDS MySQL db.t2.medium instances. For the

machine learning algorithm I will need an instance with more GPU power so I will be utilizing a

p2.xlarge, however this is pending further research which I have allotted time for in my project

plan.

Frontend:

For the frontend development, I will be utilizing HTML5, CSS3 and JavaScript. Depending on time

constraints I may utilize WordPress.

Backend:

The server side scripting language I have decided to use is PHP. I chose this language has there is

a ton of resources and useful libraries I can call upon and it is compatible with Apache. During

the sign up process I will be integrating a CAPTCHA using PHP. If the CAPTCHA code is validated,

the secure session will start, however if it is not validated an error message will be displayed and

the script will terminate with exit(). As one of the most important features of the application is

file uploading, I will be using the Stash library to speed up database queries and API calls by

caching the results of expensive/taxing functions. I will be using the AWS PHP SDK version 3, this

is Amazons official PHP library for working with AWS. For the 2Factor authentication I will be

using the Google authenticator PHP class and to secure this I will be limiting the number of

verifications from a single IP address to 10 tries over the space of 10 minutes.

API’s:

I will be 2 different APIs to secure the uploads, those being the TotalVirus API which will be used

to scan all file uploads for malicious scripts and the AWS Rekognition API to remove elicit

pictures.

 - 63 -

EVALUATION

My main evaluation priority for this application is to make sure it is as secure as possible. To

ensure this I have allocated time in my project plan to carry out a number of tests. The first

stage of this testing will be on the code integrity, I will be testing this with a penetration testing

application called Burp: a suite of tools used to “hack” a website or application. The main tool

from this suite I will use is Intruder, this is used to automatically scan and attack the application

using malicious HTTP requests to perform an SQL injection, cross site scripting and pinpoint

vulnerabilities for brute force attacks. If a vulnerability is found, I will refactor the code and

perform the tests again. I will then test the application across multiple browser such as Chrome,

Firefox and Edge to insure compatibility.

Once the code integrity has been thoroughly tested, I will then begin the second stage which is

the user evaluation. This stage will be split into 2 phases, the first phase will entail 20 separate

single user tests at different times. I will provide each user with a set of tasks to carry out and

once finished they will fill out a survey detailing their thoughts of the application and any issues

encountered. The second phase will entail all 20 users log in and using the application

simultaneously to perform a real-world stress test. If any is feedback I provided and/or

recommendations made, I will refactor the code and ask the test users to conduct a follow up

evaluation. If any issues arise from the stress test, I will reconfigure the auto scaling of the

environment, however as it may not be feasible to gather the group of 20 users gain, I will use a

semi-automated software stress testing application called Apache JMeter.

 - 64 -

MONTHLY JOURNALS

Monthly Journals

 - 65 -

SEPTEMBER

GOALS

This month I need to:

 Solidify the idea,

 Research technologies to use,

 Draft a proposal.

ACHIEVEMENTS

I achieved all goals I set out to accomplish this month. I decided on a web application that will help college

students from all 3rd level institutions across Ireland to share their materials, much like a nationwide

moodle. I researched different technologies incorporate such as upload/download tech and also decided

to implement a machine learning model. I decided on AWS for the backend infrastructure.

OCTOBER

GOALS

This month I need to:

 Define exactly what I would like the app to do,

 Define the different user access levels

ACHIEVEMENTS

I did not fully achieve the goals I set out to do this month due to other module deadlines, however I did

solidify the user access level and I also put some time into how I want the end result to look. Further more

I decided on deploying the app on a LAMP stack back by an ELB.

 - 66 -

NOVEMBER

GOALS

This month I need to:

 Define exactly what I would like the app to do,

 Research non-functional requirements,

 Create class diagram

 Draft a Requirements specification

ACHIEVEMENTS

This month I put a lot of work into the application on the conceptual side and the documentation side.

As last month I did not fully decide on the functionalities, I began the month by completing this goal and

decided on the core functionalities of upload/download, forums, machine learning model and global chat.

From this information I the drafted the functional requirements section of my Req Spec. As I had put some

research into the backend infrastructure last month, I was also able to draft the non-functional

requirements and create a class diagram. I then combined all sections to create the final Requirements

Specification document.

DECEMBER

GOALS

This month I need to:

 Prepare for mid-point presentation

 Research most suitable IDE for development

 Research deployment options

ACHIEVEMENTS

Most of my time this month was split between the preparing for the midpoint presentation and

researching deployment options. After my presentation was complete I put all my time into deployment

options. Decided to utilize Amazon Web Services EC2, EBS and Route53. This was also reinforced by the

fact that cloud9 was acquired by AWS which meant I could use cloud9 on top of AWS.

 - 67 -

JANUARY

GOALS

This month I need to:

 Launch my AWS architecture

 Purchase a Domain

ACHIEVEMENTS

This month I research what size EC2 instance I should utilize. I was also initially going to use an RDS

instance for my database, however I decided I would first build it locally and then if I had time I could

migrate the local phpmyadmin database over to the RDS instance. I decided to launch a t2.micro instance

and an 8GB EBS volume.

I also purchased the domain name edyoucate.ie from Irish domains.

FEBRUARY

GOALS

This month I need to:

 Research good secure practices for login systems

 Database development

 Start login system

 Start registration system

ACHIEVEMENTS

This month I began the development of the login system in my tester cloud9 account rather pushing

straight onto my live environment. Before I started I researched good secure practices for login systems.

I also build the database in phpmyadmin. Once I was satisfied that the login system was working correctly

I the test account, I moved it to the production account.

 I also developed the registration system.

 - 68 -

FEBRUARY

GOALS

This month I need to:

 Test login system

 Research upload methods

 Research machine learning model implementations

ACHIEVEMENTS

This month I tested the login in system using the burp suite. I test it by inputting Javascript to try get some

feedback which failed due to the implementation of escape strings. I then tested for SQL injection by

inputting an SQL query however this also failed. The last test I carried out was a brute force attack on a

weak password protected account, this however was successful. I then researched and implemented a

brute force protection function which locks the account after 5 failed attempts.

This unforeseen challenge meant I did not have to time focus on the upload and machine learning

elements.

MARCH

GOALS

This month I need to:

 Research upload and VirusTotal scanning

 Research machine learning

ACHIEVEMENTS

I knew what way I was going to upload the files, however the structure was quite challenging. I needed to

have a tab for each category and an accordion for each corresponding topic. I was able to achieve this

using JavaScript for the most part. I then used a simple directory viewer which echo’s the files with in their

dedicated directories. Once I had decided on the structure I then began work on implementing the

Virustotal API. Having researched the API and the work involved and also having researched machine

learning and the worked involved in the model training I came to the conclusion the it would not be

realistic to continue with the machine learning.

I used the classes provided by VirusTotal to shape the structure of the upload and schedule the scan.

 - 69 -

APRIL

GOALS

This month I need to:

 Continue the VirusTotal scaning

 Complete the Forum section

ACHIEVEMENTS

This month I put more work into forming the database table to handle the uploads and virustotal input.

I experienced issues when I was running the cronjob that pulls the data from virustotal. The script was

running fine when I was running it manually through the CLI, however when I tried to run it via cron it was

not removing the malicious file from the server but it was removing the entry from the database.

After some time and research I discovered this was due to the fact that cron does not run from within the

web directory, so it was in easy fix in that I just needed to add /var/www/html to the file path.

After some research on Udemy I developed a php ODP forum. The forum took shorter than expected to

build as I had the help of a follow along course.

For the first time in a few months I met the outlined goals.

MAY

GOALS

This month I need to:

 Pen Testing

 Unit Testing

ACHIEVEMENTS

This month I worked solely on testing the application from all aspects.

I started by unit testing each feature and was happy to discover all unit tests passed successfully.

I then used the burp suite to manually test all user input and URL and privilege escalation vulnerabilities.

 - 70 -

USER MANUAL

Edyoucate.ie

User Manual

 - 71 -

When a user first visits the site they are met by the homepage for which they can navigate and read about

the site:

 - 72 -

As per the main flow a non-registered user can freely navigate the main homepage, however if they click

on the “Categories” tab they will be redirected to the registration page where they will be asked to

register an account using an username, email address and password:

 - 73 -

Once the user has registered they will then be redirected back to the homepage where they can sign in

with their new credentials using the Login button in the top right corner of the page:

When the user logins in they can then navigate to the “Categories” where the can view materials. To view

the materials the user simply needs to click the desired category and then the desired topic:

 - 74 -

In order to download a file, the user simply needs to click on the desired file. If the file is an image it will

open in the browser, any other file type will begin download.

If you user would like to upload material they can do so by using the upload form on the left of the screen,

selecting the desired category, the desired topic and then using the file chooser to choose a file from their

local machine:

If they are happy to upload, they can click the Upload button which will submit the file to the chosen

position and also queue the file for scanning by VirusTotal:

 - 75 -

Registered and non-registered users alike can both visit the forum where they can view all forum posts.

Before a user can create post or comment on a post they first need to register an account. They can do

this by clicking the register button on the frontpage. The register requests the name, username, email,

password, avatar and has an optional about section.

 - 76 -

Once the user has added the required fields they can then click the register button which will redirect

them back to the frontpage of the forum and display a registration successful message:

Now that the user is fully registered they can login using the login form:

 Now that the user is logged in, they can create a forum post by clicking the create button in the top right

corner of the page. This will bring the user to a form where they can choose a title, choose a category and

add further details of the question:

 - 77 -

Once the user has filled in all fields, they can hit the submit button which will submit the post and redirect

the user back to the forum frontpage where they will see a confirmation message and their post will be at

the top of the list:

Users can also comment on other post by clicking on the desired post title. This will take the user to the

post where they will find a blank text area:

 - 78 -

Once the user fills in their reply they can click the reply button which will instantly post the reply to the

page and they will also receive a reply confirmation:

When the user has finished reviewing the forums they can use the logout button to log themselves out of

the application. Once successfully logged out they will also receive a logout confirmation:

 - 79 -

REFERENCES

Amazon Web Services, Inc. (2017). Amazon Relational Database Service (RDS) – AWS. [online] Available at:

https://aws.amazon.com/rds/ [Accessed 2 Nov. 2017].

Amazon Web Services, Inc. (2017). Amazon Simple Storage Service (S3) — Cloud Storage — AWS. [online]

Available at: https://aws.amazon.com/s3/ [Accessed 6 Nov. 2017].

Amazon Web Services, Inc. (2017). AWS | Elastic Load Balancing - Cloud Network Load Balancer. [online]

Available at: https://aws.amazon.com/elasticloadbalancing/ [Accessed 3 Nov. 2017].

Amazon Web Services, Inc. (2017). Elastic Compute Cloud (EC2) – Cloud Server & Hosting – AWS. [online]

Available at: https://aws.amazon.com/ec2/ [Accessed 3 Nov. 2017].

Chris Veness, 2. (2017). SHA-256 Cryptographic Hash Algorithm implemented in JavaScript | Movable Type

Scripts. [online] Movable-type.co.uk. Available at: https://www.movable-type.co.uk/scripts/sha256.html

[Accessed 24 Oct. 2017].

Portswigger.net. (2017). Burp Suite Scanner | PortSwigger. [online] Available at:

https://portswigger.net/burp [Accessed 10 Nov. 2017].

