

National College of Ireland

BSc in Computing

2017/2018

Khateeb Ahmad

X16112989

x16112989@student.ncirl.ie

Final Project Report

 2

Declaration Cover Sheet for Project Submission

SECTION 1 Student to complete

Name:

Khateeb Ahmad

Student ID:

X16112989

Supervisor:

Dr. Paul Stynes

SECTION 2 Confirmation of Authorship

The acceptance of your work is subject to your signature on the following

declaration:

I confirm that I have read the College statement on plagiarism (summarised

overleaf and printed in full in the Student Handbook) and that the work I have

submitted for assessment is entirely my own work.

Signature: Khateeb Ahmad___________________________ Date: 13 May 2018

 3

NB. If it is suspected that your assignment contains the work of others falsely

represented as your own, it will be referred to the College’s Disciplinary

Committee. Should the Committee be satisfied that plagiarism has occurred this

is likely to lead to your failing the module and possibly to your being suspended

or expelled from college.

Table of Contents

Executive Summary .. 5	

Problem .. 5	
Solution .. 5	

1	 Introduction .. 6	

1.1	 Background and Aims .. 6	
1.2	 Technologies .. 7	
1.3	 Structure ... 8	

2	 System ... 9	

2.1	 Requirements ... 9	
2.1.1	 Use Case Diagram .. 9	
2.1.2	 Functional requirements .. 10	
2.1.3	 Non-Functional requirements .. 11	
2.1.4	 Interface requirements ... 13	

2.2	 Design and Architecture ... 18	
2.3	 Implementation ... 23	
2.4	 Graphical User Interface Layout .. 33	
2.5	 Testing ... 38	

3	 Conclusions .. 43	

4	 Further development or research ... 44	

5	 Appendix .. 45	

Code Repository .. 45	
Survey questions ... 45	
Monthly Journals .. 47	

 5

Executive Summary

Problem
Finding the right service at the right time is an extremely challenging

task currently. Our own experiences and surveys that we have

conducted, indicate that it is a pain-point and needs immediate

attention.

Solution
Such consumer problems can be solved by leveraging power of the

internet and creating a matchmaking engine which sets up potential

customers with the quality service providers in their area, saving them

from the hassle of going through thousands of listings or having to

rely on word-of-mouth referrals.

1 Introduction

1.1 Background and Aims

Managing too many tasks can be a real challenge, but using

technology based solutions can make it easier. EazyServices is an

application that aims to be a one stop solution for all routine service

dependencies. The application offers users a wide range of services

such as Repair & Maintenance, Event Planning, Health & Wellness

and other services to make it a complete lifestyle platform. To use

EazyServices, a customer selects a category and answers several

questions on website. Our platform’s recommendation engine uses

the information and location-based data to match users with service

providers. Application allows users to book appointments instantly in

a hassle-free manner. It also allows the users to have a direct chat

with the professionals/service providers. Through EazyServices, I am

planning to build the largest web based services marketplace in

Ireland. Professionals can join to offer their services on-line and are

rated on a five-star scale by customers, which helps them maintain

quality. EazyServices can essentially be a one stop destination for all

the professionals to expand their market on-line. A list of services that

would be included are:

• Location-based search for service providers

• Rating and Reviews to be given by users to service providers. A

sentiment analysis would be done on each review using the

semantic web to look for positive or negative sentiment and rate

the service provider accordingly.

 7

• Facebook integration to sort reviews based on Facebook

friends

• Robotic process automation to ease the task of finding service

providers for users.

• Book an appointment functionality to allow homeowners to avail

services provided by service providers.

• Payments functionality to allow customers to pay service

providers from the portal itself.

• Coupons for customers to get a discount on the bill for services

taken and Rewards for service providers for providing quality

services.

• Monetization - the app charges a small percentage of fees from

the customer/service provider for the platform provided. This

will help development team make money.

1.2 Technologies

EazyServices solution will be accessible using a web-based graphical

user interfaces. The interface will be developed using HTML5

technology. Clients will be RESTful and use HTTP standard methods

to communicate with middle tier services.

Middle tier of EazyServices will consist of many micro services

instead of traditional monolithic web application. Micro services are

scalable, heterogeneous, provides clear contextual boundaries and

ease of independent development and deployment. It is relatively

easy to distribute and fault tolerant due to its self-contained nature

 8

and concise specification. I will use Java Standard Edition and

Enterprise Edition to develop micro services.

To store business, configuration and subscription data, I will

use relational databases. Database will have secured access only to

authorized administrator. The micro services will authenticate all

queries before executing them on databases.

I will use an object relational mapping tool such as Hibernate to

associate data with objects on middle tier. I will also take care of

major cross cutting concerns such as logging, authentication,

authorization, communication, management and configuration across

all tiers of application, wherever applicable. Industry standard Spring

Framework and its aspect oriented capabilities will be used in middle

tier to handle cross cutting concerns.

1.3 Structure

Chapter 2 discuss various aspects of the system such as

requirements, design, architecture, implementation details, and

testing of the application. Chapter 3 gives concluding remarks and

Chapter 4 explores the further development opportunities in the

application.

 9

2 System

2.1 Requirements

This section list downs functional and non-functional requirement for

EazyServices product.

2.1.1 Use Case Diagram

 10

2.1.2 Functional requirements

Location Based Search Service

Users will find service providers based on their location. When the

user logs into the application, its location will get updated and based

on the location a listing of service providers will be presented to the

user and the filtering criteria on this listing will be user location. This is

the most important requirement as it forms the main matchmaking

engine of the application.

Reviews and Ratings Service

Listing of service provider will be sorted based on favourable reviews

and ratings received by them using the semantic web technologies.

Priority will be given to service providers who have received rating or

review from user’s friends on social platform such as Facebook. This

requirement forms the basis of search results being presented in the

earlier requirement.

Appointment Booking Service

User selects a service provider and is presented with a screen where

the user will get service provider’s contact details such as phone and

email. Along with this user will get an option to make an appointment

with the provider or provide a review/rating. This service is the actual

delivery point of the whole application.

Robotic Process Automation

Users will have an option to chat to a bot and book a service provider

for their service. By using this functionality, the user can tell the

 11

service provider the exact description of the service he/she expects.

They can also agree to a price if needed. The functionality is not that

important and has been added to make the application a more

rounded product.

Payment Service

User will have an option to pay a service provider for services they

have received through the application itself using a payment gateway.

The payment gateway will be implemented using a stub rather than

an actual implementation as it involves licensing cost. This

requirement is important as it will provide monetary benefit to both the

service provider and the development team.

2.1.3 Non-Functional requirements

Logging

Logging is important tool to monitor execution of code and use it as

debug tool to understand how and what went wrong. EazyServices’

middle tier will use Java Log4j logging capability to log sequence of

control flow.

Authentication

Authentication is mechanism which provides only intended access to

application. EazyServices will use multiple authentication capabilities

to verify user’s and administrator’s credibility. A Spring based security

capability will be integrated with system as default authentication

mechanism. In most of the cases a system administrator will use this

form of authentication while managing application. For social platform

 12

based reviews and rating we will allow user to be authenticated using

social media platform such as Facebook.

Authorization

Authorization gives authenticated user and administrator to see and

act based on their granted permissions. EazyServices’ database will

have multiple roles and capabilities. Each capability will be

preconfigured with a set of actions that the application user can

perform. A role such as application user or application administrator

will have a set of preconfigured capabilities. A user or administrator

will be a part of single of multiple roles. When user or administrator

login to application his or her role will be determined, and based on

role appropriate actions will be enabled or disabled.

Scalability

Scalability is a capability of application to grow with load. It can be

tested by adding more requests or processing load and can be

achieved by adding more hardware capability and balancing

(sometimes, distributed) load on various hardware devices. The

EazyServices application will be scalable with front end web server

distributing the request load on various application server instances.

Each instance of application server will have its own independent

database which will have replicated copy of data. The data between

the database instances will be sync periodically. The application will

be tested with vertical scaling technique.

 13

Availability

EazyServices will be available for most of the time by deploying it and

making it accessible over multiple instances. So, availability will be

achieved using horizontal scaling.

2.1.4 Interface requirements

The following section describes responsibility, provided APIs and

expected APIs for each component of the application EazyServices.

Registration System

This component provides the actor the functionality to register as a

user/service provider/administrator with the system. The option to

register will be provided when the user signs-up with the application

for the first time.

Provided APIs

 Register: This API will be used to register actor as user/service

provider/administrator.

 AddUser: This API will add user into the system database along

with their credentials and the role that they have selected.

Expected APIs

 None

Authentication and Authorization System

 14

This component validates the user supplied credentials with the ones

stored in the system database for the same user thus providing

authentication services on log-in. It also provides the authorization

services by checking user role at the time of login and providing the

appropriate capabilities based on user role.

Provided APIs

 Authenticate: This API will authenticate the user supplied

credentials against system stored credential to validate use identity.

Expected APIs

 None

User Management System

This component provides user management services based on user

role. It provides user details and servers as the central spot for users

from where they can access other services provided by the

application.

Provided APIs

 None

Expected APIs

 AddUser from Registration System

 Authenticate from Authentication and Authorization System

 Notify from Notification System

 15

 Pay from Payment System

Search and Listing System

This component will provide users with the functionality to search

service providers based on the service requirement and desired

location. The user will get a list of service providers registered with

the application based on the service and the region they provide on

the screen.

Provided APIs

 Search: This API will allow users to search service providers

based on the service and the location they provide on the screen.

Expected APIs

 GetReviewsAndRatings from Reviews and Rating System

Appointment Booking System

This component will allow users to book appointment with the service

provider of their liking at the time and location they choose. It also

provides the option to supply a name and the description of the

appointment they are making.

Provided APIs

 Book Appointment: This API will allow users to book

appointment with the service providers they choose from the search

listing.

 16

Expected APIs

 ConfirmAppointment

Reviews and Rating System

This component will allow users to provide reviews and rating to the

service providers from whom the user has already availed the

services. The rating will be out of 5 and the review will be in text

format and will be optional.

Provided APIs

 ProvideReviewAndRating: This API will allow users to provide

review and rating to the service providers who have provided their

services.

 GetReviewsAndRating: This API will provide the functionality to

get all review and the average rating received by a service provider

upon request.

Expected APIs

 None

Payment System

This component will allow users to pay the service providers upon

successful service completion from the application itself. A proxy

gateway has been implemented as an actual payment gateway incurs

licensing costs.

 17

Provided APIs

 Pay: This API will allow users to pay the service providers for

their services.

Expected APIs

 None

Notification System

This component will provide e-mail notification to the users on

appointment confirmation.

Provided APIs

 Notify: Used to send e-mail notification to the user upon

appointment confirmation.

Expected APIs

 None

 18

2.2 Design and Architecture

This section describes the technical architecture of EazyServices

solution. The architecture has three tiers; client, mid-tier and data tier.

All tiers are modularised and have no direct dependency on each

other. The modularisation helps in development of each tier

independently so that it can evaluate and vary without affecting

another tier.

Client Tier
The EazyServices solution is available to users as a traditional

browser based thin client. The client works on almost all popular

 19

browsers such as Google Chrome, Mozilla Firefox and Microsoft

Internet Explorer. The client is developed using HTML 5, JQuery,

Java Script and asynchronous AJAX technologies. The client is

RESTFul and uses Representational State Transfer like calling

mechanism to communicate with mid-tier. It uses HTTP as base

protocol for communication however if the web server is configured to

work on Secured Socket Layer then it uses HTTPS protocol for

communication.

The presentation tier is mainly divided into two layers; user interface

and presentation logic. The user interface layer is responsible for

showing Graphical User Interface to user whereas the presentation

logic layer decides when and what to show to user based on

interaction. The presentation layer is developed using HTML 5 and

Cascaded Style Sheet (CSS) whereas the presentation logic layer is

developed using JQuery, Java Script and AJAX technologies. The

following figure shows the presentation tier with layers and

technologies used.

Middle Tier
The mid-tier of EazyServices consists of two part, the web server and

application servers. The web server is front server which trap the user

request and then redirect the request to application server. At the

response time the application server first sends response to web

server and then web server sends response back to requesting client.

 20

The Web Server
Apache web server is used as front end server to handle all user

requests. The web server is configured to run on port 80 and works

as manager. Multiple application server worker threads can be

created to serve user request. In current implementation two

application server workers are created. The default round robin

fashion of redirecting user request to application server is used. The

presentation layer contains only HTML pages and Java Script;

therefore, these can be deployed on web server instead of application

server for better performance. With this implementation, for static

pages, web server can redirect response without reaching out

application server.

 21

The Application Server
Redhat Wildfly server is used as an application server for deploying

services. However, as development of micro-services is done easily

with Spring Boot framework which provides default Tomcat container,

we adopted both (Wildfly and Tomcat) for micro-services deployment.

The Java Standard Edition, Spring framework, micro-services

development using REST and Java Persistence API (JPA) are used

to develop mid-tier components.

Instead of using traditional monolithic web application approach

EazyServices is developed using light weight micro-services using

REST. Micro services are scalable, heterogeneous, provides clear

contextual boundaries and ease of independent development and

deployment. It is relatively easy to distribute and fault tolerant due to

its self-contained nature and concise specification. Moreover, it is

cloud ready and goes well with DevOps.

Data Tier
MySQL 5 is used to store business, configuration and subscription

data in relational fashion. Database is only accessible by services

defined in mid-tier. To access these services a user need to be

authenticated with the system. Therefore, access to database is

inherently secured from malicious users. Along with that, database is

only accessible to authorized administrator from database clients or

console.

 22

Cross cutting concern

The cross cutting concerns such as logging, authentication,

communication, management and configuration have been taken

care across all tiers of application.

Logging

For logging at mid-tier application uses Simple Logging Façade for

Java (SLF4J) interface to use logging implementation provided by

Spring Boot framework. The logging level such as DEBUG, INFO,

and TRACE can be configured using Spring Boot configuration

properties file.

Authentication

For authentication, Spring security and Java Enterprise Edition

security mechanism has been evaluated however that turnout to be

configuration overhead for small application therefore finally a Login

Service is written on mid-tier to handle user authentication.

Communication

The application uses HTTP and if web server is configured on SSL

then HTTPS is the protocol used to communicate between

presentation tier to mid-tier. MySQL database supports multiple

communication protocols however to communicate between mid-tier

to data-tier TCP is used.

System Management and Configuration

Failure of services such as web server, application server and

database will be logged to configured log file. When the product is

unresponsive then log file can be used to monitor activities and find

out fault. Apart from that, these services have default administrator

 23

console which can be used for management. Similarly, for

configuration of product application server console can be used.

Mostly, the application server needs lot of configuration which are

handled by configuration properties file defined as part of source

code. In most cases, restarting servers should solve the failure. In

rest of the cases log file can be used to find out failures in the

system.

The system can handle all types of crash failure of application servers

because system uses multiple application servers on mid-tier.

2.3 Implementation

Registration-Login Service Sequence Diagram

The above sequence diagram shows the sequence of interactions

between the components while registering with the application and

 24

then signing-in. The actor while registering, selects the role with

which he wants to register. Currently our application supports 3 roles:

User, Service Provider and Administrator. Post this the actor fills the

corresponding registration form and sends the registration request to

the backend. At the backend, Registration Controller intercepts the

request, containing the registration details and the role type for the

actor, and forwards it to the Registration Service. The Registration

Service consists of the business logic to register the actor. The

service first encrypts the password using SHA-256 and then based

on the role of the actor, sends the registration request to the

appropriate Registration Repository (User / Service Provider /

Administrator Repository) which then takes care of the operations for

storing the registration details in the database. Post registration, the

Registration Service receives the actor id for the actor which it sends

to the user interface via Registration Controller.

For login operation, the actor provides his/her credentials (username

and password). The request for login is intercepted by the Login

Controller which forwards the request to the Login Service. The

service first contacts the Login Repository to fetch the credentials of

the actor who wants to login. If the credentials fetched do not match

with the ones provided by the actor, null object is returned and the

message “credentials do not match” is logged. If the credentials

match, the repository is again contacted to fetch the Actor object

which is returned to the user Interface via Login Controller.

 25

Appointment-Payment Service Sequence Diagram

The above sequence diagram shows the sequence of interactions

between the components while booking appointment and making its

payment. The Actor, through user interface, sends the appointment

booking request to the backend. The request, containing the

Appointment object, is intercepted by the Appointment Controller

which forwards the request to the Appointment Service. The

Appointment Service consists of the business logic for appointment

booking. The service sends the request to the Appointment

Repository which takes care of all the DAO operations for

Appointment bean. After storing the Appointment into the database,

the service receives the Appointment object which is then passed to

the user interface via Appointment Controller.

Post appointment booking the user can make payment using the

same user interface. The request for payment, containing the

 26

Payment object with the appointment id, is intercepted by the

Payment Controller which forwards the request to the Payment

Service. The Payment Service consists of the business logic for

making payment of the booked appointment. The service sends the

request to the Payment Repository which takes care of all the DAO

operations for Payment bean. Since no third-party gateway is used,

we have implemented a proxy gateway which does the payment

transaction without checking any details. After the payment is done,

the Payment Service receives the Payment object with status of

transaction and sends this object to the user interface via Payment

Controller.

Search Service Sequence Diagram

The above sequence diagram shows the sequence of interactions

between the components when user searches for service providers

 27

for a service. The user first provides the type of service he wants and

the region in which he wants the service. The request, containing the

User object with service type and region, is sent to the backend. At

backend, the request is intercepted by the Search controller which

forwards the request to the Search Service. The Search Service

consists of the business logic for finding all the service providers with

their reviews based on the requested service type and region

identifier. The service contacts the Search Repository to fetch all the

required list of service providers and their Reviews. Post this, the

Search Service, using Facebook id of user, fetches all his/her friends

on Facebook which are also registered with our application. For the

previously fetched list of service providers, a sub list is prepared

which contains the service providers who have been reviewed by the

registered friends of the user. Both the parent list and sub list with

their corresponding reviews are returned to the user interface via

Search Controller.

Rating-Review Component Interaction
For rating the service provider post the service is provided, the user

rates the service provider out of 5 and provides an optional review for

his/her experience. The request containing the User and Service

Provider objects with the rating and review is sent to the backend. At

backend, the request is intercepted by the Rating controller which

forwards the request to the Rating Service. The Rating Service

consists of the business logic for storing the rating and review for the

service provide. The service sends the request to the Rating

Repository which takes care of all the DAO operations for Rating-

 28

Review bean. After storing the rating and review into the database,

the service receives the Rating-Review object which is then passed

to the user interface via Rating Controller.

System Structural Model

The structural model of EazyServices gives a view of a system that

emphasizes the structure of the objects, including their classifiers,

relationships and attributes. The operations structure is intentionally

skipped to save space as it can be inferred from the class name.

Model-View-Controller architectural pattern

At very high level, figure 3 shows the Model-View-Controller

architectural pattern used in product.

Figure 3. Shows the Model-View-Controller architectural pattern used

in product

 29

The view consists of multiple HTML pages rendered in browser. The

controllers are Plain Old Java Objects (POJO) and written in Java

using Spring Boot framework. The model comprised of services,

Database Access Objects (DAO) and object model. The object model

is described in following section. Like controllers, the services and

DAOs are POJOs and written using Spring Boot framework. The

views are deployed in web server and the controllers and models are

deployed in application server.

Class Diagram

The figure 4 shows static modelling of classes, their associations and

attributes. At the heart, it has actor and each actor is associated with

Role. There are three types of actors involved in system, namely

User, ServiceProvider and Administrator. There is no association

between actors, however, each actor has a Role to play. An actor

cannot play more than one Role therefore it has cardinality one-to-

one. The Role class defines which role an actor can play. There are

three types of roles; user, administrator and service provider.

A Credentials class is independent and treated as value object. In

real world, credentials are associated with actors, however, in static

modelling purposely the association is missing because of security

concern.

A Service class represents type of service offered by service

provider. A service provider can provide multiple services such as

 30

carpentry, house cleaning and electrician etc. Similarly, a service can

be provided by many service provider. Therefore, cardinality between

service provider and service is many-to-many.

An Appointment class depicts the real-world job. When a user has

some service to perform then the user first book an appointment with

service provider. The appointment has information about user who is

booking appointment, service provider who is going to serve,

appointment date and service to provide. User can book just one

service per appointment therefore user to appointment cardinality is

one-to-one. Similarly, only one service can be serve per appointment

therefore cardinality between service and appointment is one-to-one.

A Payment class calculates actual amount to pay against the service

offered by service provider. Once the specified work is completed by

service provider then user is liable to pay service charges. User can

look for completed appointments and pay using this proxy payment

gateway. The cardinality between payment and appointment is one-

to-one.

 31

Figure 4. System structural model of EazyServices product (Class

Diagram)

A RatingReview class does two functions, let user rate the service

provided by service provider on scale of five (five being highest) and

also let user write review. As a user can write multiple reviews per

appointment therefore cardinality between user and review is one to

many and similarly a service provider can have multiple reviews

therefore cardinality between service provider and review is one-to-

many.

 32

Entity Relation Diagram

Figure 5. System structural model of EazyServices product (ER

Diagram)

 33

Generally, the entity relation and object model are different from each

other, however, the EazyServices being a small application we

manage to keep both same so that there is one is to one mapping

between the two models. Moreover, the ER model has couple of

more tables than the object model and those are called a mapper.

The mappers are basically a table which holds many-to-many

relationship between objects such as service and service provider.

2.4 Graphical User Interface Layout

This section provides screenshots of some key screens in the

application and explains each one of them.

 34

This is the sign-up scree where user can sign-up as a service

provider or as a service user.

This screen shows registration process for a service provider. Apart

from contact details a provider is supposed to give their region for

operation and their services. A service provider can provide multiple

services if they wish to do so.

 35

This screen shows search functionality in action. It lists the providers

based on previous ratings calculated from their reviews. Here, since

no review had been done so the average rating is 0. The user can

write a review or book the services of the provider.

 36

This screen shows the appointment booking process. The details of

provider are prefilled and the user has to provide details like

description and date for the appointment.

 37

This screen shows all the appointments a user has made and can

view them in details as well.

 38

Clicking on show details also allows the user to pay for the service

provider by using the PayPal sandbox.

2.5 Testing

Test Plan

A test plan is a document detailing the objectives, target market,

internal beta team and the processes involved in a specific beta test

for a software or hardware product. I developed a test plan to ensure

that all the testing I wanted to carry out was achieved. The different

types of testing methods I had planned to carried out can be

 39

compared to the actual testing methods carried out below, the green

highlighted fields display the testing methods that were performed . A

copy of my test plan can be viewed below.

Approach Type Of Testing Manual Testing

Standard Testing Integration Testing Yes

Yes

Yes

Yes

Yes

Yes

System Testing

Usability Testing

Acceptance Testing

Verification

Special Types of
Testing to
address specific
challenges

Compatibility Testing

GUI Testing

Integration Testing

Integration testing is the phase in which individual features or

modules are combined and tested as a group this type of testing

occurs before validation testing. Integration testing was performed

throughout my project every time a new feature or functionality was

added as it helped me see how all the functionalities connected and

worked together. I had to particularly perform this type of testing after

I added the login and registration functionality to ensure that there

 40

was a communication with the database. When user sessions were

added this type of testing helped ensure the functionality was working

as a communication between the login and the user session was vital

to store the user session and display the user’s correct details and

give access to the booking services. Results were recorded and any

errors found were fixed.

Verification

Verification is the process to make sure that the application satisfies

the conditions imposed at the start of the development phase, it is

done to make sure the application behaves the way it is designed to

and for the purpose its built. Verification has been conducted though

out the application to make sure each feature behaves the way it

should per the requirements. It is very important to conduct

verification on all components of the application to avoid the release

of a version with bugs. After conducting verification on all features, I

discovered that the reviews system was not working correctly and so

I fixed it on time.

System Testing

System testing is testing to ensure that the application works in

different environments (older browsers, different systems) as

expected. System testing is done with full system implementation and

environment. This type of testing falls under the class of black box

testing. I did this testing manually and used different versions of

 41

popular browsers like Google Chrome, Mozilla Firefox, Microsoft

Edge and Apple Safari.

Acceptance Testing

This type of testing is done by the customer to ensure that the

delivered product meets the requirements as the customer expected.

A test case helps with acceptance testing as a test case is a set of

conditions or variables under which a tester will determine whether a

system test satisfies requirements or works correctly.

A test case was developed by myself and my brother was asked to

test the application as he had never seen my application until today.

While he was testing the application, I was busy documenting all the

results. I then took the results recorded and started to fill out the test

case with the results I had written down. I began to document the

step details my brother took, the expected results, the actual results

and if the step passed or failed. After I documented the results I

realized I had to make some changes and improvements to my

application. This testing helped me realize the errors a customer

could have faced if they were not repaired before app release. Some

recommendations were made by the tester and they have been

added.

GUI Testing

GUI testing is the process of testing the systems graphical user

interface of the application under test. GUI testing involves checking

 42

the screens with the controls like menus, buttons, icons and all types

of bars etc. GUI is what the user sees and it is important this type of

testing is carried out to ensure a fluid and error free GUI is offered to

the user. I had performed GUI testing to make sure that all the

buttons such as ‘Book Now’, ‘Search’ etc. we’re functioning correctly

and the GUI was displayed once the button had been clicked. All

other screens of the application were functioning correctly.

 43

3 Conclusions

The goal I set at the start of the year was nearly fulfilled. I believe that

I developed the application to the best of my abilities. The application

development project gave me a good exposure to various

technologies and state of the art technology frameworks like Spring

boot, Facebook graph API, and Semantic web. I believe the skills I

learned through this module would help me in my later career. I also

tried to complete implementation for robotic process automation but

was unable to do so due to lack of time.

The application development process was very enjoyable and the

results of the application show the amount of time and effort that were

applied into the development of this application. I hope to be

developing this type of project in the future.

 44

4 Further development or research

System could evolve over time by extending it to various platforms

like mobile phones. An app can be made that would make the portal

more accessible to wider audience. The app can also be extended by

providing support for virtual wallet that could provide the facility of

cash back which can be used for later services.

 45

5 Appendix

Code Repository

https://github.com/KhateebAhmad/EazyServices.git

https://github.com/KhateebAhmad/EazyServicesClient.git

Survey questions

 46

 47

Monthly Journals

����������	ABCDEF�

����������	�A�BC����D�EC	��

F�����		�A�������������������	������

����CA������	D����� !�"�#���	D����� !

��	���������E��
$���C����	���C�%�$����&��'���&�(���C��'�&&�)�����C����A

����������	����AB�C

*��	��C��D��������%�$�C��������������'�&&�)����&��	��C���&��+�'�������������,�&��	�����$�

C������	+��&'��&�+���''��������&�������C������,�&����%�������%����������)���������&�������,���

�C��&�'���+�&���'�����������,�&��	�����E���C���������'����-���%�$�������������������)��������

�&�����

D��EF�C�����B�CF�����C���

E���C���������'����-���%�$�&��������)���&&�'���������������.'��������&���/����	������$��C���������

����+�)���������������)C�������C�'��������&���/����	����)���D��0�����)���������'������������

���������+��#�������C���������%�$��&���+�$�������������

	��������������������D��0&����C������������&&���������������

�����C�D�������

E'�����C���$�����	��������������''�����������&���,����(���'���,�&��	�������&���$� ���0����C�

����+ � ��� � D+ � ��� � ��� � �������� � � � ����+ � ����� � D���� � �� � ��,�&��	���% � ������� � ����

���'������������	�&�1��+��2�������C����������+�)������������)��C�����+��������$���,����������

���������,��&+�D������������+����������������������������������

�B����������E�D��C�C������

��'��� � �������� � �����& � ��,�&��	���% � $ � 	��� � 	��0 �)���'��	�� � '�� � �C� � ����C���& � �����

�����'���������C�)��C���)�&&���		��������)��C�	��.��������,������$��&���	������C��C�&�,�&�

���������&�������������'����)C��C���	�������)�&&�D���&��������)C��C�&���������$��&���������

/�������������	������'���	����������������D-�������������	���&��'����C�����&��������

�B�B����B�C���E��B�C���

$��������������,�����,�&��	����	���&��3##��)C��C�C�&����	�����������&+���C��������������

�������&��'����������+��$���&���	������C���$����4��C�,�����������&����'���	������C�������'�

���-�������'�1����D����

��	��������BE
$�'�&���C���D+��&������������,��������	�����C�����������������C����)�����������������&���������

�+���,�&��	�������������&���)������ &����	���C�������,��+�C����)������.�&����������$�

0��)��&&�����������������&+�����C��������������)����C����D&������&������������'������-����

��	�&������

��)�,��%�$�'�&���C����������)��&��C�,��D����	��C��	���C�������'����'�&��'�$�C�����	�����	�

	���������)�������)��0�����&����������%�$�)��0����&���%�$�C������'�&'�&���&����'���&���)C��C�

	������C�����	���	����C����)����������'��C�������������	�������������/����	����������������

��,������

�E��E���	��FE���
5�1������C���������������������������-������,�&��	�������������������+��C����	�&����6$�'���

�C����1��	���C��$�)��&���&���&�0�������	�&������	��D�����'��������&���������)�&&�

�C��D���BD	�����E��

#�����'��������A

$��	�����������A

E������$��	�A

����������	ABCDEF�

����������	�A�BC����D�EC	��

F�����		�A�������������������	������

����CA��������� !"#

��	���������E��
$C���	���C%�&�'����D(�������	�(�����C���������)&�*���	�����(���������&����������((�������*��	�

	��	��+������'����(����D(�����������C�	��������	�+����������������������((������%�&�C�,��

������*���(��C�������	�����(�������������C���'��(���(�����������C���&����-���	�(�	����

��	��C�����C���'��������������(����(������������*�	�����(��������

��	��������BE
$C���	���C�'����'�((����&�'����D(�������	�(����)&����������,��	�������(��������*�

����	�(��C	���������(�����,��	�����������*�����������������C�'�	�����(��������'��(��(��+�

(�+������D�C�,���$C���	������C���&�'����D(����������(�����������*��	�	��	��������	��+.����

��������(������������������(���(�������	�+���C�������������������D������*����C������������

��'�

&�'��(��C�,��(�+��������	�(������	��*��������(�������'�((�D���'��������D(������������/,���

��	�(����������	�(��*�������(�+������������,�������,������'��(��C�,������	�����0����

��,�(��	����������(������

�E��E���	��FE���
1����C����2��	���C%�&�'�((����������	�(�����((�D�����*��������(������(�+��(�����%�����������,�����%�

�����C�����C�	%���,��'�������C�������*���2��	���C%��C�����(�'��(��D�����*����C���D�����

,��������*��C����������������	�(�������������������'�((�

�C��D���BD	�����E��

3�����*��������A� 4����� !"#

����������	ABCDEF�

����������	�A�BC����D�EC	��

F�����		�A�������������������	������

����CA���D������ !"#

��	���������E��
$C���	���C�%���	�&�����D�����'��������&���������D������������D��	�����&���������%���	�&�����

&����� � ��� � ���� � ���'�&�� � '�� � D��C � ���(��� � ���(����� � ��� � �����	���� �$C��) � % � ��	�&�����

�������������'��������(������E'�����C���%�	���������C����'��������&����*C��������������������C�

�����(�����D���������C��&���������+���������(�����C���D������&�����)�%� �	�&�	�������C��

��������D��,��C�	�'����������	������%��&����	�&�	�������C��'��������&����������(������(��*��

'������(�������(������

��	��������BE
$C���	���C�*���(������������%�*����D&�������	�&������D�����(��������'�	��������������&��%� �

C�&��� �	� � �� � C�(� � � � -% � '�� � 	� � ���&������� � ����� � *C��C �	���� � �C�� � % � ���&� � ���(����

'��������&�����������������&��,��C�	��������&���%���&���	������C����������������,��	��C���	��'���

	�����.�	��'��	�����'��������&�����������C���

��*�(��)�%�*��������������'�&������������	�������&�������(������������������C��/�����%�*���

��&���D&�����*����������������'����&&�'��������&������%��	�&�	����������)�%�*��������������*��C �

�	�,������������	��D������	�����������D���*��������D&�������	�����*��C��C�	�D���C������

�'��C��	���C�

�E��E���	��FE���
0�1� �	���C) � % � *�&& � ��� � �� � �	�&�	��� � �&& � �C� � ��''����������� � '��������&����� � &�,� � ����D��,�

�����������)�2��������D����������C)���	������*�D�������D�����������������	�������%�*�&&��&���

���������	�����*��C�����	�����������'���	��������������&�

%����&������C���%����������&�������������F��F�&�����D�1�'������	������$C�����/����	�������

��	��C���� �C�� ���	������'��� ������������*��C�	�������(���� ����� % �*�&& � ��,�� �C�� ��������

�		������&��

�C��D���BD	�����E��

3�����'��������A�" ���D� !"#

����������	ABCDEF�

����������	�A�BC����D�EC	��

F�����		�A�������������������	������

����CA�����C��� !

��	���������E��
"C���	���C�#�������������	�$�	����%��������$�������C�����%%����������	&����'����%��	���C��������

�������������(��	&������%���$��C�����)����*�#��	�$�	������)���D��+�������������%�����������

%��������(��,������C��D������%���(��,����(���D&�%��������"C��*�#��	�$�	������$��������D�����

�����C�,C�����C��$���������%��C���������������+�������	�����$$&������C����C�����������

����������C�������C��"C���#��	�$�	��������	�����������%��C��%��������$��&�,C���������(����

���(�����,��$���������������D�������������	������������	������,�D�

��	��������BE
"C���	���C�,�����������������#�,����D$�����������	���-�������%��������$�������	�$�	������

����%���$$&�	&����'����C������������������C�����%���$��������"C��%��������$������,�����������

�-�����(�$&����,�$$�����#�,���C���&����#���������������������&�	�'���D����

#�,��$��C�(��$�+������%����C���	������,�D��	�$�	���������D���,��������D$��������������#�,���

D��&�������'����%�����C���	���$������,�$$�

�E��E���	��FE���
)�����-��	���C*���	�$��������	������,�D��	�$�	�������������������������F�&F�$���&	����

����,�&�,�$$���������������&��#%�#��	���D$������������%�$$&���	�$�����C�	*���$&��C���#�,�$$�	�(��

�����D�����������������	������

�C��D���BD	�����E��

.�����%��������A� �������� !

����������	ABCDEF�

����������	�A�BC����D�EC	��

F�����		�A�������������������	������

����CA�E������ !"

��	���������E��
#C���	���C$�%���	���������	������&�D��	���	�������������&���������D������	�'��F�(F���

��(����%�&����D������	�'����	������������)�����D�����������������	�������%��C���)�*������

�C�����D����(����������D����(��)�	(��������������������	�����������������

��	��������BE
#C���	���C�&��������������(�C���������%�&�����(�������)����C�	(����+��������C������+�������

��C���	����������&�����#C���	������	�������������*��(���))�����������%������)�����C���D(����������

����($�%�C������������������)������*��(������&C��C�	����������������������������C�����+����

��*����	����&����	���C��

�C��D���BD	�����E��

,�����)��������A���E���� !"

	My Achievements
	My Reflection
	Intended Changes
	Supervisor Meetings
	My Achievements (1)
	My Reflection (1)
	Intended Changes (1)
	Supervisor Meetings (1)
	My Achievements (2)
	My Reflection (2)
	Intended Changes (2)
	Supervisor Meetings (2)
	My Achievements (3)
	My Reflection (3)
	Intended Changes (3)
	Supervisor Meetings (3)
	My Achievements (4)
	My Reflection (4)
	Supervisor Meetings (4)

