
National College of Ireland
BSc in Computing

2017/2018

Name Surname

Rafael Alves

Student ID

x16109716

email
x16109716@student.ncirl.ie

Full Title

IMsearch Technical Report

!

 !2

Table of Contents

 !3

Table of Contents 3 ...

Executive Summary 6 ...

1. Introduction 7 ...

1.1. Background 8 ...

1.2. Aims 9

1.2.1 Practical usage 9 ..

1.3. Technologies 10 ...

1.3.1. Android studio 10 ..

1.3.2. Firebase 10 ...

1.3.3. Java (Android studio) 10 ...

1.3.4. Google vision 10 ..

1.3.5. eBay API 11 ...

1.3.6. JSON 11

1.3.7. GitHub / Bitbucket 11 ...

1.4. Structure 11 ..

1.4.1. System 11 ..

1.4.2. Conclusions 12 ..

This section will report the benefits and disadvantage of the application,
analysing the functionalities results and user satisfaction. 12

1.4.3. Further Developments or Research 12 ...

1.4.4. References 12 ...

2. System 13 ...

2.1. Requirements 13 ..

2.1.1. Functional requirements 13 ..

2.1.2. Nonfunctional requirements 22 ..

2.1.3. Data requirements 24 ..

2.1.4. User requirements 24 ..

2.1.5. Environmental requirements 25 ..

2.1.6. Usability requirements 25 ..

2.2. Design and Architecture 26 ..

2.3. Implementation 29 ...

 !4

2.4. Graphical User Interface (GUI) Layout 46 ...

2.5. Testing 47

2.6. Customer testing 48 ...

IMsearch questionnaire 49 ..

2.7. Evaluation 50 ...

3. Conclusions 51 ...

4. Further development or research 52 ..

5. References 53 ..

5.1. Monthly Journals 54 ..

• Journal September 2017 54 ...

• Journal October 2017 54 ..

• Journal November 2017 54 ...

• Journal December 2017 54 ...

• Journal January 2018 55 ...

• Journal February 2018 55 ...

• Journal March 2018 55 ..

• Journal April 2018 56 ...

• Journal May 2018 56 ...

6. Appendix 58 ...

6.1. Project Proposal 58 ..

Executive summary 58 ..

Background 59 ..

1.2 Idea 60 ..

1.3 Technologies 61 ..

2 System 61 ..

2.1.1 Functional requirements 62 ...

6.2. Project Plan 70 ...

6.3. Other Material Used 70 ...

6.4. Key terms 72..

 !5

Executive Summary
 The amount of information exchanged through mobile application by users is

been increasing for last decade, one of the reasons behind it is the

implementation of better features and services that mobile devices can handle,

cell phones are easy acquirable products and reach every economic level of

society, opening space for development of new product and services to different

type of clients narrowing the production of the application for specific service, the

result of democratic technology is the generation of new fields to be explored Big

data is clear example of technology evolution and data usage. One of the

functionalities that became part of the cell phone standard is the camera into the

smartphone which varies from a low resolution to really high quality image

depending on the hardware provider and cost of it. According with Flickr report

the number of public picture posted on the web reaches over 50 million a day, the

number of public post has decreased along the years due the fact that network

started occupying other roles besides connect people. This measure does not

include the private pictures exchanges well known application that are used to

perform this service are not included as they belong to a private network just the

number of message handle by Facebook and WhatsApp sums up 60 billion

message a day including photos, texts, links and documents. With introduction of

APIs and Infrastructure as a service (IAAS) have increased the possibilities of

combinations from different sources to create products that satisfy users just in

simple steps which differentiates one application to another. The availability of

API that can identify object is a new feature to be explored and can be used to

start to change the conventional way to do tasks, the creation of new services

can be explored in this area.  

 !6

1. Introduction
IMsearch is a multiple API’s Android Mobile application used to provide users the

facility of finding products using image recognition technology. This application

provides users an optional way to find available eBay products and purchase

using crossing APIs systems.

The application uses different sources of evaluation to compound and filters a

purchase search securely, the implementation of social network profile

information will be used to add another layer of authenticity verification. This

application also provides to the users an entire online shopping experience, from

the image search to purchase of products using multiple crossing API’s. The

development of the application also aims to be intuitive and user-friendly

targeting niches of market such people that have writing difficulties, the need of

typing will be taken away by using the image extracted data, as result, there will

not have type mistakes when the query is sent from the user's device.

The application requires an user registration and has available two methods to

sign up, this process will use the application registration link or a valid social

network credential which will be evaluated by the API response and will be

encrypted and stored in case of positive response. Using the camera of the

mobile device the user will produce an image of an object, the image will be

evaluated by the image recognition API, filtered and classified as eligible to a

search or not considering the application purpose, reducing attempts of

inappropriate content for the application context, once the product’s image is

eligible to be a search the data extracted from the image will be passed in JSON

communication language to eBay and the product will be displayed on the user

screen.

The user will be able to fill personal and purchase information to facilitate the

process of the application, the search will be saved in history and this information

will be encrypted stored.

 !7

1.1. Background

The need to shape a primary material to generate a service is one of the

advantages that technology has implemented over the years, the multiple

releases of the same software with different versions are the results of a more

communicative and exigent market, this market is also used as tool playing a role

that provides suggestions and feedback improving the current version of

products. The image recognition technology is one the new features that has

space to develop new ways to perform the same task, reaching the same results

using a alternative option can be implemented into different areas in the market,

create a simple and practical tools that gives satisfactory results is important

when comes to the current e-market environment, which has multiples services

doing the very same task efficiently, to introduce the new in easy and

understandable way to a old customer is a hard task considering automation of

process that is implemented in every layer of customer usage when come to

mobile development, as result the competition increases in the market and push

up the quality of new products and services that need somehow to perform a

functionality better than the current scenario offers to strike users loyalty.

Currently Technology has reached a point where the personal preference is the

key of selling an app or even interfere on the choice of mobile or a car.

 !8

1.2. Aims

To develop a product search android application using image recognition

technology, integrating multiple existent systems using different API sources to

automate search process based on results generate from the different

components of the application, mainly eBay and Google Vision interchanging

data to provide the user the entire online shopping experience.

The user will be allowed to use the application functionalities once the

registration process is passed, to better satisfy convenience, the user will be

provided with two options to sign up, being by existing social network credentials

or directly on the application, any information given from the user will be

encrypted and stored in application database. The application provides the user a

mistype facility due the fact that the picture data extraction is converted into text

format.

1.2.1 Practical usage

Sign up / Provide valid username (email) and password registered in the

application.

Profile page / Fill personal information.

Profile page / Fill purchase information.

Image / Provide the application with a product image.

Image / The photo can be selected from the phone library.

History / Search activities will be stored in the database.

History / Purchase activity such as date, product name and type will be stored in

the database.

 !9

1.3. Technologies

1.3.1. Android studio

Android Studio provides the fastest tools for building apps on every type of

Android device.

World-class code editing, debugging, performance tooling, a flexible build

system, and an instant build/deploy system all allow you to focus on building

unique and high-quality apps.

1.3.2. Firebase

The Firebase Realtime Database is a cloud-hosted NoSQL database that lets

you store and sync data between your users in Realtime, firebase security

measure is implemented in the application using SHA key which allow only the

IMseach domain to be able to write and read data from the project.

1.3.3. Java (Android studio)

The Java™ Programming Language is a general-purpose, concurrent, strongly

typed, class-based object-oriented language. It is normally compiled to the byte-

code instruction set and binary format defined in the Java Virtual Machine

Specification.

1.3.4. Google vision

Google Cloud Vision API enables developers to understand the content of an

image by encapsulating powerful machine learning models in an easy to use

REST API. It quickly classifies images into thousands of categories (e.g.,

"sailboat", "lion", "Eiffel Tower"), detects individual objects and faces within

images, and finds and reads printed words contained within images. You can

build metadata on your image catalog, moderate offensive content, or enable

new marketing scenarios through image sentiment analysis. Analyse images

uploaded in the request or integrate with your image storage on Google Cloud

Storage.

 !10

1.3.5. eBay API

Normally, users buy and sell items using the eBay online interface, interacting

with eBay directly. But with the eBay API, you communicate directly with the eBay

database in XML format. By using the API, your application can provide a custom

interface, functionality and specialised operations not otherwise afforded by the

eBay interface.

1.3.6. JSON

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is

easy for humans to read and write. It is easy for machines to parse and generate.

It is based on a subset of the JavaScript Programming Language, Standard

ECMA-262 3rd Edition - December 1999. JSON is a text format that is completely

language independent but uses conventions that are familiar to programmers of

the C-family of languages, including C, C++, C#, Java, JavaScript, Perl, Python,

and many others. These properties make JSON an ideal data-interchange

language.

1.3.7. GitHub / Bitbucket

GitHub / Bitbucket are code repositories services platform created to manage

code easily. From open source to business, you can host and review code,

manage projects, and build software alongside millions of other developers.

1.4. Structure

1.4.1. System

The system requirements section will be structured firstly giving an overview of

each application functionality, description and user case diagram with

functionalities of each page available to the user. This section will also hold the

different requirements for the application such as data requirements,

environmental requirements, user requirements and usability requirements.

This section will also hold the current application design and architecture layers.

 !11

1.4.2. Conclusions

This section will report the benefits and disadvantage of the application,

analysing the functionalities results and user satisfaction.

1.4.3. Further Developments or Research

This section will discuss what can be developed to attend and improve the

application functionalities and user experience.

1.4.4. References

This section will hold the sources of information used during the development of

the application.

 !12

2. System

2.1. Requirements

This section will be divided into Data requirements, User requirements,

Environmental requirements and Usability requirements being, the section will

have title, description and a use case diagram representing the possible action

that the user can take on each of application screens.

2.1.1. Functional requirements

The functional requirements of the application were defined based on the

different sources of information services such as Google vision, eBay API and

user experience.

 !13

2.1.1.1. Use case diagram Imsearch functionalities diagram UCD1

!

Precondition

Trigger

2.1.1.2. Requirements <Registration page>

2.1.1.2.1. Description

The use case diagram represents one of the application available methods for

user registration, the first representation is sign up directly with the application

page.

 !14

2.1.1.2.2. Registration Use case diagram UCD2

!

Trigger

2.1.1.3. Login requirement <Login page>

2.1.1.3.1. Description

After registering using one of the methods available by the application the user

will be able to login in the application.

 !15

2.1.1.3.2. Login use case diagram UCD4

!

Precondition

Trigger

2.1.1.4. Profile requirement<Profile page>

2.1.1.4.1. Description

To use all the available application functionality the user will need to fill the profile

information form.

 !16

2.1.1.4.2. Profile use case diagram UCD5

!

Precondition

Trigger

2.1.1.5. Home page requirement<Home page>

2.1.1.5.1. Home page description

The home page will hold two features where the user can have the option to

choose between selecting an image from the phone gallery or take a picture of

the desire object to be searched.

 !17

2.1.1.5.2. Home page use case diagram

!

Precondition

To perform this action the user needs a image from the phone gallery or a

working camera on the device.

Trigger

This section pf the application starts when the user selects an available product

from the eBay search.

2.1.1.6. Cart requirement <Camera capture screen>

2.1.1.6.1. Description

The user will be able to search for products using its image, the item selected will

be placed in a basket and the user will be able to navigate back to the purchase

and select another product.

 !18

2.1.1.6.2. Purchase use case diagram UCD7

!

Precondition

To perform this action the user must have valid login credentials and full filament

of the personal information form, the registration and login stage must be passed

as valid to reach this part of the software.

Trigger

This section of the applications starts when the user selects one or more

products from the search results enabling the checkout button.

Precondition

To perform this action the user needs to have a IMsearh account with valid

personal information filled, the desired product must be select into a basket, the

purchase confirmation must be validated.

 !19

Trigger

This action of the application starts when the user selects and confirm the

products chosen for purchase.

2.1.1.7. Edit profile requirement <Profile page edit>

2.1.1.7.1. Description

The user has the option of change any credentials related to its account

information.

2.1.1.7.2. Edit profile use case diagram UCD9

!

Precondition

To perform this section of the application the user must have a registered

account.

 !20

Trigger

2.1.1.8. User purchase history requirement<Purchase history page>

2.1.1.8.1. History page description

In this section the user will be able to verify the activity in its account.

2.1.1.8.2. History page use case diagram UCD11

2.1.1.9. Re-take image requirement <Re-take image>

2.1.1.9.1. Re-take image screen description

In this section the user will be able to re-take the image picture, the action will

redirect the user to the camera screen.

2.1.1.9.2. Re-take image use case diagram UCD12

 !21

2.1.2. Nonfunctional requirements

2.1.2.1. Availability requirement

The application should have a high level of availability as it relies on different API
that are well designed and used in high demand from multiple different softwares
and platforms as source of information, the installation on the user’s device
combined with internet connection should give access to the services in Imsearch
with no issues. A third party database choice was due the storage availability and
encryption matter as the application will hold some user’s personal information,
google cloud instance as server handling the API request, google cloud vision
and eBay API also were chosen to provide the end user a fine level of services
and availability. The user has the option to select a image from their library which
can work as an option when internet connection is not present, giving the user
the facility of taking the picture of the desired product and search for it in another
occasion where there is internet connection. In fact if the camera of the mobile
with the installation of Imsearch is broken yet the user can select picture from the
library received from other applications on the phone.

2.1.2.2. Security requirement

The security measure taken in the application are user’s data oriented, where

encryption and availability are present in all data stored, in case of data loss of

accidental detection of data, automated backups are set save information time to

 !22

time and it can be recovered to the previous state in short time fashion, as result

it mitigates the usability within other possible issues. The registration process

also is used to reduce the number of possible pseudo users, using industry

standards for email registration as well as password characters.

2.1.2.3. Third party services requirements

The application relies most of its functionality based on third party services in

order to work and provide to the end user product image recognition search, the

search results will be successful only if all parts are working combined, as the

initial request come from the users products interest, in a second stage the image

of the product is stored in the phone’s library, the third stage is image recognition

from google vision API, the data extracted and filtered from the picture is sent

back to the application and redirected to another API, eBay, and finally fetching

the desired product to the user’s phone screen, the user has the option to

purchase the selected product if they want to.

2.1.2.4. Reliability requirements

As the number of users in application can increase exponentially due the amount

of users that can have access to it just browsing couple of pages and

downloading the application, is hard to measure how popular an application can

become, the users feedback is also crucial to the application to gain space and

popularity, reliability would be measured how well the application is able to

respond to requests and yet provide the user a nice and reliable experience. The

action taken in Imsearch to keep these items working is to use third party

technologies services that already have high demand market relied on it, the

application will not work only if one of these third party elements are not

functioning as expected.

2.1.2.5. Maintainability requirement

This section of the development should be pointed out as the application must be

designed and written in a clear matter where the different classes and responses

are able to be changed and updated reducing the interference one to another,

 !23

the application source code has each action separated and can be understood,

changed if there is need for updates or modifications in the application

functionality or front-end experience.

2.1.3. Data requirements

2.1.3.1 Firebase

Firebase will store and retrieve user’s information and purchase activity related to

the users profile. As the database is used as a service the storage maintainability

is done by the third party entity.

2.1.3.2 JSON

JSON is the exchanging information language in Imsearch in fact the application

needs to rely in well designed and understandable machine language acceptable

in different APIs, with three distinct main services compounding one search

results to users.

2.1.4. User requirements

Imsearch aims to provide the end user a option to automatically search products

in eBay using image recognition instead of text based queries. For better use

engagement the application automates the typing step currently used in most of

application that has the nature of searching products online.

The end user must own an android device where the application will be installed.

The user will fill out personal information in order to register in the application to

build he/she profile.

The user must have internet access as the entire application relies on third party

available services.

Only users registered in the application database will be able to perform

searches.

 !24

The user will be able to select a product and place it into a cart, where the

purchase information will be kept until further decision.

The user is required to take an image where it can be recognised by the

application.

The application will retrieve information to the user screen according with the first

four items recognised by google vision API, in case the user is not satisfied with

the result given the option re-take image will appear on the screen.

The user will have an response from the application in case of failure or the

image is not recognisable by the application.

2.1.5. Environmental requirements

2.1.5.1 Android devices

The application is build to run on android devices with basic application

installation.

2.1.5.2 Android studio IDE

Android studio is the development tool used for the application development

where all the different API parts support the language, the IDE offers debug and

suggestion for the functionality of the application including virtual devices which

gives room to perform test in different android devices.

2.1.6. Usability requirements

2.1.6.1 Performance

The application should give the users the desired results in reasonable time

fashion and the option of re-taking the image if they are not satisfied with the

 !25

current one. In case of an object is not identified, the application will produce an

error message as results of the query.

2.1.6.2 User interaction

The user interface home page is compound of few different icons, which have

intuitive text that will navigate the user as it is described, no more than one

functionality is given to a screen.

2.2. Design and Architecture

2.2.1 Activity flow diagram

The above activity flow diagram illustrate the class that are responsible for the

exchanging information to accomplish image search functionalities.

 !26

• The intro activity is the class responsible for checking validation of the user

credentials in the database. In case the user is not able to log in the

application class handles a warning message to the user.

• The sign up flow activity class is responsible for gathering the user’s

information mandatory needed for the registration process, respecting email

format and password policy applied into the application sign up requirements.

• The home activity class is responsible for handling the users’ information and

options to navigate through the different application screen, all the possible

activities are concentrate in home class of the application where the user can

choose which item of the menu to go to.

• The Scan activity class is responsible for capturing the captured image and

upload it to the google cloud vision API, the class provides the user with an

error handler in case the image could not be upload or recognised by the third

party component, as security feature in this section the application freezes the

screen while the response is not complete in order to mitigate the possible

faulty requests.

• The home activity class is responsible for handling the converted information

extracted from the image uploaded as response from google cloud vision API,

the results with the highest matching probabilities are sent to eBay servers for

search query and then the results are forwarded to eBay Activity class which

gives users an option to buy those items.

• The eBay activity class is responsible for handling the text extracted from

google cloud vision activity class, the data is parsed into eBay API request to

query the desired, returning the results to the user’s application phone screen

(Home activity).

• The cart class activity is responsible for holding the user potential purchases,

in case the user wants to buy more than one product at once.

 !27

• The show cart activity class is responsible for display the selected products by

the user while the purchase is not complete.

• Firebase as security feature offers SHA access key the key is installed in the

application and the database will just accept request from the domain

registered.

 2.2.2 Hardware diagram

The hardware digram above illustrate the requirements used in IMsearch

development environment, mostly compound of API requests and responses on

the backend side, both google and eBay API documentation require an

application ID and an access Key to the services provided. the information is

 !28

secure between Android studio and the APIs as the use of an access key is

mandatory.

2.2.3 System architecture diagram

The above diagram illustrate the system architecture for IMsearch. As the

application requires two ways API to accomplish a search, firstly from google

vision and after the data is extracted and sent to eBay API.

The view section holds all the activities that the user once logged in is able to

perform.

The controller section ensures the data passed is actually the one meant to be to

the different parts.

The model section is responsible for handling the validate user data to storage

destination (Firebase).

2.3. Implementation

IMsearch was developed based on services providers and their products

availability. The application is compounded of different classes that extract

information from each of the services providers and results in a product search.

 !29

2.3.1 Scan upload activity

One of the crucial activity used in the application is to handle the user’s image to

the recognition API the image is stored temporarily in the database until the

query is confirmed or cancelled, the google cloud vision API must be enable for

this feature functionality.

public class ScanActivity extends AppCompatActivity {

 Button newScan;
 FirebaseStorage storage;
 StorageReference storageReference;
 DatabaseReference database;
 private String personId;

 private final String image_titles[] = {
 "Img1",
 "Img2",
 "Img3",
 "Img4",
 "Img5",
 "Img6",
 "Img7",
 "Img8"
 };

 private final Integer image_ids[] = {
 R.drawable.img1,
 R.drawable.img2,
 R.drawable.img3,
 R.drawable.img4,
 R.drawable.img5,
 R.drawable.img6,
 R.drawable.img7,
 R.drawable.img8
 };

 ArrayList<CreateList> scanImages;
 MyAdapter adapter;
 ProgressDialog progress;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_scan);

 !30

 newScan = (Button)findViewById(R.id.new_scan);
 newScan.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 dispatchTakePictureIntent();
 }
 });

 RecyclerView recyclerView =
(RecyclerView)findViewById(R.id.imagegallery);
 recyclerView.setHasFixedSize(true);

 RecyclerView.LayoutManager layoutManager = new
GridLayoutManager(getApplicationContext(),3);
 recyclerView.setLayoutManager(layoutManager);

 scanImages = new ArrayList<>();

 adapter = new MyAdapter(getApplicationContext(),
scanImages);
 recyclerView.setAdapter(adapter);

 database =
FirebaseDatabase.getInstance().getReference();
 storage = FirebaseStorage.getInstance("gs://
medigocare-ab6aa.appspot.com/");

 Intent intent = getIntent();

 if(intent != null && intent.hasExtra("id")){
 personId = intent.getStringExtra("id");
 storageReference =
storage.getReference().child(personId);
 prepareData(personId);
 }
 }
 private void prepareData(String personId){

 progress = new ProgressDialog(this);
 progress.setTitle("Loading");
 progress.setMessage("Wait while loading...");

 !31

 progress.setCancelable(false); // disable dismiss
by tapping outside of the dialog
 progress.show();

database.child("users").child(personId).child("scans").addL
istenerForSingleValueEvent(new ValueEventListener() {
 @Override
 public void onDataChange(DataSnapshot
dataSnapshot) {

 Iterator<DataSnapshot> iterator =
dataSnapshot.getChildren().iterator();

 while(iterator.hasNext()){
 String imageName =
iterator.next().getKey();

 downloadImage(imageName);

 Log.d(TAG, imageName);
 }

 progress.dismiss();
 }

 @Override
 public void onCancelled(DatabaseError
databaseError) {

 }
 });
 }

 static final int REQUEST_IMAGE_CAPTURE = 1;
 private String TAG = "Debugging";

 private void dispatchTakePictureIntent() {
 Intent takePictureIntent = new
Intent(MediaStore.ACTION_IMAGE_CAPTURE);
 if
(takePictureIntent.resolveActivity(getPackageManager()) !=
null) {
 startActivityForResult(takePictureIntent,
REQUEST_IMAGE_CAPTURE);
 }

 !32

 }

 @Override
 protected void onActivityResult(int requestCode, int
resultCode, Intent data) {
 if (requestCode == REQUEST_IMAGE_CAPTURE &&
resultCode == RESULT_OK) {
 Bundle extras = data.getExtras();
 Bitmap bitmap = (Bitmap) extras.get("data");

 ByteArrayOutputStream baos = new
ByteArrayOutputStream();
 bitmap.compress(Bitmap.CompressFormat.JPEG,
100, baos);
 byte[] bitmapData = baos.toByteArray();

 final String imageName =
String.valueOf(System.currentTimeMillis());

 UploadTask uploadTask =
storage.getReference().child(personId).child(imageName).put
Bytes(bitmapData);
 uploadTask.addOnFailureListener(new
OnFailureListener() {
 @Override
 public void onFailure(@NonNull Exception
exception) {
 // Handle unsuccessful uploads
 Log.d(TAG, "Image upload
failed"+exception.getLocalizedMessage());
 }
 }).addOnSuccessListener(new
OnSuccessListener<UploadTask.TaskSnapshot>() {
 @Override
 public void
onSuccess(UploadTask.TaskSnapshot taskSnapshot) {
 // taskSnapshot.getMetadata() contains
file metadata such as size, content-type, and download URL.

 downloadImage(imageName);

database.child("users").child(personId).child("scans").chil
d(imageName).setValue(true).addOnCompleteListener(new
OnCompleteListener<Void>() {
 @Override

 !33

 public void onComplete(@NonNull
Task<Void> task) {

 if(task.isSuccessful()){
 Log.d(TAG, "Image reference
stored succesfully");
 }
 }
 });
 }
 });
 }
 }

 private void downloadImage(String imageName){

storageReference.child(imageName).getBytes(Long.MAX_VALUE).
addOnSuccessListener(new OnSuccessListener<byte[]>() {
 @Override
 public void onSuccess(byte[] image) {
 // Use the bytes to display the image

 BitmapFactory.Options options = new
BitmapFactory.Options();
 Bitmap bitmap =
BitmapFactory.decodeByteArray(image, 0, image.length,
options);

 CreateList createList = new CreateList();
 createList.setImage_title("test");
 createList.setImage_ID(122);
 createList.setBitmap(bitmap);

 scanImages.add(createList);

 //refresh the adapter
 adapter.notifyDataSetChanged();

 if(progress.isShowing()){
 progress.dismiss();
 }

 Log.d(TAG, "image found");
 }
 }).addOnFailureListener(new OnFailureListener() {
 @Override

 !34

 public void onFailure(@NonNull Exception
exception) {
 // Handle any errors
 Log.d(TAG, "image
"+exception.getLocalizedMessage());
 }
 });
 }
}

2.3.2 eBay API activity

The eBay API activity class has the responsibility of handling the arrays of data
extracted from the image recognition API in raw format, the query is handled to
the sell API where the products are available.

public class EbayActivity extends AppCompatActivity {

 public static final String[]titles =new String[] };
 public static final Integer[] images =
{ R.drawable.img1,
 R.drawable.img2, R.drawable.img3 };
 ListView list;
 List<RowData> rowDataAll;
 private String TAG = "Debugging";

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_ebay);

 Intent intent = getIntent();
 String message =
intent.getStringExtra(HomeActivity.EXTRA_MESSAGE);

 rowDataAll =new ArrayList<RowData>();

 ArrayList<RowData> smallSet =
Converters.converteStringToRowData(message);

 rowDataAll.addAll(smallSet);

 !35

 list = (ListView) findViewById(R.id.list);
 EbayAdapter adapter = new EbayAdapter(this,
rowDataAll);
 list.setAdapter(adapter);
 }
}

2.3.3 Sign up flow activity class

This class is responsible for the user’s registration requirements, the text typed in

the application is evaluated and checked according with the application

restriction for certain fields such as password policy and unique registered email

address, all the fields if are not filled correctly the application will warn the user of

faulty information typed.

public class SignUpFlow extends AppCompatActivity
implements
CredentialFragment.CredentialFragmentInteractionListener,
 ContactFragment.ContactFragmentInteractionListener,
AddressFragment.AddressFragmentInteractionListener,
View.OnClickListener {

 private static final int NUM_PAGES = 3;
 private ViewPager mPager;
 private PagerAdapter mPagerAdapter;
 private String TAG = "Debugging";
 private static HashMap<Integer, MasterFragment>
fragmentsGroup = new HashMap<>();
 int currentPageNumber = 0;
 private Button nextButton, previousButton,
registerButton;
 private Credential credential;
 private Contact contact;
 private Address address;
 private FirebaseAuth mAuth;
 private DatabaseReference database;

 static {
 fragmentsGroup.put(0,
CredentialFragment.newInstance());

 !36

 fragmentsGroup.put(1,
ContactFragment.newInstance());
 fragmentsGroup.put(2,
AddressFragment.newInstance());
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_sign_up_flow);

 previousButton = (Button)
findViewById(R.id.previous);
 registerButton = (Button)
findViewById(R.id.register);
 nextButton = (Button) findViewById(R.id.next);

 previousButton.setOnClickListener(this);
 registerButton.setOnClickListener(this);
 nextButton.setOnClickListener(this);

 // Instantiate a ViewPager and a PagerAdapter.
 mPager = (ViewPager) findViewById(R.id.pager);
 mPager.setOnTouchListener(new
View.OnTouchListener()
 {
 @Override
 public boolean onTouch(View v, MotionEvent
event)
 {
 return true;
 }
 });
 mPagerAdapter = new
ScreenSlidePagerAdapter(getSupportFragmentManager());
 mPager.setPageTransformer(true, new
ZoomOutPageTransformer());
 mPager.setAdapter(mPagerAdapter);

 }

 @Override
 protected void onStart() {
 super.onStart();

 mAuth = FirebaseAuth.getInstance();

 !37

 database =
FirebaseDatabase.getInstance().getReference();
 }

 @Override
 public void onClick(View v) {

 currentPageNumber = mPager.getCurrentItem();

 if(v.getId() == R.id.previous){

 if(currentPageNumber == 1){

previousButton.setVisibility(View.INVISIBLE);
 }
 else if(currentPageNumber == 2){
 nextButton.setVisibility(View.VISIBLE);

registerButton.setVisibility(View.INVISIBLE);
 }
 currentPageNumber = (currentPageNumber - 1)%3;
 }
 else if(v.getId() == R.id.register){

 if(getCurrentFragment().isAllFieldsPopulated())
{

 }
 }
 else if(v.getId() == R.id.next){

 if(getCurrentFragment().isAllFieldsPopulated())
{
 if(currentPageNumber == 0){

previousButton.setVisibility(View.VISIBLE);
 }
 else if(currentPageNumber == 1){

nextButton.setVisibility(View.INVISIBLE);

registerButton.setVisibility(View.VISIBLE);
 }
 currentPageNumber = (currentPageNumber +
1)%3;
 }

 !38

 }

 mPager.setCurrentItem(currentPageNumber);
 }

 private MasterFragment getCurrentFragment(){

 return
SignUpFlow.fragmentsGroup.get(mPager.getCurrentItem());
 }

 @Override
 public void onFragmentInteraction(Credential
credential) {
 this.credential = credential;

 if(credential != null){
 Log.d(TAG, "Email "+credential.getEmail());
 Log.d(TAG, "Password
"+credential.getPassword());
 }
 }

 @Override
 public void onFragmentInteraction(Contact contact) {
 this.contact = contact;

 if(contact != null){
 Log.d(TAG, "First name
"+contact.getFirstName());
 Log.d(TAG, "Last name "+contact.getLastName());
 Log.d(TAG, "Phone Number "+contact.getPhone());
 }
 }

 @Override
 public void onFragmentInteraction(Address address) {
 this.address = address;

 final Person person = new Person(credential,
contact, address);

 registerUser(person);

 if(address != null){
 Log.d(TAG, "House "+address.getHouse());

 !39

 Log.d(TAG, "Street "+address.getStreet());
 Log.d(TAG, "City "+address.getCity());
 Log.d(TAG, "County"+address.getCounty());
 Log.d(TAG, "Country"+address.getCountry());
 }
 }

 public void registerUser(final Person person){

 final ProgressDialog progress = new
ProgressDialog(this);
 progress.setTitle("Loading");
 progress.setMessage("Wait while loading...");
 progress.setCancelable(false); // disable dismiss
by tapping outside of the dialog
 progress.show();

mAuth.createUserWithEmailAndPassword(person.getCredential()
.getEmail(),
person.getCredential().getPassword()).addOnCompleteListener
(this, new OnCompleteListener<AuthResult>() {
 @Override
 public void onComplete(@NonNull
Task<AuthResult> task) {

 if (task != null && task.isSuccessful()) {
 Log.d(TAG,
"createUserWithEmail:success");
 FirebaseUser user =
mAuth.getCurrentUser();

 person.setId(user.getUid());

 HashMap<String, Object> dic = new
HashMap<String, Object>();
 dic.put("user", person);

database.child("users").child(user.getUid()).updateChildren
(dic, new DatabaseReference.CompletionListener() {
 @Override
 public void
onComplete(DatabaseError databaseError, DatabaseReference
databaseReference) {

 !40

 if(databaseError != null){
 Log.d(TAG, "Some error
"+databaseError.getDetails());
 }
 else {
 Log.d(TAG, "User created");

 progress.dismiss();

 Intent intent = new
Intent(getApplicationContext(), HomeActivity.class);
 startActivity(intent);
 }

 }
 });

 } else {
 Log.w(TAG,
"createUserWithEmail:failure", task.getException());
 Toast.makeText(SignUpFlow.this,
"Authentication failed.",
 Toast.LENGTH_SHORT).show();
 }

 }
 });
 }

 private class ScreenSlidePagerAdapter extends
FragmentStatePagerAdapter {
 public ScreenSlidePagerAdapter(FragmentManager fm)
{
 super(fm);
 }

 @Override
 public Fragment getItem(int position) {
 return SignUpFlow.fragmentsGroup.get(position);
 }

 @Override
 public int getCount() {
 return NUM_PAGES;

 !41

 }
 }

 public class ZoomOutPageTransformer implements
ViewPager.PageTransformer {
 private static final float MIN_SCALE = 0.85f;
 private static final float MIN_ALPHA = 0.5f;

 public void transformPage(View view, float
position) {
 int pageWidth = view.getWidth();
 int pageHeight = view.getHeight();

 if (position < -1) { // [-Infinity,-1)
 // This page is way off-screen to the left.
 view.setAlpha(0);

 } else if (position <= 1) { // [-1,1]
 // Modify the default slide transition to
shrink the page as well
 float scaleFactor = Math.max(MIN_SCALE, 1 -
Math.abs(position));
 float vertMargin = pageHeight * (1 -
scaleFactor) / 2;
 float horzMargin = pageWidth * (1 -
scaleFactor) / 2;
 if (position < 0) {
 view.setTranslationX(horzMargin -
vertMargin / 2);
 } else {
 view.setTranslationX(-horzMargin +
vertMargin / 2);
 }

 // Scale the page down (between MIN_SCALE
and 1)
 view.setScaleX(scaleFactor);
 view.setScaleY(scaleFactor);

 // Fade the page relative to its size.
 view.setAlpha(MIN_ALPHA +
 (scaleFactor - MIN_SCALE) /
 (1 - MIN_SCALE) * (1 -
MIN_ALPHA));

 } else { // (1,+Infinity]

 !42

 // This page is way off-screen to the
right.
 view.setAlpha(0);
 }
 }
 }

 public Person test(){

 Credential credential = new Credential();
 credential.setEmail("rafaelalves9@gmail.com");
 credential.setPassword("imsearch34");

 Contact contact = new Contact();
 contact.setFirstName("rafael");
 contact.setLastName("alves");
 contact.setPhone("9029202020202");

 Address address = new Address();
 address.setHouse("60");
 address.setStreet("hebert");
 address.setCity(“hebert lane");
 address.setCounty("dublin");
 address.setCountry("ireland");

 Person person = new Person(credential, contact,
address);

 //person.setId("ddddwww");

 return person;

 }
}

2.3.4 Converters class

The converters class is responsible for the machine communication relating the

different parts of the application API, using JSON format and HTTP to exchange

information.

/**
 * Created by Rafael Alves on 08/04/2018.
 */

 !43

public class Converters {

 public static ArrayList<RowData>
converteStringToRowData(String s){

 ArrayList<RowData> rowDataArrayList = new
ArrayList<>();

 try {
 JSONObject masterJson = new
JSONObject(s).getJSONArray("findItemsByKeywordsResponse").g
etJSONObject(0);

 JSONArray searchResult =
masterJson.getJSONArray("searchResult");

 JSONArray items =
searchResult.getJSONObject(0).getJSONArray("item");

 for(int i=0; i < 10; i++){

 JSONObject jsonObject =
items.getJSONObject(i);

 RowData rowData = new RowData();

 if(jsonObject.has("title"))
rowData.setTitle(jsonObject.getJSONArray("title").getString
(0));
 if(jsonObject.has("subtitle"))
rowData.setSubtitle(jsonObject.getJSONArray("subtitle").get
String(0));
 if(jsonObject.has("galleryURL"))
rowData.setImageUrl(jsonObject.getJSONArray("galleryURL").g
etString(0));

 rowDataArrayList.add(rowData);
 }

 } catch (JSONException e) {
 e.printStackTrace();
 }

 !44

return

rowDataArrayList;
 }
}

 !45

2.4. Graphical User Interface (GUI) Layout

 !46

The above table of screenshot illustrate the registration action that every user

needs to go through to be able to use IMsearch services. Once the user is

registered and logged in, the option of “BUY” appears on the menu and once

selected, it opens the device camera enabling the user to capture the image

desired and start the product search, the user is able to to capture the image and

automatically is redirected to the eBay products available querying the product

according with the request from google parsed into the API.

2.5. Testing

The application test was based on the image recognition of objects and the data

extracted results and timely response from google cloud vision and eBay

platform. The purpose of the test was to guarantee that the user will use the full

functionality of all the services available combined, the response time of all the

API are working in acceptable time manner max of 20 seconds to respond to an

image search request.

Android studio updates and performance enhancement of the application was

used to increased the performance and connection with the different parts of the

application.

Internet connection bandwidth has an impact on performance directly related to

the application as the software relies on upload of image and response from API.

To better usage of IMsearch, the user is recommended to be connected to a

reliable and rapid internet connection.

The user personal data registered is held in is kept encrypted in firebase

database. Firebase configuration is set to accept, only request from IMsearch

 !47

application key, increasing the level of security and access to sensitive

information.

The credentials are accepted only if typed right by the user, an email

standardization is set to avoid mistyping.

2.6. Customer testing

The testing with customer did not require any input of personal data rather it

focus in the application functionality, a dummy user was created to perform the

test to all the users. The number of people able to make part of the application is

30, from different age groups and genders, which had full access to the GUI and

were able to navigated to every page. The following questionnaire was asked to

the user after the test being finished:

 !48

IMsearch questionnaire

 !49

2.7. Evaluation

The IMsearch system working functionalities evaluation was performed on mobile

Galaxy premium android device and customers, the application was executed

successfully in this device and the connection with the different parts of the

application worked well as the API and registration keys are registered and

validated. The customer feedback also contributed to the evaluation of the

system and its usability when interacts with users, the major issue found in the

system was the fact that image recognition yet is a new technology and some of

the results were not found correctly when the image was not very clear, however,

the positive feedback was the scope of possible situation that the application can

be placed, when for some reason the user cannot type or actually does not

remember the name of the object, in fact, the user can select image from its

gallery and search for it.

 !50

3. Conclusions
Combining well stablished services with new technologies such as cloud

computing storage and image recognition API, aiming to provide to the users an

alternative way to experience online shopping retrieving products available in e-

commerce platform.

In fact image recognition is a new technology, the number of application that are

going to be developed around it is not limited, how to identify products better

based on their image is yet one feature that this application has path and need of

further development.

The range of opportunities is large, in fact the coming years promise to be benefit

in image recognition oriented applications, another variable that is critical for this

application is the hardware capacity available using cloud computing, where in

other scenarios this application development would not be possible using

ordinary hardware.

The limitation of the application is directly proportional with the image recognition

technologies, the more accurate the object recognition the more accurate is the

results.

 !51

4. Further development or research
The IMsearch project idea is to provide the user an entirely new online shopping

experience where the user can take advantage of search and shopping

automation, implementing a payment API and a login API are the next

development stage, from the registration process until the purchase every action

would be automated, giving the user more time to spend with the application

functionality browsing experience itself.

The API payment functionality is a feature that would provide the user another

automated service, the application has as one of its aims to avoid typing on the

phone screen, the usage of voice recognition to bring the image to the phone

gallery would be another advantage to the user.

 !52

5. References
Google Cloud. (2018). Building an image search application using Cloud Vision
API | Google Cloud Big Data and Machine Learning Blog | Google Cloud.
[online] Available at: https://cloud.google.com/blog/big-data/2018/05/building-an-
image-search-application-using-cloud-vision-api. [Accessed Dec 2017].

Google Cloud. (2018). Build an Android App Using Firebase and the App
Engine Flexible Environment | Solutions | Google Cloud. [online]
Available at: https://cloud.google.com/solutions/mobile/mobile-firebase-
app-engine-flexible. [Accessed Jan 2018].

 Go.developer.ebay.com. (2018). eBay Developers Program. [online]
Available at: https://go.developer.ebay.com. [Accessed Feb 2018].

freeCodeCamp. (2018). What is an API? In English, please. –
freeCodeCamp. [online] Available at: https://medium.freecodecamp.org/
what-is-an-api-in-english-please-b880a3214a82 [Accessed Feb 2018].

www.kpcb.com, K. (2018). 2017 Internet Trends Report. [online] Kpcb.com.
Available at: http://www.kpcb.com/internet-trends [Accessed Mar 2018].

Smart Insights. (2018). Mobile marketing statistics 2018. [online] Available
at: https://www.smartinsights.com/mobile-marketing/mobile-marketing-
analytics/mobile-marketing-statistics/ [Accessed Mar 2018].

SearchWinDevelopment. (2018). What is JSON (Javascript Object
Notation)? - Definition from WhatIs.com. [online] Available at: https://
searchwindevelopment.techtarget.com/definition/JSON-Javascript-Object-
Notation [Accessed Apr 2018].

Webopedia.com. (2018). What is HTTP - HyperText Transfer Protocol?
Webopedia Definition. [online] Available at: https://www.webopedia.com/
TERM/H/HTTP.html [Accessed Apr 2018].

Help.github.com. (2018). GitHub Glossary - User Documentation. [online]
Available at: https://help.github.com/articles/github-glossary/ [Accessed Apr
2018].

 !53

https://cloud.google.com/blog/big-data/2018/05/building-an-image-search-application-using-cloud-vision-api
https://cloud.google.com/blog/big-data/2018/05/building-an-image-search-application-using-cloud-vision-api
https://cloud.google.com/blog/big-data/2018/05/building-an-image-search-application-using-cloud-vision-api
https://cloud.google.com/solutions/mobile/mobile-firebase-app-engine-flexible
https://cloud.google.com/solutions/mobile/mobile-firebase-app-engine-flexible
https://go.developer.ebay.com

5.1. Monthly Journals

• Journal September 2017

Finally fourth year, Super glad I made up to this point. Now was pretty much
everything that we have got up to this point would resume in a project that
actually nobody knows if it will have any usability, that is the challenge, with a
loads of energy and imagination my project proposal was to apply statistics to
football matches and try to predict results based on previous games behaviour.
That is it, write the whole idea in a paper, find the lecture that was assigned to
me, go into a room stand, talk about your idea, listen to comments and ideas
regarding your project, I started using grammar as a writing aid.The security part
of my application was not yet clear due the fact my idea was not well defined by
me.

• Journal October 2017

After my first idea been “turned down” actually in parts i agreed with the
comments, the application would take a lot of different parts to compound the
result and yet it would need another sort of evaluation to conclude that the
functionality was valid, from that point I decided to take another approach where I
would simplify the functionality of my application and yet be useful. Multiple
applications do the same job, however, with different details where gives users
room to decide what the would use based on their preferences. Based on that
The idea of using image recognition to e-commerce started to build in as idea for
my final year project.

• Journal November 2017

At this stage I was sure that I wanted to develop something that is not quite clear
and precise defined in the market, however, has a big potential, machine image
recognition for example, in fact, the specialisation available in my course was not
the one that I choose to be my first, however the number of students in my class
optioned to go for security or cloud when I had chosen big data, which brought
me to another scenario where I had to apply cyber security principals in order to
develop my application in all aspect of SDLC.

• Journal December 2017

At this stage I was about to consolidate my idea in fact I had too many things
happening at the same including exams and delivery of final year project
proposal, which in my case I did not do so well on my first presentation, by the
fact that I believe the course is not designed for part-time student, working full

 !54

time. My second idea was finally cleared by the time of the second presentation
in fact what you possibly imagine that happens in your application until you start
developing is totally different. So finally I came down to the point where I wanted
to develop an application that uses image recognition to search products, it was
made possible by the fact that Google released an API where the image is
upload to google and the results are displayed. With that feature in mind, I had
the idea of putting these technologies together instead of creating a whole new
environment.

• Journal January 2018

Yes it was new year already and by this time I had bits and pieces and yet
nothing working together, the amount of information and the dots that I needed to
put together were quite challenging for a undergraduate student, my technologies
and functionality were way clearer in my had and finally I got to a point where my
application gained at least a pseudo shape. An android application that users can
register and search for products using eBay platform combined with image
recognition, there is not much of material out there helping with this kind of
technology which brought me to another challenge, followed by hours of tutorial
misinterpretation of documentation and any other thing that could have gone
wrong. The project gave me the experience that, there is no way in SDLC that if
don’t know what you want you will get eventually.

• Journal February 2018

Time is becoming something really short by this stage of development, work,
college work, and personal life were not well balanced at all. After days drawing
how the application should work and how people would use the application
functionality and why they would use it. I decided to start doing some practical.
Evaluate what would be the best options available at the moment and how they
would help me from a job market perspective. I decided to use cloud
technologies to host my application which would make easier the interactivity with
other components of the application.
Until this point, I could say that I was going to use google cloud technologies in
two-way image recognition and cloud instance storage.

• Journal March 2018

eBay, this part of my project gave me one of the biggest headaches ever, is not
really well supported the API technologies, especially in Java (Android studio) I
also figured out that Python would’ve done the job much easier. I thought of
changing the technologies but I decided not to because it would result in other
problems that I would face eventually. After weeks going around the same
problem, I finally got my first API request right, in fact, I was just happy that a red
message did not come up in my screen, also figured out that a lot of information
comes into the eBay API request. Now was time to figured out how to clean the

 !55

search. On the google, part was a little bit easier, in fact, you type it on youtube
or any another IT development support community there are loads of material out
there supporting such technology.

• Journal April 2018

Now I was 1 month away from the due date, did not have much time to meet my
lecturer to discuss my project if I could I believe small details, and advice would
be a fit and probably things would have gone smoother. I started looking at
previous years projects and check what they were writing in their journal,
sincerely I did not find much of transparency. Everyone seemed to have control
of what was happening in their project. I was not actually sure how I was in mine
if you are using mine as a reference to yours believe I almost went crazy with all
these things happening. By now I had google and eBay API working, but yet not
together, As solution to this part I had to find a way to extract the text found by
the google search and pass the value to eBay filtered search, The
implementation of others API were in the initial idea however with the amount of
time that I had available to work on the project and other college duties I would
not be able to accomplish my entire intention. Initially, MySQL was the chosen
database for my application, however, placing everything on the cloud would
make things easier, that is when firebase came into play and it would also include
the security measures need to my application such as CIA and encryption.
Frameworks are the first thing that the majority things of, how is it going to look
like, again against my student mind I had to fight them too much imagination and
complexity, looking into designed for very well used application and check their
navigation structure to replicate something that the users would be comfortable
with when using mine. Yes, they pretty much look the same. Register page,
Login, a profile and the functionality of the application.
That’s what I did, in fact, what is new in my application is the facility of using the
image to do something differently that is been done over the last 20 years using
internet by typing the name and find the product.

• Journal May 2018

The month of deliverables for the project, which is mostly spent in customer
research, surveys and poster development. IMsearch has the main functionality
responsive to the the user request and the registration process working well,
Firebase has the SHA implemented to guarantee that only the “IMsearch.com”
android studio project domain has access and permission to the stored data, for
security purposes, The main functionality of the application relies in another API
to parse the data extracted from the image details which can become an
inconvenient if the image is not clear enough to be recognised properly. The
project has given me as a student an idea of how big are scope of details in order
to develop an application, from the idea formation up to the point where actually

 !56

something is built and translated into services. An important details to mention is
the fact that when you are building an project specially when you are a student,
all the goals must be clear otherwise it will become way more complicated to
develop something that is not cleared interpreted by the one who is developing.

 !57

6. Appendix

6.1. Project Proposal

!

Rafael Alves
x16109716

BSc (Honours) in Computing Evening part-time

Specialisation: Cyber security

IMsearch October 2017

Executive summary

The evolution of technologies in image recognition has grown in the last 5 years

reaching a point where anyone can have access to tools such as clarifai and

google cloud vision using API’s to bring new image features into applications.

My goal in this project is to develop an application where the users can search

products based on the image recognition data processed such as logo, labels

and any kind of useful data generated from the image recognition analysis.

The application will be developed in a intuitive way where the users will seldom

find difficulty in use it to perform a search aiming also groups that are not able to

adapt to touch screen (coordination movements disorders) an image is easier to

be recognised if is analysed, for instance someone like a jacket or bag but is not

sure what is the brand if a picture is taken and its been recognised before it will

quickly answer these questions.

As image recognition is a very wide and new field this project will be developed in

Market search where the words and characteristic of a product will be extracted

by an picture and forward to e-commerce site also using its API and fetch the

most accurate found result

The implementation of location API will be a input in the project where the person

also will be answered where such object is for sale based on their location.

 !58

Background
As the number of mobile devices and image technologies has grown in the last

decade exponentially, according with kpcb reports the number of pictures taken a

day reaches over 1.8 everyday, one thing that is not yet possible is to predict

what is been taken picture of, however is possible to identify objects based in

theirs characteristics which leads the market to explore new products and

facilities.

The motive behind this project is the amount of image data that is generate a

day, every person carrying a camera mobile device has the potential to create

image data. Sourced by millions of devices daily image recognition feature has

gained a wide space in market in 2017 specially, reaching a level of availability of

services where developers can use API in order to create new software

application related to image. Available in google APIs, the evolution and use of

advanced image recognition technologies to explore this field and create new

products to users is a niche to explore, with powerful image recognition

technologies a new market has opened in several industry that can use it

productively.

 !59

1.2 Idea
The aim of this project is with a simple application that does not require much

technical knowledge provide user the facility of having an optional way to search

for products based on their image. Adding a new experience to customers in daily

basis task with phone based on images recognition where instead of typing the

desired product the user would just take a picture of it and the search would be

made based on the objects identified in the picture, it also can be a easier way to

make search for people that suffer from movements disorder, or people that have

writing difficulties.

Develop an user friendly android application to search products in few steps. The

mobile application will have a signup and login page which will also contain the

option to use other networks apis in order to log in, once the user is logged in it

will be redirected to the take a picture page where the option of retain the image

information in case the user wants to use the app for personal purpose is also to

be included.

The application itself will not generate any cost as it will entirely be developed by

me. The use of open sources programs will be applied whenever is necessary in

order to not generate costs.

 !60

1.3 Technologies
The android application is going to be developed using several different tools

combined to produced the end service specifically Google cloud instances,

Google API, Java, Python, CSS and javascript.

Using SQL database to keep crypto-graphed users’ information as we are dealing

with sensitive information.

In the login side a two way authentication will be implemented to improve the

user data protection.

Android studio is an very handy development toolkit being flexible to the

operational system the is being used. The application will have multiples APIS

working simultaneously XML, JSON, HTML.

2 System

2.1 Requirements

The reason why requirements are the first thing that is put in check when comes

to software development is because it must have a purpose, an aimed market, in

my case people that are not comfortable with writing or rather have more

information of a pictures than actually could identify.

Speaking with a numbers of students, workmates and random people asked if

they could search and buy a product based on the picture instead of typing.

Interesting was shown from majority of asked people.

 !61

2.1.1 Functional requirements

An android mobile phone, login and registration will be the basic requirements to

use the application. To better manager security the app will have a password

policy where the composition of the password will be explain to the users (Length

and characters).

Functionality description

The users are going to be registered and their data will be kept in safe storage

and be used when desire to log in. As the app will also hold implementation of

some of the networks logins API the user easily can log in.

Precondition

Download the application from google store and use one of the options for

registration.

Termination

The user will have the option to log off as them wish.

Post condition

 As the user is registered in the database their profile will enter in a wait mode

until next action from their side.

Camera view

The camera will be the main feature to be used in this application as it will the

data input to the users, the picture will be held in SQL and it will interact with user

and application as soon it is taken.

Map implementation

One of the goals of this project is simplify the user experience when it comes to

use an android mobile application, implementation the function of showing the

location that potentially have the products in sales.

2.1.2 Data Requirements

 !62

● SQL requirements: In this project the function of the database is to save
encrypted user’s information and pictures that will be stored in a cloud
server where the API will have access.

● APIS requirements: The project will run eBay API, Google cloud vision
API, google maps API.

2.1.3 User requirements

The application will be user friendly narrowing the requirements on the user side.

● Internet access: As the application engineer is built in google cloud
internet access is needed in order to use the application

● An android mobile phone is must as it is the platform that the application is
going to be developed.

2.1.4 Environment requirements

● OS: The application is going to be developed in an instance of google
cloud holding Linux 16.04 and over 7.5 Gb of ram memory it is scalable if
increase is necessary.

● Internet access: Internet is a must for this project.
2.1.5 Usability requirements

● Understandable: The application will be user friendly, clear and intuitive
instructions.

● Operable: The application must bring back information that the images
have, in case of failure in the search the user will be notified

● Interaction: Nicely design to make the user feel comfortable when is
navigating through the application with few commands able to achieve the
goal of the search.

 !63

Gantt chart

"

2.1.6 Competitor's application at google store

"

Requirements

Functional requirements.

Use case diagram.

 !64

!

Requirement 1 <Register>:

The registration process will allow the user to login with its own facebook/google

account which will give them access to the application functionality. The image

search will not be allowed or kept in database unless the user is logged in

successfully.

The user first action will be typing the credential from networks that they are

already registered with such as facebook/google using their login API a HTTP

POST request will be sent to IMsearch server database and register the client if

the response from the networks are ok (200), in case the response is not success

a message will be displayed to the user and the registration page will be shown

to type the credentials again.

Priority: High

Usecase

 !65

Scope

The scope for this use case is to request a response from social networks APIS

to register the user in case the response is successful.

Description

The user case below illustrate the action of the user interacting with the system in

order to create a new account using already validated credentials from existing

social networks accounts.

Use case diagram:

!

Requirement 2 <Product image recognition>:

The image recognition function is the most important in IMsearch application.

This part of the program will allow the user to point the mobile phone to a product

that they want to buy or as option go to their phone library to upload a photo of a

product that they are interested in. The google cloud vision API will receive a

image post request from the application, the result will be analysed with pertinent

features of products such as brand, text found and object recognition, in case the

accuracy is not enough to perform search the user will be notified.

Priority: High

Use-case

Scope

 !66

The scope for this use case is to request a response from google cloud vision

API with pertinent information to search for products having or not a successful

response from the APIs services.

Description

The user case below illustrates the action of using an image to search for

products in by the phone library or taking pictures.

Use case diagram:

"

Requirement 3<User profile>:

Description - High priority

The profile functionality allows the user to edit personal information such name,

payment details, search results and shopping records. A GET request will be sent

to the server in order to fetch user profile information. The application will send a

POST request to the database with the new information given from the user

response will be displayed to aware the user the result of the action.

Scope

The scope of this use case is to receive the login API response from network and

validate it fetching information from the database and fill the user information on

the phone screen using a GET request.

 !67

Description

The below use case describes the function of the users to edit their personal

profile information once their login information is validated.

Scope

The scope of this use case is to send to the server a POST request with updated

profile information, searches made by the user and check shopping activity.

!

Requirement 4<Select product>:

Description - High priority

The select product functionality allows the user to choose the found product from

the application search. This section of the program will use the eBay API using

keywords extracted from google cloud vision to run the search, once the

application display the found product the user will be able to select and proceed

with the purchase.

Scope

The scope of this use case is allow the user to select the product based on the

API results, a GET request will be sent to the eBay API to perform the search.

 !68

"

Requirement 4<Add to basket>:

Description - Medium priority

This functionality of the application will allow the user to add the selected item to

a basket and or cancel a product if they wish.

Scope

The scope of this functionality is to allow the user to select more than one

product or cancel an item if is needed and confirm the purchase.

"

 !69

6.2. Project Plan

!

6.3. Other Material Used

 !70

 !71

6.4. Key terms

 !72

	Table of Contents
	Executive Summary
	Introduction
	Background
	Aims
	1.2.1 Practical usage
	Technologies
	Android studio
	Firebase
	Java (Android studio)
	Google vision
	eBay API
	JSON
	GitHub / Bitbucket
	Structure
	System
	Conclusions
	This section will report the benefits and disadvantage of the application, analysing the functionalities results and user satisfaction.
	Further Developments or Research
	References
	System
	Requirements
	Functional requirements
	Nonfunctional requirements
	Data requirements
	User requirements
	Environmental requirements
	Usability requirements
	Design and Architecture
	Implementation
	Graphical User Interface (GUI) Layout
	Testing
	Customer testing
	IMsearch questionnaire
	Evaluation
	Conclusions
	Further development or research
	References
	Monthly Journals
	Journal September 2017
	Journal October 2017
	Journal November 2017
	Journal December 2017
	Journal January 2018
	Journal February 2018
	Journal March 2018
	Journal April 2018
	Journal May 2018
	Appendix
	Project Proposal
	Executive summary
	Background
	1.2 Idea
	1.3 Technologies
	2 System
	2.1.1 Functional requirements
	Project Plan
	Other Material Used
	6.4. Key terms

